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Abstract: The original concept of “Total Prestress” consists of creating compressions in concrete
without generating tension stresses for service load, while in "Partially Prestressed” elements, tensions
are allowed in the service stage, which would produce some cracking depending on applied loads
that will be taken with non-prestressed reinforcement. Using criteria and design recommendations
can guarantee maximum flexural capacity and admissible serviceability requirements of partially
prestressed elements; however, there is insufficient research for estimating more accurately the
required parameters for the design and review of these types of elements. Because of this, the present
investigation consisted in the realization of experimental studies in continuous partially prestressed
beams with unbonded tendons for the evaluation of the flexural behavior for different stages of load
determining the actual stresses and the strains taking into account the structural stiffness decrease
and its effect on deflections. The dimensions of the specimens were selected based on common
dimensions presented on slabs. The tested specimens considered variables such as the relationship
between the length of the continuous spans, the cross-section, and the partial prestressing ratio.
Afterward, equations were proposed to predict the decrease in the structural stiffness, depending on
the degree of cracking, the type of cross-section, the partial prestressing ratio, and the magnitude
of the applied load and the tension and compression stresses to estimate the probable deflections
for a particular loading stage. The crack width equation presented a difference of −16% to +18%
with respect to the experimental data, while the flexural stiffness equation showed a highly accurate
correlation to the experimental data.

Keywords: partially prestressed members; continuous beams; unbonded tendons; deflections; cracks

1. Introduction

In recent years, continuous post-tensioned structures with unbonded tendons have
been used more frequently, especially in elements with low depths such as continuous slabs
in one and two directions, to cover large spans and reduce costs, and therefore it has also
been necessary to have a better-quality control in the construction of these types of elements.
Partially prestressed concrete (PPC) members subjected to service loads will exhibit tensile
stresses in some zones that will lead to cracking and, with this, to the consequent decrease
in their stiffness, which is related to the increase in deflections depending on the percentage
of loads acting on the member [1].

Particularly, for the serviceability stage, the acting stresses should be compared con-
cerning the allowable values of tension and compression according to the recommendations
of the current codes [2,3]; however, the tensile stresses could exceed these limits in the case
of PPC members if the crack width is below the maximum allowable value. The increase in
stress values in PPC members generates an increase in the degree of cracking; hence, it is
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very important to evaluate and control the crack widths and their spacing [4]. Studies to
evaluate these criteria are limited due to the different factors that affect the development of
cracking in these members.

Given this situation, other factors that influence the behavior of PPC members are
the stresses of the unbonded tendons, the compressive strength of the concrete, the yield
strength of the reinforcing and prestressing steel, the partial prestressing ratio, the span-
to-span ratio, the trajectory of the tendons, the type of loads and the load distribution
pattern in continuous elements, and the stresses in the cables after prestressing losses. To
take these factors into account, for several years, different studies have been carried out
regarding the determination of the failure and serviceability limit states, although most
of the studies carried out have focused on the determination of the flexural strength [5].
Other studies [6,7] concluded that the American Concrete Institute ACI-318 equations
for predicting stresses in prestressing tendons for the flexural strength stage have poor
correlation with experimental results and may not be conservative in some cases.

Despite the aforementioned studies that refer to the behavior of prestressed members
with bonded or unbonded tendons under service loads, in general, most of the investiga-
tions of these types of members have focused on defining or modifying the expressions to
determine the flexural strength [8–20] mainly involving the determination of the stresses
that occur in the prestressing steel for this strength stage. For instance, in [8], an equation to
compute the ultimate stress based on the presence and absence of bonds was presented. An
analytical model determined to compute the flexural strength and the deflection based on a
simplified curvature distribution was developed in [9]. In addition, [10] presents a modifi-
cation to the equation for the stress based on prestressing steel, high-strength concrete, and
partial reinforcement. An empirical equation to calculate the ultimate stress in unbonded
tendons with the inclusion of the amount of non-prestressed reinforcement was developed
in [11]. An analytical model was developed to explain the mechanism of the member
span–depth ratio parameter and its effect on the ultimate stress in unbonded members [12].
It was shown that the presence of bonded non-prestressed reinforcement has a marked
influence on the flexural behavior of unbonded beams and the related increase in stress
in the prestressed steel at the ultimate load [13]. The percentage of reinforcement, shape
of members, strength of concrete, span–depth ratio, and initial stress in the strands were
studied in [14,15] where a predicting equation was also developed. The variation in stress
in prestressed steel under service load as well as the ratio of the length of the equivalent
deformation region to the neutral axis depth at the critical section of unbonded partially
prestressed concrete beams under service load were presented in [16]. Based on plastic
region length and the concept of the collapse mechanism in continuous members predicting
ultimate stress, equations were developed [17,18]. Based on compatibility and equilibrium,
the ultimate flexural capacity of beams was determined from the models [19,20].

There are also other studies [21–28], in which mathematical models are proposed to
estimate the bending behavior of PPC members, internally and externally. For instance,
in [21], a set of design expressions was developed for externally prestressed beams under
elastic and inelastic states; these equations were dependent on the tendon eccentricity
and on the neutral axis depth. Furthermore, models that predict the initial behavior,
before and after cracking, service load behavior, and ultimate strength, along with the
moment redistribution for continuously unbonded post-tensioned concrete members, were
developed [22–24]. These models were accurate for a wide range of members, including
externally and internally prestressed members, diverse tendon profiles, reinforcement
ranges, diverse section shapes, and loading patterns. In [25], a model for the ultimate
strength of prestressed members with unbonded tendons was presented; it also provided
a reasonably good estimation of the ultimate strength of over-reinforced members and
high-strength concrete members. In addition, a simple method to calculate the stress in
external tendons for continuous beams with or without symmetrical loading from the
deformation of the strengthened member was presented in [26]. A numerical model
developed to predict the full-range nonlinear response, as well as the time-dependent
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service load behavior of continuous beams prestressed with internal unbonded tendons,
was developed in [27]. Both geometric and material nonlinearities were considered. A
model to estimate the required partial prestressing based mainly on the crack control
of concrete was proposed [28]. Nonetheless, as previously mentioned, most of these
investigations deal only with the flexural behavior of these types of members.

Research has been developed for the prediction of cracking and deflections in pre-
stressed beams in which a mathematical model was also proposed to estimate the crack
width correlated with the obtained deflections, which were compared with the deflections
calculated with theoretical formulas. The presence of conventional reinforcing steel has a
significant effect on crack control because there is a more uniform distribution of cracks
with smaller spacings, and the deflections are fewer compared to similar members without
conventional reinforcing steel. However, only prestressed members with bonded tendons
were considered in these studies [29–32]. For unbonded tendons, only simple supported
beam bridges were considered in these studies [33,34]. In the former, a simply supported
PC beam was composed of a parabolic tendon and high-strength concrete, where short- and
long-term prestressing losses were measured for approximately 9.5 months through the
vibration response, and finite element modeling was also used to predict the dynamics of
the girders; the latter focuses on the flexural response of two reduced-scale, post-tensioned,
PC bridge girders, prestressed with two different jacking forces and tested under a four-
point bending configuration, and these were also modeled with the finite element method
to represent the actual behavior of the specimens.

Both experimental and analytical studies have been carried out for the determination
of deflections in simply supported prestressed elements with bonded and unbonded
tendons [35–38]. The cracking of continuous-reinforced concrete members and the cracking
of simply supported prestressed members were also investigated by generating an equation
to estimate the crack width [39]. This research study concludes that the crack width and
its spacing increase until reaching a load level between 60 and 70% of the ultimate load.
After this load, the crack width increases without the appearance of new cracks. The
aforementioned equation can be applied to continuous reinforced concrete members, but
it would not apply to continuous prestressed members until sufficient experimental data
are available to support this equation. Most of the mentioned studies have focused on
the study of simply supported members with bonded tendons and, in contrast, there
are few experimental and analytical studies related to continuous PPC members with
unbonded tendons.

Therefore, the present research study was conducted to assess the relationship between
the loss of cross-section stiffness and the determination of crack width and cracking degree
for the negative and positive moment zones, taking into account the relationship between
adjacent spans, the magnitude of the loads, and the partial prestressing ratio, because
the loss of stiffness will consequently influence the increase in deflections. Hence, a set
of equations to obtain the stiffness factor and the crack width are determined to define
the degree of deflection of continuous members (such as one- and two-way slabs) and
the degree of cracking, respectively. These equations provide the means to evaluate the
deflections and cracking for partially prestressed members with unbonded tendons for
structures commonly found in slabs.

2. Materials and Experimental Program
2.1. Specimens for Tests

Sets of 12 beams were fabricated in duplicate. The first set had a solid rectangular
cross-section of 150 mm × 300 mm depth–width, respectively. The second set had a cross-
section of 150 mm × 500 mm formed by two longitudinal ribs (“inverted U”). The two sets
had lengths of 7500 mm and 8700 mm. Both sets of beams were continuously supported
with spans of 2400-2400-2400 mm and 2400-3600-2400 mm, considering the different partial
prestressing ratios (PPRs) as identified in Table 1.
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Table 1. Identification of continuous beams.

Continuous Spans of 2400-2400-2400 mm

Cross-Section 150 mm × 300 mm Cross Section 150 mm × 500 mm

Type PPR Type PPR

V-1 0.79 V-4 0.79
V-2 0.65 V-5 0.65
V-3 0.55 V-6 0.55

Continuous spans of 2400-3600-2400 mm

Cross-section 150 mm × 300 mm Cross section 150 mm × 500 mm

Type PPR Type PPR

V-7 0.79 V-10 0.79
V-8 0.65 V-11 0.65
V-9 0.55 V-12 0.55

The cross-sections of the beams were established by trying to simulate solid (150× 300 mm)
and ribbed (150 × 500 mm) members. In both cases, the web width was 300 mm. The
length of the strong floor used for the tests limited the lengths of the beams. The beam sizes
were selected to represent structural elements as close to reality as possible.

2.2. Materials for the Fabrication of Beams

All beams were reinforced with two 10 mm diameter Grade 270 (fpu = 193 MPa) 7-
wire low-relaxation prestressing steel strands under ASTM A-416 [40], with 8 mm (5/16′′)
diameter Grade 60 (fy = 420 MPa) corrugated bars, according to ASTM A-615 [41], as
longitudinal reinforcement in different amounts according to the partial prestressing ratio,
and with 6 mm (1/4′′) diameter Grade 40 (fy = 280 MPa) smooth round steel stirrups
as shear reinforcement. Normal-weight concrete with a minimum compressive strength
f′c at 28 days of 35 MPa was used. The cables were tensioned with two hydraulic jacks
simultaneously using a barrel–wedge anchorage. The dead anchors were “U”-shaped and
were built with an A-36 structural steel plate (fy = 258 MPa) using a 200 mm diameter
circular tube in 25 mm segments (Figure 1).
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Figure 1. Prestressing steel anchorage: (a) anchorage in the jacking end zone; (b) dead anchor
in 300 × 150 mm beams; (c) dead anchor in 500 × 150 mm beams; (d) barrel–wedge Freyssinet
anchorage; (e) jacking end in 300 × 150 mm beams.

2.3. Description of Specimens

Figures 2 and 3 show the overall dimensions and cross-sections, respectively, as
well as the number of prestressing steel cables and the longitudinal reinforcing steel
configuration which varies according to the partial prestressing ratio (PPR). The trajectory
of the prestressing cables for the continuous beams is shown in Figure 4. It follows a
parabolic configuration over its length according to the positive and negative moment
zones, except for a straight-line trajectory of 600 mm at the center of the 2400 mm spans,
and another straight line at the middle-third of the central span for the beams with the
intermediate span of 3600 m, where concentrated loads were applied.
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Figure 4. Location of loads, post-tension cable trajectory, and location of strain gauges in continuous
beams: (a) 7500 mm in length; (b) 8700 mm in length.

The instrumentation of the beams used unit strain gauges for conventional reinforcing
steel and prestressing steel, placed before concrete pouring in the zones indicated in Figure 4.
In addition, strain gauges for concrete were placed in the same zones. Deformations
were monitored during the application of the test loads, including the transfer stage of
the prestressing.

2.4. Fabrication of Concrete Beams

Concrete fabrication for the 24 beams was carried out following ASTM C-31 [42].
A water–cement ratio (W/C) of 0.5 was used in all cases. Casting was performed in
a single pouring operation for each set of two twin beams in a single day. A target
strength f′c of 35 MPa and a 200 +/−10 mm slump were considered. Concrete samples
were made in 100 × 200 mm cylinders, one pair for each mix, for concrete strength at
different ages according to ASTM C-39 [43] and tests were also performed to determine
the modulus of elasticity according to ASTM C-469 [44]. Concrete samples were made
in 76 mm × 76 mm × 280 mm bars to verify concrete shrinkage according to ASTM C-
157 [45]. After casting the beams, normal curing was carried out by placing curing blankets
that were constantly moistened for 7 days. The number of mixes produced for each pair
of beams varied between 9 and 14, depending on their dimensions, and the quantities of
materials also varied slightly depending on the moisture content of the coarse and fine
aggregates at the time of casting (Table 2).
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Table 2. Concrete proportioning.

MATERIALS:
BEAM No.

1 2 3 4 5 6 7 8 9 10 11 12

Water (kg/m3) 152.9 152.9 152.9 163.1 170.3 159.7 162.2 163.2 149.7 141.7 166.7 163.8
Cement (kg/m3) 294.3 294.3 294.3 313.9 313.9 294.3 313.9 313.9 313.9 294.3 313.9 313.9

Coarse aggregate (kg/m3) 615.9 615.9 617.9 660.3 658.3 617.1 658.9 659.1 660.3 617.1 658.3 658.9
Fine aggregate (kg/m3) 757.5 757.5 755.8 810.2 804.9 754.6 812.4 811.3 823.6 772.3 807.9 810.2
Reducing additive (mL) 294 294 275 80 80 75 80 80 80 130 130 130

% Absorption Coarse Ag. 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634
% Absorption Fine Ag. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
% Moisture coarse Ag. 0.1 0.05 0.32 0.5 0.2 0.25 0.3 0.31 0.5 0.2 0.21 0.3

% Moisture fine Ag. 1 1.7 1.46 1.32 0.66 0.7 1.6 1.47 3 3 1.06 1.35
Vol. concrete/mix (L) 78.95 78.95 78.95 84.21 84.21 78.95 84.21 84.21 84.21 78.95 84.21 84.21

No. of mixes (2 beams) 9 9 9 11 11 12 10 10 10 14 13 13

2.5. Testing of Beams

Concentrated loads were applied to each span at the center of the 2400 m spans and
to the thirds of the 3600 mm spans (see Figure 5). The load was applied in increments
of 10.08 kN distributed over the beams at the six points indicated in Figure 5 until the
failure load was attained. Displacement transducers were placed at the centers of the three
spans in each of the beams for the measurement of deflections at the different load stages
mentioned. At the same time, displacement transducers were also used at the ends of the
beams to measure the shortening or elongation during the tests.
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Figure 5. Acting load configuration.

During the tests, data acquisition equipment was used to record data readings from
the different sensors for each load increment. Also, the amount and distribution of cracking
were observed, and crack widths were measured with a portable optical microscope at
50×magnification for each of the aforementioned load stages.

3. Analysis and Discussion of Results

The concrete compressive strength f′c used in this research followed the results of the
tests indicated in Table 3 for each of the types of beams tested.

The strains in the reinforcing steel, the prestressing steel, and the concrete were
obtained employing unit strain gauges placed in the positive and negative moment zones
for each load increment until the maximum failure load was reached. In addition, the
deflections at the center of the three spans, the longitudinal elastic shortenings, and the
degree of cracking were measured, including the crack widths, for each load application
level and were analytically related to the theoretical deflections of the beams with the same
characteristics of the beams used in the tests.
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Table 3. Concrete strength of beams.

Specimens Compressive Strength at 28 Days (MPa)

V-1 40.3
V-2 40.7
V-3 37.0
V-4 36.3
V-5 35.1
V-6 36.0
V-7 36.9
V-8 39.3
V-9 34.8

V-10 41.0
V-11 39.7
V-12 39.2

3.1. Flexural Stiffness

From these data, the moment diagrams were elaborated and related to the stresses in
the materials and to the deflections. The moment–curvature diagrams were also obtained
considering the cross-section at the center of the span and, additionally, the deflections were
determined theoretically without considering the decrease in the stiffness of the element,
that is, considering the gross inertia of the cross-section and the modulus of elasticity of
the concrete obtained from the samples of the cylinders that were tested for this study.
These results were compared with the deflections acquired during the tests, which showed
a decrease in stiffness as illustrated in Figures 6–13. In each of these graphs, the curves
corresponding to beams with three different partial prestressing ratios (PPRs) are shown
and it is observed, in most cases, that the decrease in stiffness starts when the first cracking
appears; however, in some few cases, the decrease in stiffness also occurred, to a lesser
degree, in the absence of cracks at the centers of the span but with cracking on the supports.
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On the ordinates of these graphs (Figures 6–13), the stiffness factor “SF” is indi-
cated, and, on the abscissa, the applied load is indicated as a function of the moment
ratio (Ma-Mcr)/(Mn-Mcr), where the moment Ma is the moment for which the bending
stiffness at any loading stage is to be determined, Mcr is the cracking moment that was
obtained when the first crack was observed for each particular zone, and Mn is the maxi-
mum bending moment that was determined when the yield stress was first reached in the
conventional steel for that zone. In these same graphs, trend lines were included from the
onset of cracking to the application of the load that produced the onset of the yield stress
in the conventional reinforcing steel. The correlation of these straight lines ranged from
0.94 to 0.99, which indicates that it is suitable to consider a linear behavior to estimate the
decrease in stiffness of the tested beams.

In these graphs (Figures 6–13), the stiffness factor “SF” takes the value of one if there
are no cracks, i.e., when the acting moment (Ma) is equal to the cracking moment (Mcr).
As the acting moment (Ma) increases, the stiffness factor begins to decrease until this
acting moment Ma reaches the nominal resisting moment of the beam Mn. The graphs
are prepared for different acting moments (Ma) from Mcr to Mn and the results obtained
represent the decrease in the moment of inertia of the cross-section of these types of beams
tested, indicating that cracking of the cross-section would develop with the increase in
applied loads.

In general, the slope of these straight lines, in the same zone of the beams, is similar
for the three different partial prestressing ratios (PPRs) and, also, it is observed that the
decrease in stiffness varies from 55% to 72% of the stiffness value of the uncracked cross-
section depending on the type of beam. Specifically, the value of the stiffness “SF”, with
respect to the uncracked concrete sections, and independently of the type of cross-section,
decreases on average for exterior spans up to 45% and for interior spans up to 72%.

In all cases, linear behavior is observed for any type of cross-section and for each
positive or negative moment zone. Each figure includes the equation of a straight line for
each beam with different values of the PPR, which indicates that the decrease in stiffness is
linear from the point when the moment cracking occurs until the acting moment reaches
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the maximum nominal moment Mn. This information represents the stiffness behavior of
partially prestressed beams with unbonded tendons.

Regarding what was previously discussed and according to Figures 6–13, and regard-
ing the relationship between the decrease in stiffness of partially prestressed members with
unbonded tendons, considering the uncracked and cracked inertias of their cross-sections,
the degree of cracking, and the partial prestressing ratio (PPR), involved in the maximum
bending moment (Mn), Equation (1) was proposed to determine the stiffness factor “SF”.
In this equation, the terms in parentheses involving moments and inertias are the slopes of
the straight lines in the previous graphs and the unit value represents the stiffness factor
“SF” at the initiation of the cracking of the cross-section at the center of the span considered.
The proposed equation, to determine the stiffness value (SF), is as follows:

SF =

[
1−

(
Ma −Mcr

Mn −Mcr

)(
1− Icr

Ig

)]
(1)

where

SF = Stiffness factor as a function of the elastic modulus of concrete (Ec) and the gross
moment of inertia (Ig).
Ma = Acting moment at the stage where deflection is to be determined.
Mcr = Cracking moment obtained during the application of the test loads.
Mn = Bending moment strength.
Ig = Gross moment of inertia of the cross-section.
Icr = Moment of inertia of the transformed cracked section.

In addition, the above expression considers that the minimum stiffness factor of any
cross-section as a function of “EI” is at the instant when the yield stress in the conventional
steel first occurs, which is also consistent with the maximum moment present; however, the
stiffness continues to decrease with the application of additional loads; but, for purposes
of estimating deflections for service loads, the equation would be valid from the onset of
cracking until the onset of yielding is reached in the conventional reinforcing steel. Because
the proposed equation involves the bending resistant moment, which is determined with
the stress measured at the yield stress of the conventional steel in the beam, and on which
the partial prestressing ratio and the cracking moment also depend, this equation would be
valid for PPR ratios from 0.55 to 0.79 and span-to-depth ratios between 16 and 24, according
to the beams tested and the results obtained in this research study.

3.2. Crack Width and Cracking Distribution

Regarding cracking, data were obtained from the cracks that appeared during the
beam tests, which are shown in Figures 14–17. The results of these figures correspond to the
data obtained from the 12 types of beams, where only half of the elevation of each beam is
shown to observe this information more clearly, even though the distribution of the cracks
is similar on both sides of the beams. In these figures, the number of the cracks outside the
perimeter that delimits the contour of the beams is indicated and, also, next to each crack,
the identification number of the applied load level according to the growth of each crack
is indicated.
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Figure 14. Typical crack locations in beams V-1, V-2, and V-3 (300 × 150 mm). Half elevation left 
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Figure 16. Typical location of cracks in beams V-7, V-8, and V-9 (300 × 150 mm). Half elevation left 

side. 

 

Figure 17. Typical location of cracks in beams V-10, V-11, and V-12 (500 × 150 mm). Half elevation 

left side. 

Figure 16. Typical location of cracks in beams V-7, V-8, and V-9 (300 × 150 mm). Half elevation
left side.
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Figure 17. Typical location of cracks in beams V-10, V-11, and V-12 (500 × 150 mm). Half elevation
left side.
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Crack widths were recorded for the different load levels (for each increment of
10.08 kN); however, in the figures above, the information on the cracks with the largest
width and the longest length for each zone was included. Figures 14–17 show the crack
distribution, and it can be observed that the crack spacing decreases as the partial pre-
stressing ratio (PPR) decreases, i.e., with more non-prestressed reinforcing steel, the crack
spacing is smaller and it can also be observed that the number of cracks is larger as the
PPR decreases. The average crack spacing obtained for the positive moment zones was
95 mm for PPR = 0.79, 83 mm for PPR = 0.65, and 66 mm for PPR = 0.55 and, for the
negative moment zones, it was 58 mm for PPR = 0.79, 53 mm for PPR = 0.65, and 47 mm
for PPR = 0.55. It was also observed that the crack width is greater when the PPR is higher,
i.e., when there is a lesser amount of conventional reinforcing steel.

From Figures 18–29, it can be observed that the crack widths, for the same bending
moment, were slightly larger for the inverted “U” section than for the rectangular section
in all zones of the beam; however, for the maximum failure load stage, the largest crack
widths developed in the inverted “U” section for the centers of the spans because this
concrete section has a compression width of 500 mm and the location of its neutral axis is
located at a greater distance with respect to the fiber in tension compared to the 300 mm
wide rectangular section of the beam; and, in contrast, on the supports, the crack widths
were larger for the rectangular section because, in this zone, the width of the concrete in
tension was greater than the inverted “U” section (500 mm). It was also observed that in
the supports, for the maximum load stage applied to the beams, the crack width was much
larger (up to 3.6 mm) with respect to the crack width of the span centers (up to 1.2 mm)
because, in general, the moments occurring in the supports are larger in relation to the
moments in the span centers, so it can be considered that the crack widths are directly
related to the cross-section and the moment of each particular zone.
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Figure 29. Moment vs. crack width, cross-section 500 × 150 mm, interior span (V-10, V-11, V-12). 
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reinforcing steel obtained from the tests were taken into account for each particular zone, 

and, in this manner, the following equation was proposed to determine the crack width. 
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Ab = area of conventional reinforcing steel in tension included in the cross-section = 2dc b. 
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Kw = 1.3 for positive moment zones and 2.2 for negative moment zones. 

For the above equation, the cover (dc) and the area of the reinforcing steel of the ten-

sion zone included in the cross-section (Ab) were taken into consideration according to the 

traditional expressions used to estimate the crack width [4,46] and, additionally, the unit 

strain in the concrete when the first crack occurred was taken into consideration; and the 
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Figure 29. Moment vs. crack width, cross-section 500 × 150 mm, interior span (V-10, V-11, V-12).

Based on this information, an analogy was made with empirical expressions [46] that
consider the unit deformations in the concrete in the tension zone and, for the present
investigation, the concrete compression strains and the tension strains in the conventional
reinforcing steel obtained from the tests were taken into account for each particular zone,
and, in this manner, the following equation was proposed to determine the crack width.

ω = Kw

[
(εct − εcr)· 3

√
dcAb·PPR

]
(2)

where

ω = crack width in mm.
εct = unit strain in the extreme fiber in tension of the concrete for the stage in which the
crack width is determined, obtained by compatibility of strains between the concrete and
conventional reinforcing steel.
εcr = unit strain in the extreme fiber in the tension of the concrete at the instant of cracking(
= 2

√
f′c / Ec), calculated with the compressive strength f′c and modulus of elasticity of

concrete Ec which were obtained experimentally.
dc = location of the centroid of the conventional reinforcing steel with respect to the fiber
in tension.
Ab = area of conventional reinforcing steel in tension included in the cross-section = 2dc b.
b = beam width.
PPR = partial prestressing ratio.
Kw = 1.3 for positive moment zones and 2.2 for negative moment zones.

For the above equation, the cover (dc) and the area of the reinforcing steel of the tension
zone included in the cross-section (Ab) were taken into consideration according to the tradi-
tional expressions used to estimate the crack width [4,46] and, additionally, the unit strain
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in the concrete when the first crack occurred was taken into consideration; and the partial
prestressing ratio (PPR) was involved to consider the amount of conventional reinforcing
steel. Furthermore, the “Kw” factors were proposed based on the difference between the
measured crack widths and the widths determined by this expression (Equation (2)), and
the graphs in Figures 30–37 were obtained in which this comparison is carried out. In these
graphs (Figures 30–37), it is observed that the crack width determined analytically with
this equation would be on the conservative side by obtaining higher values for the same
acting moment. For the crack widths calculated with this expression, in some cases, there is
a difference of up to 89% greater with respect to the crack width measured for the outer
span centers and up to 94% greater for the case of the inner supports. The “Kw” factors
included in the above expression (Equation (2)) could be reduced to make this difference
smaller; however, they would no longer be conservative values in most instances.
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On the other hand, when reaching a crack width of 0.4 mm, which corresponds to the
admissible value for interior exposure, when considering Equation (2) and relating it to
the bending moment, the variation would be from −9% to 18% with respect to the acting
moment obtained during the tests for beams with equal spans (2.4-2.4-2.4 m) and, for the
case of beams with different spans (2.4-3.6-2.4 m), the moment reached when a crack width
of 0.4 mm is present varies from −16% to 3% with respect to the moment obtained during
the tests. In other studies [29,47], equations have been proposed that estimate the crack
width as a function of the difference in the stresses produced in the prestressing wires for
the phase considered with respect to the effective stress after losses (∆fps); however, in
the previously proposed equation (Equation (2)), the strain in the concrete fiber in tension
(εct) is directly related to this difference in stress considering the compatibility of unit
deformations of the corresponding cross-section.

In the particular case of the rectangular section beams, with a partial prestressing
ratio PPR = 0.79, for the exterior spans and at the supports, a significant increase in crack
width was observed at the end of the applied load (Figures 30, 32, 36 and 37) due to the
small amount of the conventional reinforcing steel area considered (two rebars) and they
presented a large strain after having reached their elastic limit. Moreover, the information
on crack distribution (Figures 30–37) was correlated with the crack width obtained from
the experimental data, taking into account the crack spacing obtained for the span centers
(Equation (3)) and on the supports (Equation (4)).

ω = [(εct − εcr)·Scrack] (3)

ω = 3[(εct − εcr)·Scrack] (4)

Because the proposed equation to determine the crack width (Equation (2)) is related
to the unit strains of a cross-section of a partially prestressed concrete member, which
depend directly on the acting moment (Ma) for a considered loading stage, this same
moment can be involved in the determination of the crack width (Equation (3)); this same
moment can be involved in the proposed equation to determine the stiffness factor “SF” of
the cross-section, which would be multiplied by the uncracked inertia and by the modulus
of elasticity of the concrete to obtain the flexural stiffness (SF · E · I), and with this factor,
the deflections at the center of the span can be determined.

In general, in the previous graphs (Figures 30–37), the acting moment Ma is represented
in the ordinates, which is related to the crack width indicated on the abscissa for the different
types of beams that were tested. It is shown that as the acting moment Ma increases with
respect to the cracking moment Mcr, the crack width also begins to increase following the
behavior of the proposed equation, which was compared to the crack widths obtained
during the tests of the beams.

Future research will consider analyzing different case studies using finite element
software to validate the equations described in this article. It is considered to use different
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variables such as span length, cross sections, and different partial prestress ratios primarily,
among others.

4. Conclusions

Based on the results discussed in this article, the following conclusions can be drawn:
(1) The relationship that exists between the flexural stiffness and the degree of cracking

of a partially prestressed concrete element with unbonded tendons, for a particular cross-
section, depends on the compatibility of strain between the conventional bonded steel
and the concrete, on the stresses in the linearly varying prestressing cables, on the flexural
strength, on the inertia of the cracked and uncracked transformed section, and, mainly,
on the distribution of the conventional steel in the tension zone that is a function of the
partial prestressing ratio and the cracking stress of the concrete. Furthermore, it was
found that it decreases from the onset of cracking. A scientific proposal is made using the
model established by Equation (1), which is suitable for determining the flexural stiffness
factor (SF) of a continuous partially prestressed beam with unbonded tendons, which
was verified by the experimental results obtained from the tested beams. The flexural
stiffness of these types of members is obtained by multiplying the stiffness factor “SF”
from the above equation (Equation (1)), the modulus of elasticity of the concrete, and the
uncracked gross moment of inertia of the cross-section (SF·E·I), which would be involved
in the determination of deflections.

(2) To determine the crack width of a partially prestressed beam, Equation (2) was
proposed, which involves the distribution of conventional reinforcing steel in the tension
zone, the partial prestressing ratio (PPR), and the unit strains in the tension zone of the
concrete. This equation was verified according to the crack widths obtained experimentally
during the tests with a difference of −16% to +18%, which are a function of the unit
strains occurring in the concrete in a cracked tension zone and for the loading stage
under consideration.

(3) The relationship between the flexural stiffness and the degree of cracking of a
partially prestressed concrete element with unbonded tendons, for a particular cross-
section, depends on the compatibility of the unit strains between the conventional bonded
reinforcing steel and the concrete, on the stresses in the linearly varying prestressing cables,
on the flexural strength, on the inertia of the cracked and uncracked transformed section,
on the distribution of the conventional reinforcing steel in the tension zone which is a
function of the partial prestressing ratio, and on the cracking stress of the concrete.

(4) For an intermediate loading stage, between crack initiation and bending resistance,
the crack width would be estimated with Equation (2) for the corresponding acting moment
and this same moment would be involved in Equation (1) to establish the stiffness factor
“SF”; in this manner, the flexural stiffness and deflections at the span center would also be
determined as a function of the geometry of the element and its cross-section.

(5) The models proposed for the determination of flexural stiffness and crack widths,
for service loads, can be used to estimate these same parameters theoretically, with adequate
accuracy, using the stresses in the prestressing steel estimated in the current codes, the
strains obtained from a strain compatibility analysis, and the geometry of the corresponding
cross-section.

(6) The information obtained in this research could also be applied to slabs in one or
two directions and scale tests could be carried out on these types of structural elements
using the equations proposed for the stiffness factor (SF) and for obtaining the crack widths,
making the adjustments that are pertinent for these types of structural elements.
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Abbreviations
Ab Area of conventional steel in tension.
b Beam width.
dc Centroid of conventional reinforcement steel.
Ec Elastic modulus of concrete.
f′c Compressive strength.
fpu Ultimate tensile strength of tendons.
fse Stress after losses.
fy Yield strength.
Icr Moment of inertia cracked section.
Ig Moment of inertia.
Kw Factor.
Ma Acting moment.
Mcr Cracking moment.
Mn Maximum bending moment.
PPC Partially prestressed concrete.
PPR Partial prestressing ratios.
SF Stiffness factor.
W/C Water–Cement ratio.
∆fps Effective stress after losses.
εct Unit strain in extreme fiber in tension.
εcr Unit cracking strain.
ω Crack width.
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