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Abstract: Effective civil infrastructure management necessitates the utilization of timely data across
the entire asset lifecycle for condition assessment and predictive maintenance. A notable gap in
current predictive maintenance practices is the reliance on single-source data instead of heteroge-
neous data, decreasing data accuracy, reliability, adaptability, and further effectiveness of engineering
decision-making. Data fusion is thus demanded to transform low-dimensional decisions from in-
dividual sensors into high-dimensional ones for decision optimization. In this context, digital twin
(DT) technology is set to revolutionize the civil infrastructure industry by facilitating real-time data
processing and informed decision-making. However, data-driven smart civil infrastructure manage-
ment using DT is not yet achieved, especially in terms of data fusion. This paper aims to establish a
conceptual framework for harnessing DT technology with data fusion to ensure the efficiency of civil
infrastructures throughout their lifecycle. To achieve this objective, a systematic review of 105 papers
was conducted to thematically analyze data fusion approaches and DT frameworks for civil infras-
tructure management, including their applications, core DT technologies, and challenges. Several
gaps are identified, such as the difficulty in data integration due to data heterogeneity, seamless
interoperability, difficulties associated with data quality, maintaining the semantic features of big
data, technological limitations, and complexities with algorithm selection. Given these challenges,
this research proposed a framework emphasizing multilayer data fusion, the integration of open
building information modeling (openBIM) and geographic information system (GIS) for immersive
visualization and stakeholder engagement, and the adoption of extended industry foundation classes
(IFC) for data integration throughout the asset lifecycle.

Keywords: digital twin; smart infrastructure management; O&M; data fusion; openBIM; GIS; IFC

1. Introduction

Civil infrastructure systems are the backbone of modern societies and provide shelter,
transportation, clean water, communication, energy and keep the economy functioning [1,2].
However, infrastructure owners and managers are struggling with the inefficiency and
financial burden associated with aging infrastructure, which is deteriorating at an extensive
rate and impacting the serviceability of the assets and quality of life for societies [1,3,4].
Infrastructure networks encompass a large number of interdependent infrastructure fa-
cilities, and their fragmented management complicates smart decision-making [5]. Civil
infrastructure asset management has been the focus of cities and municipalities due to its
significant strategic, operational, and financial benefits for transparently funding infras-
tructure lifecycle costs [6–8].
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Currently, civil infrastructure is mainly managed by computerized maintenance man-
agement systems (CMMS) to record and plan routine maintenance activities, and decision
support systems (DSS) are used for mid to long-term budget planning [8]. These currently
used asset management processes rely on historical data and manual inputs from site visits,
maintenance activities, and asset inspections and are financially unviable and prone to
human errors [9]. In addition, current asset management systems use highly variable asset
inventory systems in terms of asset location and hierarchy referencing [9,10]. Moreover,
traditional asset management systems use standard classifications for managing assets and
do not integrate information from all asset lifecycle phases [9,11]. Assumptions are often
made to predict the remaining useful life of the assets [8]. Asset management through
the lifecycle requires digital continuity of the data along separate phases of the facility for
predicting asset performance and smart maintenance decision-making [12]. Thus, there
is an eminent need for modernization and digital transformation in infrastructure asset
management to achieve smart and resilient cities.

The emergence of Industry 4.0 necessitated real-time data acquisition and integration,
resulting in a broader research focus on digital twins (DT). Figure 1 depicts the milestones of
DT development summarized by Madubuike et al. [13] and further enriched by this study.
Essentially, digitalization and real-time monitoring of physical assets require seamless
integration of physical assets and their virtual counterparts. With the advancement of
information technology such as the internet of things (IoT), cloud computing, artificial
intelligence (AI) tools like deep learning (DL) and machine learning (ML), simulation,
virtual reality (VR), and augmented reality (AR), the process of digitalization is gaining
momentum [14]. Smart infrastructure management as a data-driven approach necessitates
the integration of systems, facilities, and components [15]. DT is claimed to resolve the
integration issue and provide real-time monitoring and data-driven intelligent decision-
making [13,16]. In particular, DT is a prominent technology that enables instant two-way
integration between virtual and physical systems, facilitating intelligent decision-making.
According to Deng et al. [17], DT has evolved from BIM through four stages of development
and integration with other technologies, including simulation, sensors, and AI at various
levels. DT leverages IoT technology, smart sensors, lasers, photogrammetric tools, and
measuring machines to gather real-time information about assets. Moreover, DT employs
AI tools like ML and DL to organize and analyze data in real-time, allowing for condition
monitoring, environmental learning, system-failure prediction, real-time feedback, and
bi-directional information integration throughout the asset lifecycle [18,19].
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The literature about DT has been gaining momentum, and various systematic reviews
have been conducted on the DT application and its enabling technologies. For example,
Cheng et al. [20] conducted a systematic literature review of 174 papers on DT in civil infras-
tructure emergency management, discussing its development, technologies, and resilience.
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The authors proposed a framework for civil infrastructure emergency management that out-
lines how DT aids in lifecycle reinforcement during mitigation, virtue planning and training
in preparation, real-time assessment and optimization in response, and collaboration and
learning during recovery. The authors also outlined that semantic-rich digital modeling,
knowledge management, cybersecurity, and data quality in DT models are challenges
associated with full DT deployment. Later, Jiménez Rios et al. [21] systematically reviewed
76 papers on bridge management through DT-based anomaly detection. The findings of
the review were within the following themes: bridge DTs, bridge information modeling
(BrIM), finite element modeling (FEM), bridge health monitoring (BHM), AI, unmanned
aerial vehicles (UAVs), satellite monitoring, and other DT-related technologies. The authors
revealed that there is a complete consensus towards DT adoption for bridge management
and that a successful DT framework needs to be based on as-is information, data-driven
finite element models, interoperability, and geometry. The study also found that the main
challenges for DT deployment are software interoperability, anomaly-detection algorithms,
DT integration at a macro scale, data quality, cost, institutional barriers, and resistance
to change. Naderi and Shojaei [22] systematically reviewed 85 articles on infrastructure
digital twins (IDTs) to investigate twinning technologies and interoperability solutions.
The authors highlighted the versatility of BIM and IoT for IDTs, the need for complex ar-
chitectures, edge-based solutions for simple IDTs, and standardization for interoperability.
Through evaluating potential IDT frameworks, the authors found that data security, a lack
of DT standards, data latency, and user interface issues are some challenges hindering
DT adoption in the civil infrastructure sector. Wei et al. [23] highlight that traditional
data analytics methods support decision-making from a single data source, while data
fusion enhances accuracy by integrating multiple sources. Data fusion from heterogeneous
sources and multiple sensors offers a more comprehensive representation of measurements
and improves prediction performance [24,25].

Many studies focused on DT for civil infrastructure management and discussed twin-
ning technologies, interoperability, and DT applications. Some studies [5,15,26] proposed
integrated infrastructure system architectures that were concerned with infrastructure
systems of systems and infrastructure interdependency. However, they lack focus on
data-driven civil infrastructure management through seamless data integration throughout
the whole lifecycle, data fusion, geospatial integration of infrastructure systems, multi-
stakeholder involvement, security, and privacy. The implementation of DT for data-driven
civil infrastructure management and predictive maintenance is associated with big data
fusion from heterogeneous sources, realizing the gaps in the prominent DT frameworks, un-
derscoring the core DT technologies for seamless big data management, and understanding
the needs for DT application during the O&M phase including lifecycle data integration,
federated digital modeling, interoperable open data standards, stakeholder involvement
and human-in-the-loop. Another notable gap in current predictive maintenance practices is
the reliance on single-source data instead of heterogeneous data, decreasing data accuracy,
reliability, adaptability, and further effectiveness of engineering decision-making. Data
fusion is demanded to transform low-dimensional decisions from individual sensors into
high-dimensional ones for decision optimization. Given this, this study attempts to address
this gap by answering the following research questions (RQs):

• RQ1: what are core data fusion approaches, applications, and challenges in the
DT domain?

• RQ2: what are the capabilities of the current DT frameworks for data-driven civil
infrastructure asset management? Considering applications, technologies utilized,
and challenges.

• RQ3: what are the core DT-enabling technologies for data-driven civil infrastructure
asset management?

• RQ4: what are the needs of DT applications during the O&M phase for data-driven
infrastructure asset management? Including as-is digital modeling, data standards for
interoperability, systems integration, stakeholder involvement, and human-in-the-loop.
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Toward the objectives, this study systematically analyzed 105 academic publications.
A content and qualitative thematic analysis approach was utilized, which is a widely
recognized technique for theme identification and analysis. To address RQ1, 13 academic
papers about data fusion were thematically analyzed, and the themes for their applications,
methodologies, and challenges were extracted. To address RQ2 and RQ3, 44 DT frameworks
were analyzed to extract their applications, core technologies, and challenges. In addition,
a network map of the most prominent challenges hindering the seamless deployment
of DT for smart civil infrastructure management is presented. To address RQ4 and to
address some of the prominent challenges identified, the findings from all the sections
are synthesized, and a conceptual lifecycle encompassing a DT framework for smart civil
infrastructure management is presented based on concepts of multi-layer data fusion, IFC
extension, blockchain, stakeholder engagement, openBIM, and GIS integration, and multi-
level checks for quality assurance. The proposed framework facilitates enterprise-level
asset management throughout its lifecycle.

2. Methods

This study applies a systematic literature review approach to synthesize relevant
academic publications and case studies on DT for civil infrastructure management. Sys-
tematic review is a comprehensive approach for identifying, evaluating, and synthesizing
relevant academic papers [27,28]. The rigorous approach of systematic review ensures the
inclusion of relevant studies and facilitates identifying trends, gaps, and future research
directions [29,30].

As shown in Figure 2, the research methodology in this study consists of five steps:
(1) literature retrieval, (2) thematic analysis of the literature, (3) discussion of findings,
(4) network mapping of challenges and gaps, and (5) development of conceptual DT
framework for smart civil infrastructure management. This approach has been adopted in
numerous prior research studies [15,20,31–33].
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Thematic analysis is a prominent approach for identifying and reporting data patterns
and themes, revealing the basic concepts of the analyzed content and representing the
fundamental ideas arising from specific research questions and objectives [34,35]. The
thematic analysis approach in this study is adopted from Maguire and Delahunt [36] and
is based on the six-phased framework proposed by Braun and Clarke [37] as follows:
(1) becoming familiar with data, (2) generating initial codes, (3) searching for themes,
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(4) reviewing themes, (5) defining themes, and (6) write-up. This study used an inductive
thematic analysis approach, where the analysis is data-driven, and the identified themes
are strongly related to the data and emerge naturally [37]. Microsoft Excel was used for
data summarization and NVivo was used to code and classify the data. NVivo assists
qualitative researchers in organizing, analyzing, visualizing, and reporting their data by
providing tools and features to structure and organize the collected data [38].

To map challenges and gaps, this research used VOSviewer version 1.6.18, a tool that
uses publication data to create maps for visualization and interpretation. In this study, the
challenges from the analyzed literature publications were summarized and organized in
a comma-separated values (csv) file and fed into VOSviewer. The co-occurrence analysis
of challenges was conducted to visualize the research themes and trends of the targeted
research domain quantitatively because co-occurrence shows the number of documents that
contain the same challenge and are formed into clusters that allow for better representation
and easy interpretation of the research theme results [39].

2.1. Literature Selection

The literature for systematic analysis was retrieved from Scopus and it was selected
as the main database due to its reputation as a leading scientific abstract and indexing
database; it also has a broader literature collection compared to its counterparts [18]. A
comprehensive query-based search was performed in the Scopus database using keywords
associated with DT and civil infrastructure management. Two main query blocks of DT
and infrastructure were searched within article title, abstract and keywords. In the DT
search string, the keywords “Digital Twin” OR “DT” OR “Digital Twins” OR “Digital-twin”
OR “Digital Twinning” OR “Virtual Twin” OR “ Virtual Counterpart” OR “Virtual Replica”
were included. In the infrastructure management search string, the keywords of “Civil
Infrastructure Management” OR “Infrastructure Management” OR “Infrastructure Asset
Management” OR “Bridge” OR “Tunnel” OR “Railways” OR “Roads” OR “Ports” OR
“Highway” were included, and it was integrated with DT by the AND command.

After identifying the keywords, a comprehensive query-based search was performed,
and the potential papers were identified. To ensure the value of the systematic review and
provide a comprehensive and precise explanation of the literature retrieval process, the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow
was employed. The PRISMA 2020 flow diagram provides a visual map of the stages of a
systematic review, enhancing transparency; in addition, it allows readers to track decisions
and understand how the initial literature search led to the final set of included studies [40].
The literature retrieval process is summarized in Figure 3. The period for literature search
was set as from January 2012 to May 2023. Literature has been collected since 2012 because
that is when DT emerged as a prominent technology and garnered significant research
attention. The initial search resulted in 2141 papers from Scopus. Through automation
filtering, the language was limited to English, the source type was limited to journal and
conference proceedings and the subject area was limited to engineering, computer science,
energy, decision science, and environmental science.
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2.2. Literature Features on DT in Civil Infrastructure

Research on DT in civil infrastructure has been gaining momentum. Recently, there
has been a significant surge in the number of studies conducted. In recent years, the
number of studies has dramatically increased. As depicted in Figure 4, there is a clear trend
in publication distribution. Notably, in the past three years, publications on DT in civil
infrastructure have increased by more than four times, emphasizing the rising interest and
immense potential of DT in intelligent infrastructure management. Figure 5a highlights
that most publications on DT in civil infrastructure are within the fields of engineering and
computer science. This underscores the significance of machines and computer-aided tools
in advancing smart engineering solutions. Meanwhile, Figure 5b categorizes academic
publications on DT in civil infrastructure from January 2012 to May 2023 based on the
type of document source. The data reveals that 53% of the publications from this study are
journal articles, while 47% are from conference proceedings.
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3. Findings

This section presents the findings from a thematic analysis of 12 literature review
studies on DT application for civil infrastructure management, 13 data fusion studies
and prominent DT frameworks from 44 studies. Microsoft Excel version 1808 was used
for data structuring and summarization, and NVivo version 14.23.2 was used to code
and classify the data. The approaches, findings, and challenges from all the identified
studies were extracted and summarized in an Excel sheet. Then, the six-phased framework
proposed by Braun and Clarke [37] was followed. The thematic analysis was performed
as follows: (1) familiarization with the data was performed through critical reading and
noting down initial themes, (2) the files were converted into text files and imported into
NVivo for coding by collecting data relevant to each code, (3) the codes were collected into
potential themes by gathering all the relevant data to a potential theme, (4) the themes
were reviewed for accuracy, (5) themes were defined and named, and (6) the findings were
plotted and described.

3.1. Literature Review Studies on DT for Infrastructure Management

Table A1, summarizes the research methodology, findings and challenges highlighted
from 12 literature review studies about DT application for infrastructure management.

3.1.1. Literature Review Findings

Through the thematic analysis of the findings from the 12 studies focused on literature
review and case studies in DT for civil infrastructure management, four primary themes
emerged, which are shown in Figure 6, and briefly elaborated below.
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In the research of DT for civil infrastructure, several themes have emerged. Firstly,
the applications of DT in infrastructure management have been explored in eight stud-
ies [20,21,32,33,41–44], which delve into its use in managing and optimizing various
infrastructure systems, encompassing bridge monitoring, railway infrastructure man-
agement, emergency management, urban development, and smart city applications.



Buildings 2023, 13, 2725 8 of 41

Secondly, the technological enablers for DT theme underscore the pivotal technolo-
gies that facilitate DT applications. This is evident in six studies [20–22,33,42,45] that
discuss core technologies like BIM, IoT, UAVs, 3D surveying, AI, cloud storage, and
computing. The third theme, DT design and data management, emphasized by four
studies [44–47], highlights the foundational principles of DT design, data management,
and system architecture considerations. These studies underscore the significance of a sys-
tems perspective, the distinction of DT from other technologies, and the pressing need for
standardized interoperability solutions. Lastly, the challenges and barriers in DT adoption’
theme brings to light the hurdles encountered in DT adoption, spanning technological to
cultural challenges. Studies [44–46] pinpoint various challenges in assimilating DT into ex-
isting practices and systems, from the lack of standard definitions to cultural impediments
and skill deficiencies.

3.1.2. Literature Review Challenges

To provide a holistic understanding of the challenges facing DT deployment, the
challenges related to DT application for smart infrastructure management were extracted
from the 12 studies that were focused on literature reviews and case studies. Thematic
analysis was performed to identify core themes and patterns among extracted challenges.
The results yield four main themes shown in Figure 7. The findings from the thematic
analysis are as follows:
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Data challenges are emphasized in eight out of 12 studies [20,22,32,41–45], high-
lighting the crucial role of data in the DT paradigm and the challenges in ensuring data
security, integrity, and efficient management. Technical and integration barriers are
discussed in six studies [21,33,41,42,44,45], underscoring the technical complexities that
hinder DT implementation and the need for seamless systems and technology integra-
tion. Human and cultural factors are spotlighted in three studies [21,46,47], emphasizing
the human-centric challenges and the importance of cultural acceptance in realizing the
benefits of DT adoption. Additionally, institutional and financial barriers are addressed
in two studies [21,42], pointing out the external challenges, including institutional and
financial constraints, that impede the widespread adoption and implementation of DT.

3.2. Data Fusion

Data fusion plays a crucial role in decision-making, enhancing prediction and system
optimization. Lee et al. [48] introduced a multi-sensor data fusion, utilizing a reconfigurable
module with three fusion layers at data level, feature level, and decision level. The data
layer refines the raw data, the feature layer configures a fusion tree, and the decision
layer facilitates final decision-making using predetermined equations. Similarly, Hijji
et al. [49] presented an intelligent hierarchical framework that utilizes 6G communication
technologies, DL techniques, and mobile edge AI training. The proposed framework uses
data level fusion and utilizes the convolution neural network (CNN) model that fuses
imagery and sensory data to detect potholes. Alternatively, Wei et al. [23] introduced a
decision-level data fusion model framework to improve prediction performance in quality
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control and predictive maintenance. The proposed framework transforms low-dimensional
decisions from individual sensor data like temperature and vibration into high-dimensional
ones, formulating the integration as a convex optimization problem. The approach is
demonstrated in two cases: (1) quality control in additive manufacturing, where it predicts
surface roughness, and (2) predictive maintenance in aircraft engines, where it estimates
remaining useful life.

Wei et al. [23] emphasize that while decision-making is supported by traditional data
analytics methods utilizing a single data source, accuracy is optimized by data fusion
through the integration of multiple sources. Data fusion, integrating information from
heterogeneous sources and multiple sensors, provides a more thorough representation of
measurements and enhances prediction performance [24,25]. A significant gap exists in
current predictive maintenance practices due to the dependence on single-source data as
opposed to heterogeneous data, impacting data accuracy, reliability, adaptability, and the
overall efficacy of engineering decision-making. The transformation of low-dimensional
decisions from individual sensors into high-dimensional ones is necessitated for decision
optimization through data fusion.

To provide a holistic understanding of data fusion for smart decision-making and
to answer RQ1, this paper summarized the methodology, applications, and challenges
of 13 academic publications on data fusion and integration for smart decision-making,
as shown in Table A2. Additionally, a qualitative thematic analysis was performed to
underscore the prominent themes in the data fusion methods, applications, and challenges.

The thematic analysis of the 13 data fusion and integration topics emphasized data
fusion and collaboration, technological connectivity and integration and semantic un-
derstanding and ontology. To provide a more thorough evaluation of the studies, their
methods, applications, and challenges are presented in the following sections.

3.2.1. Methods and Approaches of Analyzed Data Fusion/Integration Studies

The thematic analysis of the methodologies from the 13 studies that are focused on
data fusion and data integration reveals four major themes that are shown in Figure 8, and
briefly elaborated as follows:
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Technological integration, the most significant theme with seven occurrences, under-
scores methodologies that focus on integrating various technologies, such as BIM and IoT,
or BIM and GIS. This theme also emphasizes data fusion techniques vital for extracting
insights from heterogeneous data sources. With six occurrences, framework development
highlights the complexity of civil infrastructures, which require various data sources for
holistic decision-making. Due to heterogeneous data sources for various infrastructure
assets, data fusion becomes challenging, emphasizing the creation of new computational or
technological frameworks for specific applications. Advanced computational techniques,
with five occurrences, underscores methodologies that utilize AI tools, such as ML and DL,
to reduce computational complexity. Lastly, data management and interpretation, with
four occurrences, focuses on methodologies that handle processing and managing data,
including ontology-based methods, semantic integration, and risk assessment.
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3.2.2. Applications of Analyzed Data Fusion/Integration Studies

The thematic analysis of the applications from the 13 studies that are focused on data
fusion and data integration reveals four major themes that are shown in Figure 9, and
briefly discussed as follows:
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Infrastructure monitoring and management is the most prominent theme, with seven
occurrences, emphasizing data fusion applications that concentrate on real-time moni-
toring, maintenance, and management of infrastructure assets like roads, bridges, and
buildings. Technological integration and visualization, with six occurrences, highlights
the fusion of diverse technologies, particularly data collection tools such as IoT, coupled
with visualization tools like DT models for infrastructure asset management. Data-driven
decision-making, having five occurrences, focuses on data-centric applications that utilize
big data for informed decision-making, encompassing predictive maintenance and address-
ing missing data. Lastly, risk evaluation and prevention, with four occurrences, underscores
applications that evaluate risks in various scenarios aiming to prevent potential issues.

3.2.3. Challenges of Analyzed Data Fusion/Integration Studies

The thematic analysis of the challenges from the 13 studies that are focused on data
fusion and data integration reveals five major themes and patterns that are depicted in
Figure 10, and briefly discussed as follows:
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Integration complexity was the most prominent theme with six occurrences, highlight-
ing the challenges and complexities of integrating heterogeneous data sources, especially
from different sensors, photogrammetry technologies, and conventional sources. Data
quality and consistency, with five occurrences, discuss the challenges concerning the qual-
ity, consistency, and reliability of data used in the data fusion and integration process.
Similarly, semantic, and ontological challenges, also with five occurrences, emphasize the
difficulties in maintaining and interpreting the semantic features and structure of data
to retain its profound meaning. Resource and computational constraints, with four oc-
currences, address the challenges tied to limited computational resources, particularly
when managing big data, and the selection, implementation, and validation of appropriate
algorithms. Lastly, practicality and real-world application, with three occurrences, discuss
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the disparity between theoretical knowledge and its real-world application, as well as the
validation of actual data. This theme also points out the challenges of applying theoretical
and conceptual knowledge in real-world scenarios, especially for data fusion-based DT
applications in the infrastructure management domain.

The thematic analysis performed on challenges extracted from 13 data fusion and
data integration studies revealed several themes and patterns. Integrating multisensory
data due to source heterogeneity and ensuring seamless interoperability are recurring
challenges. Furthermore, difficulties associated with data quality, missing data, and noisy
data are significant. Moreover, challenges related to maintaining the semantic features of
big data and the complexities of certain algorithms are evident. Big data is essential for
smart infrastructure management and handling vast volumes and varieties of real-time data
generated by users and devices is crucial; the concept of a DT for infrastructure is considered
as an efficient way to organize and utilize this data [50]. Lastly, the practicality and real-
world application of data fusion for smart infrastructure management and validation of
actual data is challenging.

3.3. Digital Twin Frameworks

Researchers have been focused on DT for civil infrastructure management and studied
digital twinning technologies, interoperability solutions, DT applications and challenges.
Additionally, some of the studies proposed DT system architectures and frameworks for
civil infrastructure management. To evaluate the capabilities of the current DT frameworks
for civil infrastructure asset management, including their applications, technologies uti-
lized, and challenges, to answer RQ2, this study performed a content analysis of 44 DT
frameworks to extract their applications, core technologies and challenges. The applica-
tions, technologies utilized and challenges of implementing DT frameworks are outlined in
Table A3.

The technologies are abbreviated in the table, and full forms of technologies not men-
tioned above in this paper are as follows: closed-circuit televisions (CCTVs), resource
description framework (RDF), JavaScript object notation (JSON), extensible markup lan-
guage (XML), extended process specification language (EXPRESS), and web ontology
language (OWL) information and communications technology (ICT), you only look once
(YOLO), deep simple online and real-time tracking (DeepSORT), light detection and ranging
(LiDAR), extended reality (XR), Vuforia (an augmented reality software development kit),
representational state transfer (REST), application programming interface (API), wireless
sensor networks (WSNs), mixed reality (MR), construction operations building information
exchange (COBie), sniffing omgewing/environmental tester (SNOET), non-destructive
tests (NDTs), long-range wide area network (LoRaWAN), machine-to-machine (M2M),
radio-frequency identification (RFID), weigh-in-motion (WIM), industrial internet of things
(IIoT), semantic web (SWeb), Amazon web services (AWS), terrestrial laser scanning (TLS),
mobile mapping system (MMS).

To draw holistic conclusions from the applications, technologies utilized, and chal-
lenges encountered in the prominent DT frameworks, a content and thematic analysis of
each section is conducted, and the findings of each section are presented in the follow-
ing sections.

3.3.1. Applications of Studied Digital Twin Frameworks

The thematic analysis of the applications from the 44 studies that presented DT
framework for infrastructure management revealed six themes and patterns that are shown
in Figure 11, and elaborated as follows:
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DT development emerged as the most prominent theme, with 25 studies emphasizing
its applications in monitoring, optimization, and decision-making through digital twin-
ning and comprehensive framework design. These studies underscored the development,
implementation, and utilization of DT frameworks and models. Data-centric applications
were also significant, with 18 studies discussing the role of real-time data acquisition, pro-
cessing, and analysis in DT applications for real-time monitoring visualization, predictive
maintenance, and smart decision-making. Lifecycle integration is crucial for smart infras-
tructure management, and 13 studies highlighted the importance of information continuity
throughout the asset lifecycle and its integration with other systems for enhanced decision-
making. Safety and risk management is paramount, especially since civil infrastructures
are susceptible to natural disasters and uncertainties. Twelve studies emphasized the
critical role of technology in ensuring infrastructure safety, managing risks, and addressing
potential emergencies, particularly in infrastructure condition assessment and disaster
management. Urban and smart city applications were spotlighted in nine studies, focusing
on the application of DT in urban planning and the development and management of smart
cities. Lastly, sensor and IoT utilization is fundamental in smart infrastructure management.
Eight studies detailed the significant reliance of DT implementation on sensor technology
and IoT for various DT applications.

3.3.2. Challenges of Studied Digital Twin Frameworks

The thematic analysis of the challenges encountered by 44 studies that proposed DT
framework for civil infrastructure management yielded in eight themes that are depicted
in Figure 12, and elaborated as follows:
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Data management and quality emerged as the most prominent theme, with 28 studies
discussing challenges related to data collection, quality, and efficient management. The
importance of accurate and high-quality data was a significant concern across most of these
studies. Interoperability and system complexity was another major theme, with 22 out
of 44 studies emphasizing the complexities of working with diverse systems and models,
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highlighting challenges in integrating different systems, working with complex models,
and ensuring seamless interoperability. Technological limitations were cited in 20 studies,
which pointed out challenges related to technologies, sensors, software, and platforms,
mainly due to the limitations of current technologies in meeting the needs for full DT
deployment for smart infrastructure management. Stakeholder and organizational chal-
lenges were also crucial, with 17 studies discussing the broader context of DT deployment,
including challenges related to stakeholder collaboration, organizational structures, and
socio-political dynamics. Environmental and external factors were highlighted by 15 stud-
ies, pointing out the uncertainties associated with civil infrastructures. These challenges
are related to mapping accuracy, geospatial data, and other environmental factors that
complicate DT deployment for smart civil infrastructure management. Knowledge and
training were emphasized by 13 studies, noting the knowledge and skill gap as a significant
factor complicating effective DT implementation in the civil infrastructure industry. The
need for proper training, expertise, and efficient knowledge transfer is vital. Security and
ethics were major concerns in 12 studies, underscoring challenges related to data privacy,
security, and ethical considerations in the digital age. Lastly, business and value were
discussed in seven studies, highlighting challenges related to cost, value, and return on
investment, emphasizing the need for case studies evaluating the cost-benefit analysis of
DT implementation for civil infrastructure management and proving its long-term impact
and business value.

3.3.3. Core Technologies Utilized in the Studied DT Frameworks

The thematic analysis of the technologies utilized in the DT frameworks for infrastruc-
ture management revealed five themes that are depicted in Figure 13, and briefly discussed
as follows:
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Data processing and analysis was identified as the most prominent theme with 25 oc-
currences, emphasizing the crucial role of AI, ML, DL, cloud computing, edge computing,
data mining, and pattern recognition in extracting insights from vast data collected from
heterogenous sources. Following closely is the data exchange and integration theme with
22 occurrences, which emphasizes the importance of standards and formats like IFC, CO-
Bie, RDF, JSON, and XML schemas for ensuring smooth interoperability between various
systems. The data representation and modeling theme, with 21 occurrences, underscores
the significance of visualization and digital modeling technologies such as BIM, GIS, VR,
AR, MR, and 3D models, making data more understandable and actionable, vital for DT
implementation. Data collection and sensing, with 19 occurrences, stresses the essential
role of reliable data-gathering tools like IoT, UAVs, cameras, LiDAR, and laser scanners
in the DT paradigm. Lastly, the hardware and physical tools theme, with 13 occurrences,
highlights the reliability and functionality of physical devices like Arduino, fiber optic sen-
sors, laser rangefinders, and cameras. These devices must operate precisely to supply the
DT with reliant data, and challenges like limited battery life and anomalous functionality
can hinder successful DT implementation for smart civil infrastructure management.
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The thematic analysis of the infrastructure management frameworks from the 44 stud-
ies revealed the application of advanced technologies across various stages. The most
prominent technologies in various layers, including the data collection layer, data transfer
layer, data processing and analysis layer, and data visualization layer, were extracted, and
their significance was examined. DT is a data-driven approach and strongly relies on seam-
less data exchange. It is evident that there is a great need for seamless data integration that
can be achieved through standardized data exchange tools throughout the asset lifecycle,
from planning and construction to O&M.

3.4. Digital Twin Enabling Technologies

DT has five essential constituents: physical entity, virtual entity, connection, data,
and service [51]. Lu et al. [52] presented a systems architecture for developing DT at the
building and city level that included multiple layers of data acquisition, transmission,
digital modeling, data/model integration, and service. It is essential to understand the
required technologies that will be applied at each layer and provide the desired serviceabil-
ity. Fuller et al. [16] performed a categorical review of DT literature in the research area
of manufacturing, healthcare and smart cities and provided an evaluation of DT enabling
technologies, challenges, and future research needs and stated that key enabler technologies
for DT are AI, and industrial IoT. Madubuike et al. [13] provided a systematic review of
research articles of DT application in construction and its comparison to other industries,
it also provided a thematic analysis to address the aim of the study; the paper concludes
that some smart technologies such as BIM, point cloud segmentation, AR, AI, ML, data
analytics, and sensors are the key for feasible implementation of DT in the construction
industry. Liu et al. [53] provided a comprehensive analysis of 240 academic documents
about DT technologies and industrial applications and stated that DT concept includes:
exact replica, high-fidelity, real-time and controllable. Similarly, Qi et al. [14] provided a
review of DT enabling technologies and tools considering the five dimensions of physical,
model, data, connections, and services and concluded that DT technologies are different
for every industry and the users need to select their tools based on their specific field
and scope.

To answer RQ3, the core technologies from the 44 DT framework studies were analyzed
and the most prominent were identified. As mentioned above, Section 3.3.3 presents the
core technologies utilized in the 44 DT frameworks and it also underscores some of the
core DT enabling technologies. To further elaborate the most significant DT enabling
technologies, Figure 14 highlights the most prominent technologies used in four stages
of data collection, data processing, data exchange and data visualization. It is evident
that DT applications for smart infrastructure management encompass a multi-faceted
approach to data handling and representation. At the initial layer of data collection and
sensing, the prominent technology utilized is IoT and sensors, with 27 occurrences. This is
followed by UAVs/drones and cameras, with seven and five occurrences, respectively. AI
technologies, including DL and ML, take the lead at the data processing and analysis layer
with 18 occurrences. Cloud computing is also a significant player in this stage with seven
occurrences, while structural health monitoring (SHM) using the finite element method
(FEM) is noted two times. In the data exchange and integration layer, the IFC standard is
the most prominent, with 10 occurrences. XML and WSNs both have three occurrences,
and COBie is used in one study. Lastly, in the data representation and modeling layer, BIM
stands out with 15 occurrences. The potential of BIM is evident and it can be employed
throughout the asset lifecycle from the initial phase of construction to the O&M phase [54].
Three-dimensional models are also a key component, with eight occurrences, followed by
AR/MR/VR and GIS, with five and three occurrences, respectively.
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From the occurrences, we can see technologies like IoT, AI, IFC, and BIM are among
the most frequently mentioned across the studies, indicating their prominence in DT
applications for infrastructure management.

3.5. Data Exchange

In the DT paradigm for infrastructure management, the need for seamless data inte-
gration and exchange is evident. As presented in Sections 4.1.3 and 4.2, the most prominent
technologies for data exchange and integration were found to be IFC, followed by XML,
JSON, RDF, COBie, and WSNs. IFC offers an open, standardized data model adopted for
the building and construction sector, ensuring interoperability across different software
platforms. XML serves as a structured conduit for data exchange, bridging the gap be-
tween various information sources. JSON is recognized for its lightweight nature and
is crucial for real-time data exchanges, especially in web-centric infrastructure manage-
ment systems. RDF addresses semantic depth, enabling the intricate representation of
relationships between different data entities, an essential feature for in-depth analytics and
asset interactivity understanding. COBie facilitates the transition of project data, ensuring
that infrastructure managers have immediate access to accurate asset details from various
project stages. Meanwhile, WSNs play a vital role in real-time data collection and transmis-
sion, providing a seamless information flow from the physical infrastructure to its digital
counterpart. Collectively, these technologies underscore the data exchange approaches in
DT applications, facilitating a detailed and actionable digital replica of physical assets.

3.5.1. Industry Foundation Classes

As the findings in Section 3.4 show IFC is at the forefront of seamless data exchange
and provides promising solutions for data interoperability; this study focusses on its
development and needs.

IFC is evolving as a unified data model and exchange format for managing linear
infrastructure data [55]. BuildingSMART indicates that the current IFC 4.3 standards
support a range of infrastructures, including buildings, bridges, tunnels, railways, roads,
ports, and waterways. Xia et al. [56] highlighted that the interoperability of BIM software
is achieved through IFC, which provides details of building entities. However, while IFC is
well-established in the building domain, it is less mature for other infrastructures [56,57].
Floros et al. [58] pinpoint two primary challenges in applying IFC to highway construction:
its predominant focus on buildings with limited infrastructure support and its emphasis
on the construction phase, indicating a shortage of classes for the O&M phase.
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To address these gaps, several researchers have proposed extensions to the IFC stan-
dard. Extensions targeting road and highway construction and management have been
suggested by multiple researchers, including [58–61]. A significant contribution from
Floros et al. [58] was the IFC extension for highway asset management. This involved the
conceptual mapping of the Asset Data Management Manuel (ADMM) using Unified Mod-
eling Language (UML) diagrams, which were subsequently transformed into EXPRESS-G
diagrams to align with IFC’s structure. In a related effort, Ait-Lamallam et al. [60] proposed
enhancing the IFC schema with semantics from the O&M phase of road infrastructures.
This enhancement encompasses the addition of new object classes from the IFCInfra4OM
ontology, the enrichment of existing IFC enumerations, and the establishment of relations
between IFC and new classes. In the context of building management, Lu et al. [62] intro-
duced a digital twin-supported anomaly detection system for asset monitoring, utilizing
an extended IFC for daily O&M management. They adapted the IFC schema to include
specific asset data, such as pumps (e.g., ifcpump), and employed ifcObject matching to link
the BIM model of the pump with its corresponding sensor ID in the sensor system.

There is an eminent need for a unified standard because a significant challenge with
data exchange is the loss of information during exchange from one standard to another.
Floros and Ellul [63] emphasize that the loss of semantic information during the conversion
process poses a significant challenge in highway construction data exchange. This is
further complicated by issues like the conversion of curved surfaces, missing geometric
features, and inaccurately geolocated geometries due to the utilization of local coordinate
systems [64,65]. Additionally, Arroyo Ohori et al. [66] highlight topological challenges
encountered during IFC to CityGML conversions, which are closely linked with geometric
problems such as self-intersecting polygons and non-planar surfaces. Thus, there is need
for a more robust IFC extension that includes classes for exchanging O&M data of civil
infrastructure assets.

3.5.2. Industry Foundation Classes Status of Adoption

The adoption of the IFC in highway construction is gaining momentum among var-
ious entities. The American Association of State Highway and Transportation Officials
(AASHTO) has recommended the adoption of the IFC Schema as the national standard
for AASHTO States [67]. This move aims to coordinate schema development, identify
gaps, resolve conflicts, and prevent duplication of efforts. Additionally, according to
buildingSMART [68], other organizations such as State DOTs, the American Concrete Insti-
tute (ACI), and the American Institute of Steel Construction (AISC) embraced IFC-based
information exchange.

On a more specific level, the Iowa Department of Transportation is leading research
under the Transportation Pooled Fund Program (TPF-5(372)). This program is a collabo-
ration of over 20 states, FHWA, and the AASHTO committee, which aims to establish a
national standard. The research is focused on infrastructure structures, seeking to establish
an open exchange of modeled bridge and structure data spanning the design, construc-
tion, and fabrication phases. A significant outcome of this pooled fund project is the
creation of an IFC to construct a model view definition (MVD) for meeting one or more
data exchange requirements.

3.5.3. Data Needs

Key components vital for IFC-based modeling are geometries, attributes, semantics,
and relationships. The current IFC standard does not include all the required properties
and relationships related to the O&M phase [60,69]. IFC lacks certain features for road
construction compared to general buildings [56,57]. The O&M phase is still missing in the
IFC schema and needs to be extended to support life cycle data, especially during the O&M
phase of infrastructures.

To understand the necessity for the type of data that is needed during the O&M
phase, it is essential to understand the specifics of data during the O&M phase. Patacas
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et al. [70] presented five key areas of deliverables vital for asset owners. These are legal
aspects, including ownership and property boundaries; commercial data that include
asset description, function, vendor data, and condition; financial data that encompass
actual and replacement costs; technical specifics that underscore design parameters, asset
dependencies, and commissioning dates and data; and managerial elements, including
asset spatial data, warranties, and end-of-life data. In terms of the data requirements for
various infrastructure assets, the needs for strategic decision-making can differ based on
the purpose. However, the broader categories of data related to assets comprise physical
attributes detailing asset semantics, material characteristics, and installation dates. The
geographical location of the asset, its spatial connections to other assets, its maintenance
history, and its condition data are also essential. Additionally, understanding an asset’s
remaining useful life is vital for predictive maintenance and budget allocation; similarly,
financial data that provides insights into the costs incurred by the asset and projected future
repair or renewal expenses, crucial for civil infrastructure asset management.

Some of the data types that are present in the IFC 4.3 schema for infrastructure
asset management are annotations, geometrical properties, structural data, alignment,
geotechnics, spatial data, utility networks, infrastructural relationships, earthworks, road
signage, road features, rail power, rail signaling, rail track, rail telecoms, drainage and
maritime elements [71,72]. However, it still lacks the necessary features to exchange the
O&M-related data.

3.6. Challenges and Gaps

The challenges extracted from various DT studies that are focused on civil infras-
tructure management were summarized as keywords and fed into VOSviewer to identify
co-occurrences; the threshold for keyword occurrences was set at three. A total of 20 of the
102 challenges met the criteria. The challenges that met this threshold were mapped in the
keyword network and were visualized, as shown in Figure 15.
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Figure 15. Network mapping of challenges and gaps in DT application for civil infrastructure
management.

Each node represents one challenge and the color-coded node’s size shows the chal-
lenge occurrences. The relatedness of a challenge to other challenge is indicated by the
attributes of links, like total link strength. The strength of the link indicates the number of
documents in which two challenges appear together. The distance between keywords re-
flects the level of relatedness between them. As shown in Table 1, the VOSviewer clustering
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technique was employed to group the challenges into four clusters: (1) data integration and
security (red), (2) data quality and technical limitations (green), (3) data processing (blue),
and (4) cost and value of technology (yellow). This finding indicates the most prominent
challenges as data integration/fusion with 17 occurrences and 30 total link strength, data
interoperability (12, 27), digital modeling (10, 26), data quality (15, 31), technical issues (15,
28), multi-stakeholder (6, 19), big data (9, 14), data acquisition (7, 22), algorithm selection (6,
11), technology integration (9, 27) and value (5, 20). The findings also suggest that semantic
interoperability, technical issues, infrastructure interdependency, cost-benefit analysis and
environmental factors are among the least focused-upon challenges and require further
research to evaluate their holistic impact on smart civil infrastructure management. It is
very interesting to see that data integration is very closely related to data interoperability
and data heterogeneity; similarly, data quality suffers from technical issues with data
acquisition tools.

Table 1. Most occurring challenges in DT application for civil infrastructure management.

Clusters and Their Challenges Occurrences Total Link Strength

Cluster 1: Data integration and security (red)

1 Data integration/fusion 17 30
2 Data interoperability 12 27
3 Data standard limitations 3 3
4 Digital modeling 10 26
5 Heterogeneity 8 18
6 Security 7 21
7 Semantic interoperability 5 4

Cluster 2: Data quality and technical limitations (green)

1 Data quality 15 31
2 Environmental factors 3 2
3 Multi-stakeholder 6 19
4 Privacy 3 8
5 Process complexity 3 4
6 Technical issues 15 28

Cluster 3: Data processing (Blue)

1 Algorithm selection 6 11
2 Big data 9 14
3 Data acquisition 7 22
4 Infrastructure interdependency 4 5

Cluster 4: Cost and value of technology (yellow)

1 Cost 3 16
2 Technology integration 9 27
3 Value 5 20

This paper extracted the most prominent challenges hindering the seamless deploy-
ment of DT for smart civil infrastructure management. To address some of the most
significant challenges identified through the holistic analysis of the academic publications,
this paper proposes a conceptual lifecycle encompassing DT framework for smart civil
infrastructure management based on concepts of multi-layer data fusion, IFC extension,
blockchain, stakeholder engagement, openBIM, and GIS integration, and multi-level checks
for quality assurance.

In this study, several gaps are identified, such as the difficulty in integrating data due to
data heterogeneity, seamless interoperability, difficulties associated with data quality, main-
taining the semantic features of big data, technological limitations, and complexities with
algorithm selection. However, a significant gap exists in current predictive maintenance
practices for civil infrastructure management due to the dependence on single-source data
as opposed to heterogeneous data, impacting data accuracy, reliability, adaptability, and the
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overall efficacy of engineering decision-making. The transformation of low-dimensional
decisions from individual sensors into high-dimensional ones is necessitated for decision
optimization through data fusion.

To propose a solution to some of the challenges identified in this study, this paper
aims to establish a conceptual framework for harnessing DT technology with data fusion,
to ensure the efficiency and resilience of civil infrastructures throughout their lifecycle. The
proposed framework emphasizes multilayer data fusion, the integration of openBIM and
GIS for immersive visualization and stakeholder engagement and adoption of extended
IFC for data integration throughout the asset lifecycle.

4. A Conceptual Digital Twin Framework for Smart Civil Infrastructure Management

To answer RQ4, this section combines the needs for lifecycle management of civil
infrastructure from the sections above and presents a comprehensive DT framework for
smart civil infrastructure management. Asset management necessitates a framework that
considers strategic plans and policies for future actions essential for maintaining asset
functionality. This framework embodies an organization’s grasp of concepts central to
asset management [73]. An infrastructure network consists of numerous interdependent
facilities, complicating intelligent decision-making [5]. For effective smart infrastructure
management, integrating various infrastructure systems and leveraging data throughout
the assets’ entire life cycle is crucial [15]. This study introduces a framework for integrated
smart infrastructure management, drawing from literature reviews, industry-proposed
roadmaps, and asset lifecycle needs. It also highlights two primary components: (1) an
interoperable digital twin modeling system architecture and (2) a lifecycle-focused smart
infrastructure management framework based on data fusion, openBIM, and GIS integration.

4.1. Smart Infrastructure Management System Architecture

The integrated systems architecture, shown in Figure 16, consists of four layers:
civil infrastructure network, including system breakdown and digital-physical compo-
nents, interoperable data stream, services and goals, including performance measures,
and stakeholders.

4.1.1. Civil Infrastructure Network

An infrastructure network is comprised of various interdependent systems and its
functionality is impacted by the performance of each individual component in this net-
work [5]. Civil infrastructure, including buildings, bridges, roads, pipelines, tunnels, and
others are vital for the socioeconomic functionality of communities and are complex and
critical to maintain [20]. Smart infrastructure management necessitates the integration of
systems, facilities, and components [15]. Thus, the infrastructure network layer of system
architecture for integrated smart infrastructure management integrates two components of
the civil infrastructure system of systems and DT of facilities.

The civil infrastructure system of systems encompasses essential civil infrastructure
systems like buildings, recreation places, utility systems, water and energy management,
transportation, logistics, and other relevant infrastructures. These systems are simplified
by categorizing them into facilities such as buildings, bridges, tunnels, ports, waterways,
railways, and roads. On the other hand, the DT of facilities emphasizes the need for smart
infrastructure management through digital transformation and the integration of real-time
physical and digital systems. Given that most infrastructure lacks comprehensive digital
models, there is a pressing need for digital transformation to create accurate models for
effective monitoring and oversight. This process involves developing digital twins by
breaking down infrastructure systems into sub-facilities and components.
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4.1.2. Interoperable Data Stream

Infrastructural asset operational and condition-related data are collected through
expert inspections and continuous surveillance using IoT and photogrammetry tools [74].
The big data gathered in real-time is wirelessly transferred and stored in cloud-based data
lakes and hubs. Furthermore, data is used as an engineering tool by utilizing AI tools
such as ML and DL for analytics, enterprise financial data management, and asset data
management and presented on dashboards for facility managers and stakeholders. The
interoperable data stream layer facilitates data processing, normalization, fusion, AI-based
analysis, and visualization for smart decision-making [15].

4.1.3. Service and Goal

In the smart infrastructure management system architecture, the service layer facili-
tates interaction between data, model and stakeholders, it also offers intelligent services
and incorporates end-user feedback to boost performance [62]. In addition, performance
indicators are also incorporated into the service layer as they are essential components of
service delivery, the system architecture includes performance measures such as operational
cost, maintenance cost, risk, down-time, vulnerability, remaining useful life and safety that
are specified by stakeholders and incorporated into the decision-making process.

The service layer uses the information gathered from data processing for intelligent
control feedback, smart asset management, event prediction, system management, permit-
ting, and compliance checks. Furthermore, authorities and other stakeholders can use the
service layer for resource allocation, remote monitoring, process optimization, automated
municipal permitting, zoning, fire safety, and building code checks. Ultimately, DT helps
stakeholders in achieving sustainable development and environmental protection goals.

4.1.4. Stakeholders

Smart asset management requires stakeholder involvement to ensure integrity, validity,
and dynamic information exchange [75]. DT-managed projects require multiple stakeholder
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integration systems such as cities, municipalities, asset owners, citizens, contractors, the
Federal Highway Administration (FHWA), and Departments of Transportation (DoT).
Cities and municipalities manage a broad list of valuable public assets that are essential
for economic functionality [6,76,77]. In addition, the FHWA oversees national highway
policies and programs, and DoT manage and maintain transportation infrastructure within
their respective states. Bringing authorities and citizens together will ensure better quality
of life, inclusiveness, transparency, and sustainability [15].

4.2. Interoperable Digital Twin Modeling Systems Architecture

Civil infrastructure is deteriorating rapidly, necessitating intelligent monitoring and
maintenance [78]. Considering the absence of comprehensive digital models in most
infrastructures, it is crucial to undergo a digital transformation and develop accurate as-
built models for effective monitoring and management [79]. To achieve smart infrastructure
management, it is crucial to create effective systems architecture for digitizing assets
and employing automated data analysis algorithms for automated decision-making. The
interoperable digital twin modeling system architecture shown in Figure 17 presents the
crucial steps needed to create compatible digital models during the planning phase and
for existing assets (in the form of as-built models). The systems architecture is comprised
of four main layers, (1) data management including standards, data encoding, data type,
and data integration, (2) IFC extension including components and universal IFC extension,
(3) digital modeling that includes data layers and parametric modeling, (4) standardization
including IFC conversion and IFC check.
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4.2.1. Data Management

Data is the most vital component in the DT paradigm; as data becomes integrated with
DT it provides a chance to identify trends, assess interoperability, and comprehensively
understand systems [80]. During the operation and maintenance phase of an asset, data
management is a comprehensive tool that includes data acquisition, transfer, processing,
and storage [81]. In the context of digital modeling, we only focus on the data necessary
to create interoperable digital twins of assets. The data management layers include four
components, namely: standards, data encoding, data type, and data integration.
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At present, there is no specific standard that exclusively addresses the technical
elements of digital twinning [82]. However, there are significant important international
standards developed that guide the fundamentals of infrastructure asset management.

The International Organization for Standardization (ISO) is a non-governmental inter-
national standard development organization based in Geneva, Switzerland. ISO 55010 was
published in 2019, including guidance on aligning financial and non-financial functions in
asset management [77]. This new standard that integrates asset management finance and
accounting activities can result in better controls, transparency, and improved measurement
of performance indicators [77]. The ISO 19650 standard is a global guideline for handling
information throughout the entire life cycle of a constructed asset using BIM [63]. Similarly,
the Asset Management Landscape is a manual that is developed by the Global Forum on
Maintenance and Asset Management (GFMAM). The Asset Management Landscape is
“a framework that enables asset management knowledge and practices to be compared,
contrasted, and aligned around a mutual understanding of the discipline of asset manage-
ment” [83]. Similarly, the International Infrastructure Management Manual (IIMM) is one
of the most widely used manuals in the world [77]. IIMM was published by Zealand Asset
Management Support (NAMS) and is owned by the Institute of Public Works Engineering
Australia (IPWEA). The fifth edition of the manual was published in 2015 and incorporates
the ISO standards. The ISO standards provide insights on what to do and the IIMM manual
provides guidance on how to do it [77].

Alternatively, a lot of efforts have been focused on developing open standards for
information exchange throughout the asset life cycle. BuildingSMART manages the BIM
Collaboration Format (BCF) that facilitates the communication of model-based issues
between various BIM applications, using IFC models shared among project collaborators
and Model View Definition (MVD) that represents a particular application level of IFC
designed to enable a specific use or workflow. There are numerous other open standards
that can be utilized for data exchange, such as Information Delivery Specification (IDS),
COBie and CityGML, which is an open standardized data model and interchange format
for storing digital 3D representations of cities and landscapes.

The systems architecture presented In this paper is focused on converting all the
necessary complements of infrastructure assets into an IFC-based federated model to
ensure seamless interoperability. Neves et al. [55] state that IFC is being developed as
a single data model and a neutral exchange format to create, integrate, or merge and
manage linear infrastructure data. BuildingSMART defines IFC as “a standardized, digital
description of the built environment, including buildings and civil infrastructure. It is an
open, international standard (ISO 16739-1:2018), meant to be vendor-neutral, or agnostic,
and usable across a wide range of hardware devices, software platforms, and interfaces
for many different use cases” [84]. IFC is widely embraced by governmental agencies and
software vendors as a means of information exchange.

Data encoding is a crucial process in digital twinning, involving the conversion of
data from diverse standards into an interoperable format for creating a digital replica of
physical assets. This standardized data includes information from facility to component
levels and enables real-time monitoring, predictive analysis, and control feedback. Data
types play a pivotal role, particularly in 3D geometry, vital for digital twin applications in
fields like architectural design and asset management [85]. These data encompass asset
geometry, materials, and properties. Data integration becomes essential after standard-
ization and data type identification, allowing domain experts, software developers, and
end users to collaborate seamlessly on a common platform, ensuring interoperability and
efficient utilization.

4.2.2. IFC Extension

Key components that are vital for IFC-based modeling are geometries, attributes,
semantics and relationships. The current IFC standard does not include all the required
properties and relationships related to the O&M phase [60,69]. IFC still lacks certain features
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and functionalities for road construction elements compared to buildings in general [56,57].
Floros et al. [58] highlight two key challenges in applying IFC to highway construction:
its primary focus on buildings with limited infrastructure support, and its information
exchange largely targeting the construction phase, thereby revealing a lack of classes for
the O&M phase. According to buildingSMART the current IFC 4.3 standards include
bridges, tunnels, ports and waterways, railways, and roads. However, the O&M phase is
still missing and the IFC schema needs to be extended to support life cycle data. Thus, it is
essential to create IFC extensions that will support information exchange during the O&M
phase of infrastructural projects.

4.2.3. Digital Modeling

Digital models encompass all the important data related to assets, including archi-
tectural, structural, mechanical, electrical, plumbing, and fire protection details; they also
include interior design, geospatial, and life cycle data. To combine all the data layers in one
model, it is essential to perform parametric modeling that addresses geometric properties,
constraints, relationships, model flexibility, process automation, and batch encoding for
repetitive operations. Parametric modeling is vital for developing BIM models for the
whole life cycle application and facilitates intelligent facility management [86].

4.2.4. Standardization

The last and especially crucial step in the systems architecture for creating interop-
erable digital twin models is the standardization and creation of an IFC-based federated
model. All the individual models that might be generated in various platforms need to be
converted into a single open data format of IFC, creating the federated data model that
will ensure seamless interoperability and information flow throughout the asset lifecycle.
By leveraging the federation approach, data can be reused within their specific domains,
preserving the integrity of each data model. This methodology not only addresses the
complexities of multiscale data but also promotes the generalization and repeatability of
interconnected open data models. To validate the federated data modeling and to optimize
the process, it is essential to perform automated IFC checks to ensure the completeness,
consistency, and interoperability of the model and prevent data loss.

4.3. Smart and Scalable Civil Infrastructure Lifecycle Management Framework Based on Data
Fusion and OpenBIM and GIS Integration

Traditional civil infrastructure asset management systems use standard classifications
for managing assets and do not integrate information from all the phases of the asset
lifecycle [9,11]. Asset management through the lifecycle requires digital continuity of the
data along different phases of the facility, enabling predicting facility performance and
making smart maintenance decisions [12]. Thus, there is an eminent need for modernization
in asset management to achieve smart and resilient infrastructure systems. This paper
outlines a robust framework, shown in Figure 18, for managing civil infrastructure that can
be applied across the entire lifecycle of an asset, encompassing essential components from
initial planning and design to construction, operation, and maintenance.

The proposed framework is adaptable and can be tailored to various kinds and sizes
of infrastructure assets. It operates through a central data hub, which serves as the sole
repository for information gathered from diverse databases, including BIM, IoT, and asset
management databases. This data is then processed and analyzed using edge and cloud
computing within the hub. Moreover, the framework allows for multi-level data fusion. At
the data hub, data-level fusion integrates information from different sources for decision-
making, while decision-level fusion at the data engineering layer amalgamates various
decision outcomes for optimization purposes.
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The suggested framework is structured into several layers: a monitoring and reality
capture layer; a layer containing BIM, IoT, and asset management databases; a data hub or
data lake layer for data level fusion and a single source of fact; a data engineering layer for
analysis and decision level fusion; a visualization layer that includes an automatic control
dashboard and open GIS; and an openBIM layer. Alongside these layers, various checks
and validations are carried out at different stages. For example, machine learning is used
to detect anomalies in IoT data, model checks ensure the completeness of the openBIM
model, blockchain technology safeguards data security and privacy, and expert checks
are implemented to maintain human oversight and incorporate professional judgment
in crucial decision-making processes. Additionally, a simulation engine is employed for
forecasting and risk analysis through ‘what-if’ scenarios. Virtual reality (VR) is used
for model navigation and exploration, while augmented reality (AR) facilitates decision
visualization, interactive engagement, and remote control.

4.3.1. Monitoring and Reality Capture Layer

The first and most important constituent of DT is real-time data acquisition. IoT
technologies, including sensors, video cameras, RFID devices, barcodes, and QR codes,
enable the seamless gathering and perception of real-time information [14]. As the primary
driving force behind DT, IoT connects the physical entity to data-sensing systems, allowing
the DT to transform the collected data into optimized processes that yield tangible business
results. This connection plays a crucial role in modern infrastructure management by en-
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hancing efficiency and decision-making. Furthermore, IoT streamlines automation in data
acquisition and integration, gathering real-time data from physical assets through sensors
and sharing this substantial data with other systems via the Internet. This integration
fosters a more responsive and adaptive approach to infrastructure management, aligning
with the evolving needs of the industry.

In addition to IoT, there are various other technologies that play crucial roles in
DT applications for smart infrastructure management both during operation and for the
creation of as-built/as-is models. Data collection for the purpose of DT modeling and
asset monitoring is facilitated through a range of tools, such as unmanned aerial vehicles
(UAVs), point-cloud scanning, localized laser scanning, and photogrammetry tools [52].
Moreover, laser scanners and LiDAR are employed to acquire on-site point clouds for
DT modeling [87]. During the O&M phase, image-based SHM can facilitate monitoring,
measuring, automation and efficiency and fostering 3D modeling [88].

Another especially important source of information that also ensures citizen engage-
ment is crowdsourcing. In the context of urban development and infrastructure manage-
ment, crowdsourcing can be realized through citizen sensing. This innovative approach
enlists city residents in the deployment of sensors and the collection of data, utilizing tools
such as location-tracking apps, smart devices, and community projects. Additionally, the
integration of maintenance QR codes, mobile phone applications, and GPS localization
through end-user engagement enhances the stakeholder stratification, efficiency, and ac-
curacy of asset management. Together, these technologies foster a more responsive and
interconnected urban environment, leveraging the collective input of the community to
drive informed decision-making and sustainable development. Real-time data acquisi-
tion and transmission is crucial for smart asset monitoring and reality capture of as-is
condition assets.

4.3.2. Data Management Layer

The data collected through monitoring and reality capture tools is transferred wire-
lessly in real-time into a cloud-based IoT database. To ensure IoT data quality and accuracy,
ML checks are performed on the IoT database to validate the acquired data and detect
anomalies. The ML algorithms will be trained to cross-validate data from various sources
of data collection tools and detect abnormalities in captured data. The IoT database is
integrated with a cloud-based BIM database that includes information from the digital
model and asset management activities. The BIM database contains historical data, design
and construction data, as-built data, physical condition data and current functionality.
Furthermore, to ensure data security and privacy, blockchain technology is used at the
database level for data verification and privacy control. Blockchain has been proven to be
an effective tool for wireless-based data transfer. In addition, as found by Sadri et al. [89],
integrating blockchain and IoT networks facilitates decentralizing intelligence across the
system and allows IoT data to be processed locally, which will eliminate single points of
failure inherent in traditional systems. Liu et al. [90] states that blockchain is vital for se-
curing various transactions, enhancing trust during digital transformation, and effectively
handling human-related concerns like privacy in cooperative endeavors. Awan et al. [91]
proposed the ZAIB (Zero-Trust and ABAC for IoT using Blockchain) framework to enhance
security within the IoT domain. The presented approach works on a zero-trust model,
verifying every device input or action, and utilizes attribute-based access control (ABAC)
for fine-grained data access. ZAIB uses blockchain technology to ensure anonymous regis-
trations and unalterable activity logs; furthermore, the InterPlanetary File System (IPFS) is
used to protect all IoT-generated attributes and data. Additionally, the proposed framework
also implements real-time monitoring and dynamic policy generation mechanisms that
contribute to end-to-end security enforcement of data.

The information from BIM, IoT and asset management databases is integrated with the
data hub which is the central database for the whole DT framework and all the asset-related
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information can be retrieved from the data hub. Additionally, AI tools are used to process
data in the data hub for noise removal, normalization, and data level fusion.

4.3.3. Data Engineering Layer

At the data engineering layer, AI tools such as ML and DL are utilized to perform data
analysis using cloud computing and edge computing. Infrastructure projects are complex
and will require computation and analysis at segregated levels. Edge computing, by utiliz-
ing the DT and IoT paradigm, can provide accelerated predictive maintenance decisions
by conducting predictive analytics near the data source, thereby accelerating analytics
process and adding scalability to the system [92]. Edge computing in the domain of DT
for infrastructure asset management enables real-time data analysis at or near the source
of data generation; thus, facilitating immediate decision-making, such as detecting flaws,
predictive maintenance and performance optimization. At the central database, decision-
making will be made more robust by using decision-level fusion for event prediction and
optimization purposes.

4.3.4. Visualization Layer

Analysis results from the data engineering layer will be displayed on user-friendly
interfaces and dashboards. The crucial decisions made by the DT system will be integrated
with human supervision to ensure humans are part of the process. Ibanez et al. [93] state
that an innovative machine-learning model can handle around 80% of a given problem,
while 19% of instances necessitate human intervention, and the residual 1% is random.
Furthermore, Agnisarman et al. [94] proposed that automation-enabled infrastructure
inspection systems should be viewed as socio-technical systems, involving both humans
and technology, with human agents being integral to the system’s architecture.

To better visualize and integrate the decision into real-world environment, AR is em-
ployed for decision visualization, interactive engagement and remote control; for instance,
during emergency fire evacuation, AR could be used to show the optimal route and guide
the occupant to safety; in addition, during the construction phase, AR helps track the
progress in real-time by superimposing the virtual model that shows work completed in
the real-world physical space [95,96].

4.3.5. OpenBIM Layer

BIM has been widely accepted as a virtual component of the DT system. The BIM
model is the digital representation of a built object and includes information regarding its
functional characteristics [45]. BIM models include semantically rich information regarding
assets. BIM characterizes geometric information, spatial relationships, quantities, cost
estimates, material inventories, and schedules; in addition, BIM facilitates visualization,
fabrication/shop drawings, construction sequencing, conflict/collision detection, and
forensic analysis [97].

The BIM modeling method in the proposed framework in this paper is based on
openBIM technology that is modeled and stored in the cloud and can be accessed through
web-based applications. Furthermore, the openBIM model is geolocated on the GIS map to
create the open GIS digital twin that links the BIM model with spatial data. The information
from openBIM is transferred to open GIS in real-time through IFC and any changes in the
BIM model will be updated in the GIS model for visualization and information querying
in a spatial context. As the model keeps updating in real-time and the latest information
becomes integrated, model checks will be utilized to ensure BIM model accuracy and
information completeness. Furthermore, VR is utilized at the openBIM layer to navigate the
model and explore features. VR is an information and content-rich full digital representation
of real world [98]. Moreover, simulation engines are utilized at the openBIM and open GIS
layer to conduct what-if analysis for the purpose of forecasting, risk prediction, energy
management and strategic planning.
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4.3.6. Service Layer

The framework of DT for smart civil infrastructure management that integrates
openBIM and GIS and employs multi-level data fusion across the whole lifecycle of
the asset provides extensive serviceability. This framework will provide program and
project management services to FHWA, DoTs, cities and citizens aiding with strategic
planning and financial management by providing comprehensive information from the
planning phase through construction and operation. During infrastructure construction,
it enables automatic permitting, code compliance checks, spatial analysis, and progress
monitoring. During the O&M phase, the framework will offer the functionalities of
O&M condition visualization, predictive maintenance, disaster warning, defect mapping
and condition rating.

5. Discussion

DT emphasizes the integration of physical and virtual entities, facilitating real-time
data acquisition and integration. The evolution of Industry 4.0 technologies, including IoT,
AI, cloud computing, and simulation tools, has further encouraged the development and
application of DT. This paper highlights the transformative potential of DT in providing
real-time monitoring and data-driven decision-making for civil infrastructure.

5.1. Current State of DT for Civil Infrastructure Management
5.1.1. The Need for Digital Transformation in Civil Infrastructure Management

Civil infrastructure systems, such as roads, buildings, and pipelines, are foundational
to modern societies, ensuring essential services like transportation, shelter, and clean water.
Smart management of these assets requires digital continuity of data across different phases
for predictive asset performance and smart maintenance decisions. However, the current
management systems, primarily CMMS and DSS, are heavily reliant on historical data and
manual inputs. This reliance results in inefficiencies and inaccuracies, especially given
the rapid deterioration of infrastructure assets. Thus, there is an urgent need for a digital
transformation to ensure smart and resilient civil infrastructure.

5.1.2. Data Fusion and Integration

Data fusion plays a pivotal role in decision-making, prediction, and system optimiza-
tion. Various studies emphasize the importance of multi-sensor data fusion, with layers
focusing on refining raw data, configuring fusion trees, and facilitating decision-making. A
significant gap exists in current predictive maintenance practices for civil infrastructure
management due to the dependence on single-source data as opposed to heterogeneous
data, impacting data accuracy, reliability, adaptability, and the overall efficacy of engineer-
ing decision-making. The transformation of low-dimensional decisions from individual
sensors into high-dimensional ones is necessitated for decision optimization through data
fusion. The thematic analysis reveals a significant emphasis on technological integration
to derive insights from various data sources. Advanced computational techniques, such
as ML and DL, are crucial for data integration and management. The applications of
data fusion highlight its role in infrastructure monitoring, management, and visualization.
However, challenges such as integrating multisensory data, maintaining data quality, and
applying theoretical knowledge in real-world scenarios persist and need to be the focus of
future research.

5.1.3. Potential Digital Twin Frameworks

Current civil infrastructure management systems face challenges related to data man-
agement, interoperability, and integration across asset lifecycle phases. This study analyzed
44 DT frameworks for civil infrastructure management and identified several themes and
patterns. The most prominent theme was the digital twinning and framework design,
emphasizing the development, implementation, and utilization of DT frameworks. Data-
centric applications highlighted the importance of real-time data acquisition, processing,
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and analysis for monitoring, predictive maintenance, and decision-making. The significance
of integrating information throughout the asset lifecycle for improved decision-making was
evident. Lastly, the role of real-time sensing and data collection through sensor technologies
and IoT was emphasized. In terms of challenges, data management and quality emerged
as the most prominent themes, emphasizing the importance of accurate and high-quality
data. Interoperability and system complexity were also highlighted, underscoring the
challenges of integrating different systems and ensuring seamless interoperability. Tech-
nological limitations, stakeholder and organizational challenges, environmental factors,
knowledge and training gaps, security and ethics, and business value were other challenges
identified. Future research needs to focus on addressing these challenges for reliant DT
framework development.

5.1.4. Core Digital Twin Technologies

In this study, five main themes related to the technologies utilized in DT frameworks
were identified. Data processing and analysis were the most prominent, emphasizing the
role of AI, ML, cloud computing, and pattern recognition. Data exchange and integration
highlighted the importance of standards and formats for interoperability. Data representa-
tion and modeling emphasized visualization and digital modeling technologies like BIM,
GIS, and 3D models. Data collection and sensing focused on real-time data-gathering
tools like IoT, UAVs, and cameras. AR/VR were highlighted for their potential in visu-
alizing, simulating, and interacting with infrastructure models in real-time. Lastly, the
reliability and functionality of physical devices and tools for data collection and transfer
were underscored.

5.1.5. Data Exchange Standards and Challenges

The DT paradigm for infrastructure management necessitates seamless data integra-
tion and exchange, with IFC emerging as a prominent technology. IFC offers a standardized
data model for the building and construction sector but requires further development
for broader infrastructure applications. Challenges in data exchange include the loss of
information during transitions between standards. The adoption of IFC in highway con-
struction is growing, but there is a need for a unified standard that encompasses all phases
of infrastructure management, especially the O&M phase.

To sum up, this study comprehensively analyzes DT frameworks for civil infrastruc-
ture management, highlighting the applications, challenges, and core technologies utilized.
Moreover, the emphasis on digital twinning and framework design underscores the grow-
ing importance of DT in infrastructure management. Furthermore, the challenges identified,
particularly data management and interoperability, highlight areas that need further re-
search and development. The prominence of technologies like IoT, AI, BIM, and AR/VR
indicates their critical role in the future of civil infrastructure management. Moreover,
this study highlights the multi-faceted approach required for effective DT implementation,
emphasizing the need for seamless data integration, real-time monitoring, and advanced
technological solutions. Also, the analysis underscores the significance of data fusion
and integration in digital twin data integration. It is essential to focus on technological
integration, advanced computational techniques, and the challenges faced in real-world
applications. The role of IFC in data exchange is evident, but its comprehensive application
across all infrastructure phases requires further development and standardization.

5.2. Conceptual Digital Twin Framework for Smart Civil Infrastructure Management

To address some of the identified challenges of managing the lifecycle of civil infras-
tructure, which is becoming increasingly complex due to the vast interdependencies of
various facilities, this paper proposes a novel DT framework for integrated smart infras-
tructure management. This framework integrates advanced technologies like openBIM,
GIS, and blockchain to ensure seamless data integration, multi-level data fusion, and robust
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data security. The proposed framework aims to provide a scalable and integrated approach
to smart infrastructure management throughout the asset’s lifecycle.

This paper Introduces a comprehensive system architecture for integrated smart in-
frastructure management. This architecture is derived from a holistic review of existing
literature, industry roadmaps, and asset lifecycle management needs. Two primary compo-
nents are highlighted: the interoperable digital twin modeling system architecture and the
lifecycle encompassing smart infrastructure management framework based on data fusion
and the integration of openBIM and GIS.

The integrated systems architecture is divided into four layers: civil infrastructure
network, interoperable data stream, services and goals, and stakeholders. Each layer
plays a crucial role in the overall framework. The civil infrastructure network empha-
sizes the interdependence of various systems, highlighting the importance of integrating
these systems for smart decision-making. The interoperable data stream layer focuses on
the collection, storage, and analysis of data using advanced tools like IoT and AI. The
service and goal layer is crucial for interaction between data, models, and stakeholders,
ensuring that performance measures align with stakeholder specifications. Lastly, the
stakeholder layer emphasizes the importance of involving various stakeholders, from cities
and municipalities to federal agencies, in the asset management process. Furthermore, this
study presents the essentials of interoperable digital twin modeling system architecture. It
underscores the urgency of digital transformation in the realm of civil infrastructure, given
the rapid deterioration of these assets. The architecture is divided into four main layers:
data management, IFC extension, digital modeling, and standardization. Each layer plays
an essential role in ensuring the creation of accurate digital models of infrastructure assets,
which are essential for effective monitoring and management.

Lastly, this study introduces a robust framework for managing civil infrastructure
throughout its lifecycle. This framework is adaptable and integrates data from various
sources, including BIM, IoT, and asset management databases. The framework operates
through a central data hub, facilitating multi-level data fusion. The framework is structured
into several layers, including monitoring and reality capture, data management, data
engineering, visualization, and openBIM. Each layer plays a specific role, from real-time
data acquisition to visualization and decision-making.

This paper presents a comprehensive and scalable framework for smart civil infras-
tructure management using a digital twin paradigm. The proposed framework integrates
various technologies, including IoT, AI, BIM, and GIS, to provide a data-driven solution
for asset management throughout its lifecycle. The emphasis on stakeholder involvement,
data fusion, and real-time monitoring underscores the importance of a collaborative and
data-driven approach to infrastructure management in the digital era.

6. Conclusions

The systematic review of 105 academic publications in this research provides a compre-
hensive insight into data fusion and DT frameworks, including their applications, enabling
technologies, and the challenges they face in civil infrastructure management. This study
highlights the crucial need for data fusion from heterogeneous sources for data-driven
civil infrastructure management. Furthermore, it underscores the pivotal need for a digital
transformation from traditional management systems, which rely heavily on historical data
and manual processes, to more modern, efficient systems. These traditional systems are
becoming increasingly inadequate in addressing the complexities of modern infrastructure
challenges. The revolutionary potential of DT technology is profound, with its capabilities
in real-time data acquisition, integration, and historical evolution. However, gaps such as
data management issues, the lack of standardization, interoperability challenges, and tech-
nological limitations persist. Key technologies, including IoT, AI, BIM, AR/VR, openBIM,
GIS, and blockchain, are crucial enablers facilitating real-time data acquisition, predictive
analysis, immersive visualization, and robust security. This paper provides a conceptual
framework for harnessing DT technology and its crucial role for smart civil infrastructure
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management; the proposed framework aims to increase data accuracy, reliability, adaptabil-
ity, and further effectiveness of engineering decision-making while also underscoring the
need for continuous evolution and addressing the existing challenges.
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Appendix A

Tables supplemental to the main text.

Table A1. Methods, findings and challenges of potential literature review studies.

Paper Title Methodology Findings Challenges

[20]

Digital twin in civil
infrastructure emergency

management: A
systematic review.

Systematic literature
review of 174 papers on

DT for emergency
management of civil
infrastructure EMCI.

DT in EMCI through four stages
of lifecycle reinforcement, virtue
planning, real-time assessment,

collaboration. DT needs fast data
collection through sensing tools,
DT utilizes AI to predict disaster.

Semantic rich digital
modeling, cybersecurity

issues in DT development,
data quality in DT models,

prediction accuracy.

[21]

Bridge management
through digital

twin-based anomaly
detection systems: A

systematic review.

Systematic literature
review of 76 papers on

bridge management
through DT-based
anomaly detection

Classified findings within
themes: dridge DTs, BrIM, FEM,

BHM, AI, UAVs, satellite
monitoring, and other

DT-related technologies.

Software interoperability,
anomaly-detection

algorithms, DT integration,
data quality, cost, limitations,

institutional barriers,
resistance to change.

[47]

Design and
implementation of a
smart infrastructure

digital twin.

Literature review and
case study

Emphasizes systems perspective
and data management in digital

twin design.

Multidisciplinary nature,
lack of processes, systems
perspective, non-technical

considerations.

[45]
Digital twin and its

implementations in the
civil engineering sector.

Systematic literature
review of 134 papers on
DT in civil engineering

sector

Clarifies DT concept,
differentiates from BIM and CPS,
and highlights challenges in DT

creation using advanced 3D
surveying technologies.

DT creation challenges,
limitations in virtual parts

creation due to data
acquisition, processing,
modeling methods, and

tools.

[22]

Digital twinning of civil
infrastructures: Current

state of model
architectures,

interoperability solutions,
and future prospects.

Systematic review of 85
papers, mixed qualitative
and quantitative methods

with content analysis

Highlights versatility of BIM and
IoT for IDTs, need for complex

architectures, edge-based
solutions for simple IDTs, and

standardization for
interoperability.

Data security, lack of DT
standard, data latency, user

interface issues.

[46]

Digital twins in
infrastructure:

definitions, current
practices, challenges and

strategies.

Qualitative analysis,
semi-structured

interviews with experts

Discusses definitions, practices,
challenges, strategies, and

workforce related to digital
twins in infrastructure.

Technology adoption,
cultural acceptance,

workforce skills, data
challenges, human factors.

[41] Review of digital twins
for constructed facilities.

Systematic review of 53
papers with content

analysis

Recommends DTs for
decision-making in construction,

operation, and asset
management; identifies nine DT
application areas in construction.

Data integrity,
interoperability, absence of

robust models, data
inaccessibility, data

acquisition and
heterogeneity.



Buildings 2023, 13, 2725 31 of 41

Table A1. Cont.

Paper Title Methodology Findings Challenges

[42]

Smart infrastructure: A
vision for the role of the

civil engineering
profession in smart cities.

State-of-the-art
comprehensive review of

smart technologies in
civil engineering

Emphasize potential of smart
city programs and technologies

like sensors, IoT, big data
analytics; emphasize role of civil

engineers in smart cities
development.

Technical, financial, social
constraints, data

management, privacy
concerns, appropriate

technology use.

[33]
Digital systems in smart
city and infrastructure:

Digital as a service.

Comprehensive review
and conceptual paper on
digital systems in smart

cities with a focus on
Digital as a Service

(DaaS)

Discusses digitalization’s
potential in smart infrastructure

and cities, introduces DaaS
concept, and predicts next

Industrial Revolution based on
AI, IoT, cloud, and more.

Smart city implementation
challenges, technical

interoperability, system
virtualization, cybersecurity,

intellectual property
protection.

[44]

The potential for digital
twin applications in

railway infrastructure
management.

Review of DT
applications in railway

infrastructure with
discussions with

engineers

Highlights benefits of digital
twins in railway infrastructure
management, data processing,

and slow adoption in the railway
sector.

Information integration,
maintenance paradigm

validation, processing large
sensor data volumes.

[32]

Developing
human-centered urban

digital twins for
community

infrastructure resilience:
A research agenda.

Scoping review of 91
papers on

human-centered urban
DTs with a four-stage

analysis

UDTs offer 3D visualization,
augmented reality, and

prediction for urban
transformation with emphasis

on simulation.

Varying UDT definitions,
managing geospatial data,

integrating diverse datasets.

[43]

Digital twins in asset
management: Potential
application use cases in

rail and road
infrastructures.

Review and case study
on feedback from train

sensors on rail track and
track sensor data for

speed adjustment

Discusses DT technology and
signaling simulation center for

the Singapore Downtown line by
Siemens Mobility.

Faults in switches/crossings,
track defects, stiffness in

track foundation, operational
risks, processing large sensor

data volumes.

Table A2. Methods, applications, and challenges from 13 data fusion and integration studies.

Paper Title Methodology Applications Challenges

[49]
6G connected vehicle
framework to support

intelligent road maintenance

DL for pothole detection using
imagery and sensory data
fusion. Cost-effective data
collection and intelligent
hierarchical framework.

Real-time pothole
notifications, route

optimization, and legal
claim support for

insurance.

Inconsistent road
inspections, input signal
limitations, and privacy

concerns in analytics.

[99]

Collaborative fault diagnosis
using multisensory fusion

with stacked wavelet
auto-encoder and flexible
weighted assignment of

fusion strategies.

Multi-sensor fusion for fault
diagnosis using stacked

wavelet auto-encoder and
enhanced voting fusion.

Risk assessment for
planetary gearboxes in
industrial equipment.

Multisensory data
integration, fusion of

maintenance strategies,
and reliance on

subjective information.

[100]
A unified ontology-based

data integration approach for
the internet of things.

Semantic integration for
heterogeneous data modeling.
Unified ontology schema and

data unification layer.

Smart homes, healthcare,
industry, security, smart

grids, and future
transportation systems.

Heterogeneity in
real-time apps and IoT

device resource
limitations.

[24]

Application of data fusion
via canonical polyadic
decomposition in risk

assessment of
musculoskeletal disorders in
construction: procedure and

stability evaluation.

Data fusion using canonical
polyadic decomposition for

risk assessment. Comparison
of results from different

datasets.

Risk assessment for
musculoskeletal

disorders in roofing
workers. Handling
missing data across

fields.

Handling missing data,
dynamic motion effects,

and obstructions in
motion-capture.

[101]

BIM-based infrastructure
asset management using

semantic web technologies
and knowledge graphs.

BIM infrastructure integration.
Cross-domain container and

extendable system
architecture.

Concrete bridge
inspection and road

pavement maintenance
decision-making.

Accelerated asset
deterioration due to

global change and gap in
BIM optimal usage.
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Table A2. Cont.

Paper Title Methodology Applications Challenges

[25]

Data fusion and machine
learning for industrial
prognostics and health
management: A review.

Data fusion and ML
algorithms for data

pre-processing, pattern
recognition, feature

engineering.

Infrastructure health
monitoring and data

handling from
monitoring tech.

Increase in data volume,
ML technique selection,
and environmental data

impact.

[74]

Data-driven predictive
maintenance planning

framework for MEP
components based on BIM

and IoT using machine
learning algorithms.

BIM and IoT-based framework
for FMM.

Predictive maintenance
using BIM and IoT.

Algorithm selection,
prediction methods, and

model training.

[23]
Decision-level data fusion in

quality control and
predictive maintenance.

Computational framework for
decision-level fusion.

QC in manufacturing
and aircraft engine

predictive maintenance.

Sensor selection, noisy
data, and computational

complexity.

[102]
Integrating heterogeneous
stream and historical data

sources using SQL.

Data integration framework
using SQL queries.

Monitoring data from
sensors, IoT, logs, social

networks, etc.

Data volume, integration
challenges, and querying

heterogeneous data.

[63]

Loss of information during
design and construction for

highways asset management:
A GeoBIM perspective.

BIM and GIS integration for
highway asset management.

GeoBIM for highway
asset management.

Interoperability, semantic
information loss,

geometry conversion.

[48]

Multi-sensor data fusion
with a reconfigurable

module and its application to
unmanned storage boxes.

Computational complexity
reduction via selective gate

module coupling.

Monitoring of unmanned
storage boxes.

Maintaining unique
sensor data

characteristics.

[103]

Ontology-based data
integration and sharing for

facility maintenance
management.

Ontology-based approach for
information interoperability in

AEC/FM.
FMM with BIM and IoT.

Interoperability, semantic
information loss, and
ontology validation.

[104]
Toward smart-building

digital twins: BIM and IoT
data integration.

BIM-IoTDI framework for BIM
and IoT data integration.

DT for real-time building
monitoring and
visualization.

Semantic interoperability
and real-building data

validation.

Table A3. Applications, technologies utilized and challenges of studied DT frameworks.

Paper Title Applications Technologies Utilized Challenges

[105]

A framework for
simulating the suitability

of data usage in designing
smart city services.

Data usage simulation
framework for smart city

service design.

Sensors (CCTV, traffic,
mobile, human)

Data detail identification,
data collection limitations.

[106]

A framework utilizing
modern data models with
ifc for building automation

system applications.

IFC integration with
modern data models for

building automation.
RDF, JSON, IFC

EXPRESS to OWL
mapping, IFC

schema/data issues.

[107]

A scalable cyber-physical
system data acquisition
framework for the smart

built environment.

Data acquisition for smart
built environments and

IoT-enabled cities.

Cloud databases, XML,
BIM, IoT, AI.

Data interoperability,
underutilized data,

connectivity/accessibility.

[15]

Framework for using data
as an engineering tool for
sustainable cyber-physical

systems.

Sustainable cyber-physical
systems framework for

smart infrastructure.
AI (DL, ML), ICT, IoT

Stakeholder ambiguity,
data source issues, purpose

misalignment.
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[108]

An example of digital
twins for bridge
monitoring and

maintenance.

DT-based bridge
monitoring using UAVs,

cameras and sensors.

UAVs, cameras, YOLO,
DeepSORT, Sensors.

Vehicle detection and
tracking, location

conversion, real-time
estimation.

[87]

A novel approach to
construct digital twins for
existing highways based
solely on available map

data.

Digital representation and
twin for highway

management.

Digimap topographies,
Civil 3D, IFC

Map platform choice, data
quality, data obstructions,

approach limits.

[109]

Creation of a mock-up
bridge digital twin by

fusing intelligent
transportation systems
(ITS) data into bridge

information model (BrIM).

DT of bridge with
Weigh-in-motion data;

safety and cost benefits.

Arduino, Bexel Manager,
BrIM, IFC.

Arduino tech challenges,
AECO interoperability,

load cell sensitivity.

[110]

Data sharing framework
for digital infrastructure
management utilizing eo

data.

Digital infrastructure
management and disaster

response.

ML, big data,
remote-sensing, UAV,

LiDAR

Disaster event challenges,
infrastructure impact.

[111]
Developing a city-level

digital twin—propositions
and a case study.

Real-time traffic
management and AI-based

pattern identification.
AI, ML.

Non-technical factor
understanding,

socio-political causes,
urban challenge

[112]

Developing a web-based
BIM asset and facility

management system of
building digital twins.

For AECO/FM sectors;
integrates building assets

throughout lifecycle.

BIM, Unreal Engine, web
real-time.

Barriers and inconsistency
in data sharing, unreliable

operation data.

[52]

Developing a digital twin
at building and city levels:

case study of west
Cambridge campus.

Collaboration,
visualization and O&M
management of building

and city.

AI, BIM, ICTs, cloud
computing, IoT, IFC

Data integration and
synchronization, big data

management, data quality.

[113]

Digital twin as a service
(DTaaS) in industry 4.0: An

architecture reference
model

DT for wetland
maintenance and real-time

monitoring.

IoT, AR, big data, XR, ML,
Vuforia.

Integration,
physical-digital-human
interactions, value-cost

trade-off.

[114]

Digital twin-driven
intelligence disaster

prevention and mitigation
for infrastructure:

advances, challenges, and
opportunities.

DT and Intelligence
disaster

prevention/mitigation
integration.

IoT, BIM, UAV, ML, DL,
IFC.

Data development,
real-time data,

system-stage collaboration.

[47]
Design and

implementation of a smart
infrastructure digital twin.

Tools for structural
behavior visualization on

3D bridge model.

Sensors, docker, REST
interface, API

Multidisciplinary
collaboration, digital

twinning, non-technical
issues.

[115]

Towards civil engineering
4.0: Concept, workflow

and application of digital
twins for existing

infrastructure.

Framework for civil
infrastructure predictive

maintenance and analytics;
SHM, WSNs, ML, AI, API.

Data collection issues,
software integration, DT

application barriers.
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[116]

A digital twin uses
classification system for
urban planning and city

infrastructure
management.

Digital twin uses
classification system

framework; visualization
and public consultation

tools.

VR, AR, MR, AI, ML.

Framework diversity, DT
knowledge transfer,
machine-readability,

automation challenges.

[117]

A digital twin-based
decision analysis

framework for operation
and maintenance of

tunnels.

Decision support for
tunnel O&M. COBie, IFC Semantic Web.

Twin data association,
semantic association

expression.

[118]

Operational modal analysis
as a support for the

development of digital
twin models of bridges.

Digital twin model for
bridge condition-based

maintenance.

Dynamic tests, NDTs, finite
element model.

Dynamic test accuracy,
sensor layout

instrumentation,
synchronizing data.

[119]

Digital twinning approach
for transportation

infrastructure asset
management using UAV

data.

Infrastructure distress
visualization and inspector

comments.

UAVs, photogrammetry,
3D.

Platform limitations, aerial
photogrammetry.

[120]
Digital twins for safe and

efficient port infrastructure
management.

Infrastructure management
with digital twins and

mixed reality.

UAVs, mixed reality, AI,
ML.

Safety, data processing,
data sharing, data quality,

system integration.

[121]

Digital twin of road and
bridge construction

monitoring and
maintenance.

Road and bridge
management; multiple

applications.

IoT, AI, big data, sensors,
BIM, GIS.

Map availability, security
system, dashboard speed.

[122]
Digital twinning of
lap-based marathon

infrastructure.

Real-time environmental
monitoring for marathons.

SNOET, LoRaWAN,
Hovermap LiDAR.

Electrical issues with
SNOET.

[123]

Digital twin technology for
bridge maintenance using

3D laser scanning: A
review

Bridge management and
3D modeling based on

digital twins.

Laser scanner, UAV,
LiDAR, BIM, NDTs, IFC

Raw data transformation,
information

standardization.

[26]
Federated data modeling

for built environment
digital twins.

Real-time monitoring and
data-driven decision tools

for buildings.

IoT, robotics, AR, MR, VR,
AI, BIM, IFC.

Information/process
clarity, fragmented data,

interoperability.

[124]
Framework of a smart local
infrastructure management

system.

Subway tunnel monitoring
and disaster prevention.

M2M, Wi-Fi sensor
network, RFID.

Sensor network
implementation, data

collection.

[125]

Identifying maturity
dimensions for smart

maintenance management
of constructed assets: A

multiple case study

Integration and
digitalization in corporate

facilities management.
Sensor tech, RFID, IoT.

Construction client and
building operation

function integration.

[126]
Infrastructure BIM

platform for lifecycle
management

Web-based BIM platform
for infrastructure

management.

BIM, AI, SHM, robots,
UAVs, IFC.

Real-time data and data
acquisition, time-series

data processing.

[127]

Integrated management of
bridge infrastructure

through bridge digital
twins: A preliminary case

study.

Road and bridge lifecycle
management; ITS and

WIM systems.
BIM, WIM data integration.

Non-interoperable systems,
integration, real-time

communication.
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[128]
A digital twin of bridges

for structural health
monitoring.

Digital twin for bridge
monitoring and real-time

data management.

WSNs, IIoT, Gaussian
process.

Large dataset handling,
data querying, software

interoperability.

[129]

Applications of machine
learning and computer

vision for smart
infrastructure management

in civil engineering.

Traffic and occupancy
detection using sensors
and machine learning.

ML, computer vision,
neural Network.

Multi-channel information
integration, model

complexity.

[130]

Multi-domain ubiquitous
digital twin model for

information management
of complex infrastructure

systems.

Infrastructure real-time
monitoring and dynamic

control.

IoT, AI, VR, cloud
computing.

Automatic control, stage
communication, IoT data

fusion.

[131]

Ontology-based modelling
of lifecycle underground

utility information to
support operation and

maintenance.

Underground utility data
conversion and

maintenance work.

GIS, BIM, AR and IoT,
SWeb, Ontology, IFC.

Heterogeneous data, data
exchange, data
management,

decision-making.

[132]

Open urban and forest
datasets from a

high-performance mobile
mapping backpack—a

contribution for advancing
the creation of digital city

twins.

Urban localization, 3D
reconstruction and scene

analysis.

BIMAGE backpack MMS,
LiDAR.

Challenging environments,
georeferencing methods,

accuracy.

[133]

Participatory sensing and
digital twin city: Updating

virtual city models for
enhanced risk-informed

decision-making.

Monitoring city systems
and risk-informed
decision-making.

Participatory sensing, 3D
city models, GIS.

Sensor-based information,
geospatial localization.

[134]

A hybrid predictive
maintenance approach for
CNC machine tool driven

by digital twin.

Predictive maintenance for
CNC machine tools.

ML, dynamometer,
Sensors.

CNC machine tool
complexity, data

acquisition, algorithm
selection.

[43]

Digital twins in asset
management: potential

application use cases in rail
and road infrastructures.

Train and track sensor
feedback for rail safety.

Siemens Mobility signaling
simulation.

Switch faults, track defects,
operational risks, data

processing.

[135]

Real-time participatory
sensing-driven

computational framework
toward digital twin city

modeling.

Real-time digital twin city
modeling and

infrastructure updates.

IoT, AWS cloud, mobile
app.

Mapping accuracy,
semantic segmentation

enhancement.

[5]

Resource allocation
framework for optimizing
long-term infrastructure

network resilience.

Resource allocation for
infrastructure resilience.

Agent-based modeling,
deep Q-learning.

Resilience considerations,
infrastructure

interdependencies.

[136]

Smart and automated
infrastructure

management: A deep
learning approach for crack
detection in bridge images.

Civil infrastructure
monitoring and damage

detection.

DL (YOLOv5), image
processing.

Limited image dataset,
crack recognition and

dimensions.
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[137] Smart infrastructure: A
research Junction.

Road safety and training
for automated driving

systems.

Sensors, Detectron2,
Triangulation.

Camera calibration,
perception models,

seasonal conditions.

[138]

Technological
infrastructure management
models and methods based

on digital twins

Maintenance cost
minimization and grid
safety improvement.

DT, ontological model.
DT creation for large-scale
infrastructure, multi-step

processes.

[139]

Integration of TLS-derived
bridge information

modeling (BrIM) with a
decision support system

(DSS) for digital twinning
and asset management of

bridge infrastructures.

Bridge management,
terrestrial laser scanning

application and DSS
integration.

TLS, BrIM, DSS, Ms. Visual
Studio, Tekla Open API.

Inspection subjectivity,
management decision

reliability, environmental
aggression.

[140]

Towards a hybrid twin for
infrastructure asset

management: Investigation
on power transformer asset
maintenance management.

Grid asset management
and real-time operational

decisions.

Physics-based models,
hybrid-twin model.

Model explanation,
prediction certification,

extrapolation issues.

[74]

Data-driven predictive
maintenance planning

framework for MEP
components based on BIM

and IoT using machine
learning algorithms.

BIM and IoT-based
framework for FMM. BIM, IoT, ML.

Algorithm selection,
prediction methods, model

training.

References
1. Osman, H. Agent-based simulation of urban infrastructure asset management activities. Autom. Constr. 2012, 28, 45–57. [CrossRef]
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