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Abstract: Bridges are generally affected by thermal loads which include the daily cycle, seasonal cycle
and annual cycle. Thermal loads mode and thermal effects on bridges, especially for concrete girders,
are quite essential but complicated. To investigate the temperature field and thermal stress in the
thickness direction of a concrete box girder, the temperature field of a prestressed concrete continuous
box girder bridge is monitored, and the temperature distribution in the thickness direction of the
concrete box girder is analyzed. Finite element simulation, utilizing air elements specifically designed
for concrete box girders, is employed to analyze the temperature field and thermal stress profiles
along the thickness of the slab. The findings indicate a variation in temperature along the thickness
of the concrete box girder slab. The most significant temperature differential, reaching up to 10.7 ◦C,
is observed along the thickness of the top slab, followed by the bottom plate, with the web exhibiting
relatively smaller differentials. Temperature in the full thickness range has a significant impact on
the top plate, while the web plate and bottom plate are greatly influenced by temperature ranging
from the outer surface to the center of the plate thickness. The temperature difference between the
center of the plate thickness and the inner surface is approximately 0. The variation in temperature
due to the variation in thickness direction is a temporal factor, wherein the outer layer of the roof is
primarily compressed, while the inner layer is subjected to tension. The external surface of the web is
mainly compressed. The stress exerted by the internal surface temperature is minimal. The internal
and external surface effects of the floor are similar, and as time passes, tensile and compressive
stresses appear.

Keywords: concrete box girder; temperature distribution; temperature effect

1. Introduction

Solar radiation has an unavoidable impact on the integrity of concrete bridges in their
natural habitat [1]. The bridge experiences a fluctuating and non-linear temperature field
due to solar radiation. The temperature inside the concrete bridge has a major effect on
the dependability and longevity of the concrete structure. The influence of temperature on
concrete box girders is notably noteworthy [2–5]. Recent engineering research has revealed
that in certain areas of box girders, temperature-induced stress surpasses that of vehicle
load stress, leading to the primary cause of cracks. The fissures are highly conspicuous and
have a propensity to progress even more [6,7].

The thermal and stress environments within concrete box girder bridges have been
subjects of extensive research over an extended duration. In the past, accurately calculating
the stress field solution in concrete box girder bridges was challenging due to the nonlinear
and inhomogeneous distributions of the temperature fields. The thermal stresses are
approximately computed employing the one-dimensional temperature gradient model as
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outlined in the specifications. When the box girder structure is large or the environment is
complex, it is inevitable that there will be differences with the actual temperature stress.
Experiments was conducted to analyze the temperature variations in box girders, both
horizontally and vertically. The study indicates that the temperature differences between
the horizontal and vertical directions exert a significant influence on the strain of the box
girder, while the temperature disparity between the horizontal and vertical orientations
prominently impacts the web fracturing of the box girder [8]. Chen Hengye employed
thermal transient analysis and thermal structure coupling technology to investigate the
thermal balance of the Hangzhou Bay Sea-Crossing Bridge on the surface of the box
girder. The study revealed that the temperature field outlined in the present specification
not only fell short in its capacity to accurately predict the temperature-induced stresses
within the concrete box girder but also failed to yield a reliable distribution law [9]. Chai
Y.H. conducted a comprehensive analysis of the exact temperature distribution within a
concrete box girder bridge located in California, USA, and juxtaposed it with the provisions
outlined in AASHTO-2007 [10]. The findings indicated that the temperature difference
was consistent within the roof’s 0.4 m span, while outside this span, the temperature
deviated from the prescribed standards. Oskar conducted an examination of the thermal
characteristics of the Bridge, and ascertained that the temperatures of the web and bottom
plate in the large-scale concrete box girder bridge exert a noteworthy influence on the
thermal behavior of the box girder [11]. Taysi performed field observations and research
on the temperature and stress fields of a prestressed concrete box girder bridge. His
findings highlighted a safety deficiency in the analysis, stemming from the oversight of the
temperature gradient in the bottom plate [12].

Currently, studies on concrete box girders both domestically and internationally are
centering on the vertical gradient pattern and temperature influence. Researchers have
largely disregarded the regional temperature distribution and the thickness of the bottom
plate, web, and roof is affected by the local temperature [13,14]. The addition of the
transverse stress caused by the longitudinal prestressed steel bars on the box girder section
can lead to localized fractures in the girder. Hence, conducting further investigations to
ascertain whether such oversights influence the overall thermal response of the box girder
section would be of considerable value.

This study explores the temperature distribution along the vertical cross-section of
various components within a bridge made of prestressed concrete box girder that can
be found on a highway. These components include the top plate, bottom plate, and the
web plate. The study subsequently formulates a finite element model to characterize
the temperature field within the concrete box girder, drawing insights from observed
temperature distributions. The temperature stress in the direction of plate thickness is
calculated and analyzed. The temperature-induced stress in the plate thickness direction
of the concrete box girder is considerable, thus necessitating further consideration in
practical engineering.

2. Measurement, Results and Analysis of the Temperature Distribution in the Box
Girder
2.1. The Layout of the Bridge, Information and Measuring Points

The special expressway bridge features a span configuration of 60 m + 100 m + 60 m,
comprising a prestressed concrete continuous girder design that incorporates a single
straight web box section within a single chamber. Due to the uniform temperature distribu-
tion throughout the cross-section of the box girder along the bridge, the side span Section
20 m distant from the side pier is chosen for temperature monitoring. The arrangement of
specific measuring points is depicted in Figure 1.
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Figure 1. The layout of measuring points in a section. 

2.2. Measurements, Results and Evaluation of the Thermal Field 
The Lintong area of Xi’an experiences its highest annual temperature in July, which 

is a clear indication of the region’s climate change. Consequently, July was chosen to con-
duct the temperature assessment of the concrete box girder. 

The graph in Figure 2 shows the changes in temperature along the thickness of vari-
ous sections of the concrete box girder. The temperature variations between the inner and 
outer surfaces of the top, bottom, and web sections of the concrete box girder depicted in 
the diagram exhibit a cyclical variation resembling a cosine function over time. The three 
demonstrate a simultaneous pattern of alteration, yet the top’s temperature disparity at-
tains its utmost magnitude initially in contrast to the temperature disparity between the 
web and the bottom plate. 

During daylight hours, the temperature disparities among the upper, lower, and 
webs are favorable, while during nighttime, they become unfavorable. When the sky is 
overcast and damp, the temperature difference between the inside and outside of the top 
and bottom plates can be significant, and the web is negative. When the ambient temper-
ature experiences a significant decrease, the temperature within the enclosure exceeds that 
of the external environment, and heat primarily transfers from the interior to the exterior 
of the enclosure. 

The temperature difference between the inside and outside of the upper plate is 
greatly affected by changes in the temperature of its environment. The greatest difference 
between positive and negative temperatures can be as high as 10.7 °C and 4.3 °C, respec-
tively. The temperature difference between the interior and exterior surfaces of the web 
remains largely unaffected by fluctuations in ambient temperature. On the west web, the 
highest temperature variation is 1.3 °C and the lowest is 3.5 °C, while on the east web, the 
highest temperature variation is 1.4 °C and 2.1 °C, respectively. The ambient temperature 
has minimal impact on the temperature disparity between the interior and exterior of the 
bottom plate. However, in the event of a sudden temperature decrease, a significant dis-
parity arises between the interior and exterior of the bottom plate, characterized by a max-
imum positive temperature differential of 2 °C and a maximum negative temperature dif-
ferential of 2.5 °C. 

Figure 1. The layout of measuring points in a section.

2.2. Measurements, Results and Evaluation of the Thermal Field

The Lintong area of Xi’an experiences its highest annual temperature in July, which is
a clear indication of the region’s climate change. Consequently, July was chosen to conduct
the temperature assessment of the concrete box girder.

The graph in Figure 2 shows the changes in temperature along the thickness of various
sections of the concrete box girder. The temperature variations between the inner and
outer surfaces of the top, bottom, and web sections of the concrete box girder depicted
in the diagram exhibit a cyclical variation resembling a cosine function over time. The
three demonstrate a simultaneous pattern of alteration, yet the top’s temperature disparity
attains its utmost magnitude initially in contrast to the temperature disparity between the
web and the bottom plate.
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Figure 2. Temperature differences in the box girder plate versus time.

During daylight hours, the temperature disparities among the upper, lower, and webs
are favorable, while during nighttime, they become unfavorable. When the sky is overcast
and damp, the temperature difference between the inside and outside of the top and
bottom plates can be significant, and the web is negative. When the ambient temperature
experiences a significant decrease, the temperature within the enclosure exceeds that of the
external environment, and heat primarily transfers from the interior to the exterior of the
enclosure.

The temperature difference between the inside and outside of the upper plate is greatly
affected by changes in the temperature of its environment. The greatest difference between
positive and negative temperatures can be as high as 10.7 ◦C and 4.3 ◦C, respectively.
The temperature difference between the interior and exterior surfaces of the web remains
largely unaffected by fluctuations in ambient temperature. On the west web, the highest
temperature variation is 1.3 ◦C and the lowest is 3.5 ◦C, while on the east web, the highest
temperature variation is 1.4 ◦C and 2.1 ◦C, respectively. The ambient temperature has
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minimal impact on the temperature disparity between the interior and exterior of the
bottom plate. However, in the event of a sudden temperature decrease, a significant
disparity arises between the interior and exterior of the bottom plate, characterized by a
maximum positive temperature differential of 2 ◦C and a maximum negative temperature
differential of 2.5 ◦C.

The temperature profiles of the concrete within the roof section of the concrete box
girder are presented in Figure 3. Specifically, concrete temperature at a depth of 0.02 m
beneath the roof surface exhibits daily fluctuations of approximately 13 ◦C due to the
influence of solar radiation. Additionally, Figure 3 illustrates that the temperature of
concrete at a depth of 0.02 m above the lower surface of the roof experiences comparatively
smaller daily variations. The roof experiences a decrease in temperature during nighttime
or rainy days.
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Figure 3. The temperature–time curve of the concrete in the top slab of the box girder.

The temperature distribution within the concrete box girder section’s east and west
web elements is illustrated in Figure 4. The concrete temperature at a depth of 0.02 m from
the outer surface of the east and west webs has a large temperature fluctuation in one day,
and the fluctuation value is approximately 3 ◦C close to the web, due to the influence of
solar radiation and sunset cooling. The temperature of the concrete on the inner surface
changes a lot every day. The temperature of the web varies depending on the thickness
of the plate, with a positive difference during the day and a negative difference at night,
and there is a noticeable temperature difference along the web thickness. The east and west
webs have the same temperature distributions, and the change trend is similar.
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An illustration of the temperature distribution in the concrete at the lower plate
of the concrete box girder section can be seen in Figure 5. The bottom plate concrete
has a lower temperature compared to the web concrete. With the exception of rainy
days, the temperature on the bottom plate of the concrete box girder is equivalent to the
negative temperature at the plate’s thickness. During periods of clear weather or when the
temperature rises, a significant variation in temperature can be observed along the breadth
of the bottom plate.
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In order to conduct a more in-depth analysis of the temperature gradient distributions
in the wall thickness direction of the roof, web, and bottom plate, temperature sample data
from 17 July 2021 (rainy day) and 20 July 2021 (sunny day) were chosen as the subjects
for analysis.

The temperature gradient along the web wall thickness direction is illustrated in
Figure 6. The highest difference between positive and negative temperatures is 1.3 ◦C and
3.5 ◦C, respectively. The variation in temperature and the disparity in temperature are more
pronounced in areas nearer to the outermost layer of the internet. The temperature gradient
exhibits a linear variation extending from the outer surface of the web to a distance of 23 cm
inward from the web’s outer surface. From the innermost layer of the web to the outermost
layer 23 cm away, the temperature fluctuates gradually, and the temperature difference
is nearly negligible. When a positive temperature difference is observed, the disparity in
temperature between the outer surface of the web and the center of the web wall thickness
surpasses that observed when subjected to negative temperature variations. The variation
in temperature along the web’s thickness spans from the outer surface to the web’s center.
Furthermore, the temperature variation in the web’s thickness at 14:00 is less pronounced
than at 19:00, suggesting that during summer, the edge plate’s shielding properties prevent
the web from being directly exposed to sunlight, even under high levels of solar radiation.
During the summer months, the flange plate provides shade to the concrete box girder’s
web, resulting in a slight variation in temperature along the plate’s thickness. Despite the
cooling effect on rainy days, the web experiences a significant decrease in temperature as it
moves along the plate thickness. Inside and outside the plate, there exists a variation in
lateral temperature ranging from −3.5 ◦C to 1.3 ◦C. The analysis indicates that the threshold
at which the temperature of the web undergoes a significant change is roughly 0.25 cm
away from the outer surface of the web.

Figure 7 illustrates the variation in temperature along the lower plate of the concrete
box girder. The bottom plate exhibits a vertical temperature differential akin to the lateral
temperature gradient of the web, with a peak positive temperature differential of 1.5 ◦C and
a maximum negative temperature difference of 2 ◦C. The temperature gradient between
the outer surface and the inner surface of the bottom plate exhibits a linear variation, with
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the inner surface of the bottom plate undergoing minimal changes within a 20 cm distance
from the outer surface, resulting in an almost imperceptible temperature differential. The
variation in temperature is roughly proportional to the plate’s thickness.
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On 13 July, a sunny day, the roof exhibited its highest positive temperature difference,
while on 17 July, a rainy day, it displayed its highest negative temperature difference. These
data points were both employed to investigate the temperature distribution across the
thickness direction of the roof.

The graph presented in Figure 8 illustrates a pronounced temperature variation within
the roof, particularly along the direction of plate thickness. Notably, significant temperature
discrepancies, both positive and negative, are observed near the outer surface of the roof,
spanning its entire thickness. The temperature delta between the interior and exterior sur-
faces of the roof can attain a maximum of 10.7 ◦C, with the highest temperature differential
between both sides reaching up to 4.3 ◦C. The disparity in temperature between the interior
and exterior of the roof can lead to significant temperature strain and even fracture the
structure. It is essential to examine the temperature distribution properties of the box girder
along the beam height direction and contemplate how the temperature distribution across
the thickness of the roof plate influences the temperature distribution profile in the beam
direction of the box girder. This is particularly crucial due to the significant fluctuations in
roof temperature along the thickness of the plate and the substantial temperature difference.
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Figure 8. Temperature distribution in the direction of the top slab’s thickness.

Examine the summer temperature distribution attributes of the box girder by consid-
ering the temperature–time profile of the box girder during the five days preceding and
following the 2017 summer solstice as the subject of investigation. The temperature–time
curves of the box girder’s right measuring points T1~T8 during the five days before and
after the summer solstice in 2017 are depicted in Figure 9a. The temperature–time profiles
for measuring points T9~T16 of the box girder during the five days before and after the
summer solstice in 2017 are depicted in Figure 9b.
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It is evident from the illustration that The box girder’s temperature experiences the
combined influence of solar radiation and diurnal temperature changes over a span of
five days, leading to noticeable variations at each measurement point. The cross-sectional
temperature variation exhibits the following attributes:

(1) When comparing the temperature change amplitude at each measurement point, it
is evident that the temperature change amplitude at the bottom plate surpasses that
at the top plate, and the closer it gets to the bottom plate, the more pronounced the
temperature change amplitude.

(2) The contrast between the vertical negative temperature gradient and the upward
vertical temperature gradient is more pronounced, with the vertical positive tempera-
ture gradient in the background bridge manifesting during the night and morning
when the box girder’s temperature was lower, while vertical negative temperature
gradient manifesting during the day when the railroad box girder’s temperature was
higher. Incorporation of ballast and concrete bridge panels atop the railway box girder
deck, in conjunction with the presence of 3-m-high side guardrails flanking the box
girder bridge, effectively shields the bridge deck from diurnal solar exposure. This
arrangement directs sunlight exclusively onto either side of the box girder belly plate.
In the realm of structural engineering, it is imperative to acknowledge that the relative
proximity of the web plate to the bottom plate significantly influences the duration of
direct solar irradiation, giving rise to a vertical adverse temperature gradient, wherein
the temperature recorded at measurement locations on the upper plate is less than
that observed on the lower plate. The ballast and concrete bridge panels’ covering
effect causes the top plate to dissipate heat at a slower pace compared to the bottom
plate and belly plate during the night. The top plate temperature is higher than the
bottom plate temperature, resulting in a vertical positive temperature gradient.

(3) In the realm of bridge engineering, it is observed that the temperature change in
the lower plate manifests itself prior to the temperature variation in the upper plate.
Moreover, the proximity of the lower plate to its designated position correlates with an
earlier onset of temperature alteration. At 5:35 in the morning of the summer solstice,
the sun ascends from the ground plane, radiating its rays directly onto the right web
of the box girder, with a height of 4.8 m. Subsequently, the height of the direct solar
radiation on the web gradually diminishes, and the closer it gets to the bottom plate,
the more it is affected by it; the temperature of the bottom plate is lower than that of
the top plate in the morning, indicating a thermal gradient. As time passes, the box
girder’s cross-section temperature decline process causes solar radiation to lose its role
in maintaining a higher temperature in the bottom plate position. The temperature of
the bottom plate started to decrease as soon as possible.

Examine the disparity in temperature between the left and right sides of the box girder
over the five days prior to and following the summer solstice, three sets of measurement
points near the middle of the top plate, bottom plate and web plate were chosen to compare
the temperature time course curves of the two sides, as illustrated in Figure 10.
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In order to facilitate our description, the transverse temperature difference is ascer-
tained by calculating the temperature differential between measurement points situated
on the top and bottom plates on the left and right sides, respectively. In cases where the
temperature at the left measurement point is lower than that at the right measurement
point, the transverse temperature difference is denoted as a positive value. Conversely,
when the temperature at the right measurement point exceeds that at the left measurement
point, the transverse temperature difference is represented as a negative value (the negative
temperature difference having a negative numerical value).

Examining the temperature–time curves on both sides of the box girder, the following
deductions can be made.

(1) The uppermost plate of the box girder shows minimal fluctuation in transverse
temperature, while the lower plate showcases a more noticeable disparity in transverse
temperature. In the initial and intermediate stages of the box girder temperature rise,
there is a noticeable increase in transverse positive temperature, followed by a decrease
in transverse negative temperature before and after the peak value.

In spite of the higher temperature recorded at measurement point T9 on the left side
of the box girder in comparison to measurement point T1 on the right side of the girder,
the differential temperature gap between T9 and T1 has consistently remained within a
narrow margin, consistently measuring less than 1 ◦C. Furthermore, the lateral temperature
differential across the top plate remains relatively insignificant. When the daily temperature
of the box girder fluctuates near the peak and valley, the temperature values of measuring
point T14 on the left web are similar to those of measuring point T6 on the right web, while
the temperature values of measuring point T16 on the left bottom plate and measuring point
T8 on the right bottom plate are similar. The bottom plate exhibits a substantial disparity in
lateral temperature. As the temperature of the box girder increases, it appears that the right
side of the temperature change occurs sooner than the left side of the temperature change,
resulting in a more pronounced transverse positive temperature difference. Subsequently,
owing to the rapid escalation of temperature along the left side, the temperature reading
at measurement point T14 on the left side of the web plate steadily converges with and
ultimately surpasses the temperature value at measurement point T6 on the right side of
the web plate. Simultaneously, in a progressive manner, the temperature at measurement
point T16 on the left side of the bottom plate gradually approaches and eventually exceeds
that of measurement point T8 on the right side of the bottom plate, resulting in a transverse
negative temperature differential across the bottom plate. When the daily temperature of
the box girder is close to its highest point, the lateral temperature of the bottom plate of the
box girder has decreased significantly. As the temperature inside the box girder dropped,
the temperature recorded at position T14 on the left web progressively approached that
of measurement point T6 located on the right web. The temperature at point T16 on the
left bottom plate gradually neared the temperature at point T8 on the right bottom plate
simultaneously. The box girder bottom plate’s lateral negative temperature difference
gradually diminished until it ceased to exist. The bottom plate of the box girder remained
relatively stable until the daily temperature fluctuation neared the peak valley.

(2) The right side experiences an earlier temperature change compared to the left side at
the identical transverse position.

Examine and contrast the sequence of temperature fluctuations at the left and right
measuring points positioned horizontally, with the top plate measurement point T1 expe-
riencing an earlier temperature change compared to the top plate measurement point T9,
the web measuring point T6 displaying an earlier temperature change compared to the
web measuring point T14, and the bottom plate measuring point T8 displaying an earlier
temperature change compared to the bottom plate measuring point T16. At 5:35 a.m. on the
summer solstice, the sun ascends from the ground plane, illuminating the right side of the
box girder and subsequently the left side as time elapses; there is a temporal precedence in
the temperature fluctuation observed on the right side compared to the left side of the box
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girder. This phenomenon can be attributed to the sun’s trajectory, as it moves across the
sky from the left side of the box girder, causing the left side to be directly exposed to solar
radiation while the right side remains shielded from direct solar radiation. This differential
exposure results in a discernible temperature gradient between the right and left sides.

(3) The bottom plate will experience both vertical and lateral temperature effects simultaneously.

The analysis of Figures 9 and 10 reveals that the box girder temperature experiences
fluctuations during the day following the initial temperature increase. This led to a substan-
tial increase in temperature and the existence of a bottom plate in the difference between
transverse positive temperatures. When the box girder is close to the highest point of
its daily temperature variation, the top and bottom plates of the box girder will have a
large vertical temperature difference, and the bottom plate will also have a large transverse
temperature difference.

3. Simulation of the Temperature Field of the Concrete Box Girder Section
3.1. Temperature Field Boundary Conditions

Concrete box girders exposed to sunlight experience the predominant influences of
three primary factors: solar radiation, convective thermal exchange, and radiative thermal
transmission. Therefore, the temperature distribution within the concrete box girder can
be determined by implementing prescribed boundary conditions [15]. The thermal flux
density at the junction of the concrete box girder is:

q = qs + qc + qr (1)

The thermal flux density of solar radiation is denoted by qs, whereas the thermal flux
density of convective thermal exchange is represented by qc, and qr is the thermal flux
density of radiative thermal transmission.

Solar radiation encompasses direct solar radiation, solar scattering and ground re-
flection, and the thermal flux density associated with solar radiation can be formulated
as follows:

qs = α(IDϕ + Idβ + I f ) (2)

where IDϕ is the coefficient related to the absorption of radiation on the exterior surface
of the concrete box girder, with values falling within the range of 0.50 to 0.70 [13]. Idβ is
solar scattered radiation intensity, and I f is the ground reflection intensity. The specific
calculation can be found in the literature [14,15].

The process of energy exchange between the fluid in contact with the concrete box
girder’s surface and the box girder itself are known as convective thermal exchange, and
the thermal flux density of convective heat transfer can be calculated as follows:

qc = hc(Ta − T) (3)

where Ta is ambient atmospheric temperature, T is the box girder structure temperature,
and hc is the convective heat transfer coefficient, which is usually determined by experiment
or experience as follows:

qc = 4a + 5.6, v ≤ 5 m/s;
qc = 7.15v0.78, v > 5 m/s

The value of v represents the velocity of the wind.
The radiative heat transfer for concrete box girders can be calculated using the follow-

ing equation:
qr = hr(Ta − T)− qra (4)

hr = Cε[(T + 273)2 + (Ta + 273)2](T + Ta + 546) (5)

qra =
1 + cos(β)

2
(1 − εa)εC(273 + Ta)

4 (6)
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The radiative heat transfer coefficient is denoted by hr; qra corresponds to the sloping
sky radiation effect; εa denotes the atmospheric radiation coefficient, with a value of 0.82; C
is the Stefan–Boltzmann constant, taking 5.67 × 10−8 W·m−2·K−4; and ε is the emissivity
of the object, taking 0.85 to 0.95.

3.2. Model Parameter Values and Finite Element Simulation

To be specific, the solar radiation absorption rate at the concrete box girder surface is
0.6, and the thermal characteristics of the concrete are detailed in Table 1.

Table 1. The thermal characteristics of the concrete.

Material Density
(g/cm3)

Thermal Conductivity
(J·m−1·◦C−1)

Specific Heat Capacity
(J·kg−1·◦C−1)

C50 Concrete 2500 0.75 10.10

This study employs finite element simulation to replicate the temperature field, aiming
to evaluate the impact of temperature loading on the thermal properties of concrete box
girder sections. Subsequently, the simulation results are cross-referenced with experimental
data to validate their accuracy. Following this validation, a study is carried out to examine
the thermal impact on the box girder section.

The finite element software ABAQUS (Version 6.13 2021) is used to establish a box
girder segment model for conducting a momentary examination of the temperature field
and temperature-induced self-stresses, as illustrated in Figure 11. Initially, a linear heat
transfer element consisting of eight nodes DC3D8 was utilized to simulate the heat transfer
within the concrete box girder. Subsequently, this eight-node linear heat transfer element
DC3D8 was transformed into an eight-node linear hexahedral element C3D8R for conduct-
ing structural analysis and calculations.
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The period of clear weather from 10 July 2021 to 13 July 2021 is selected as the calcu-
lation time. The first three days are the transition time to obtain an accurate temperature
field, and 13 July is the time for the simulation and analysis of the temperature field.

Through finite element analysis, the temperature distribution at various time instances
for the box girder can be determined. Figures 12–14 depict the temperature–time profiles
of the measured and calculated temperature data at various points along the thickness
direction of the top plate, web plate, and bottom plate of the section.

As illustrated in Figures 12–15, the calculated temperatures align closely with the
measured values, displaying consistent temperature distributions with variations within
1 ◦C. The box girder’s section experiences an uneven temperature field due to solar radia-
tion. Notably, the upper edge of the top plate exhibits significant temperature fluctuations,
with temperatures beginning to rise at 8:00 and reaching their daily peak at 18:00. The web
and bottom plate outer surfaces display minimal temperature variations, while the internal
temperature changes gradually. The box girder section is vertical in height, the top plate
experiences dramatic temperature fluctuations, the bottom plate shows minor temperature
changes, and the web plate remains relatively stable with minimal temperature variation.
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This indicates that the finite element model accurately captures the genuine temperature
field of the box girder section.
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Figure 15. Measured and Calculated Temperature Distribution Along the Height Direction of
the Beam.

4. Analysis of Self-Stress and Section Temperature
4.1. Diurnal Temperature Stress Change in a Section

Induced heat loads exhibit noticeable variations with changing solar radiation intensity.
Consequently, the central positions of the exterior and interior of the concrete box girder
were selected to analyze the daily thermal stress, as shown in Figure 16.
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Figure 16. Parts of thermal stress analysis.

Figure 17 illustrates the daily variation in temperature-induced self-stress on the upper
and lower edges of the concrete box girder’s top plate. The top plate experiences substantial
temperature stress fluctuations due to direct solar radiation, resulting in significant thermal
stress changes. Starting from 8:00, the highest point of the upper plate exhibits compressive
stress, which gradually intensifies. By 14:00, the compressive stress reaches its peak at
−8.5 MPa. Subsequently, the compressive stress on the upper edge diminishes and tran-
sitions into tensile stress. By 24:00, the tensile stress at the bottommost part of the upper
plate reaches its maximum at 1.8 MPa. Conversely, the bottommost part of the upper plate
endures tensile stress throughout the day, steadily increasing from 8:00 and peaking at
4.7 MPa by 15:00, followed by a gradual reduction. At 24:00, the tensile stress at the lower
edge aligns with that at the highest point of the upper plate.

Figure 18 shows the diurnal variation of temperature self-stress at the center of both
the inner and outer surfaces of the bottom plate. It is observed that the temperature stress
at the center of the bottom plate surface changes approximately as a cosine curve with time.
The center of the upper and lower surfaces of the bottom plate is under compressive stress
from 8:00 to 19:00 and tensile stress at other times. The maximum compressive stress at the
upper edge of the bottom plate is 0.95 MPa, and at the lower edge, it reaches a maximum of
0.68 MPa, with both peaks occurring at 13:00. The maximum tensile stresses on the upper
and lower edges of the bottom plate are 0.84 MPa and 0.51 MPa, respectively, and both are
observed at 1:00.
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Figure 19 depicts the daily variations in temperature-induced stress at the center
of the inner and outer surfaces of the web. Notably, there is a considerable disparity in
temperature-induced stress between the inner and outer surface centers, with the conditions
at the outer surface center being less favorable. The inner surface center of the web
experiences compressive stress throughout the day, albeit with a gradual change. The
maximum compressive stress recorded is 0.73 MPa. The temperature stress time record at
the center of the outer surface of the web is similar to a sine curve. The tensile stress is very
small, but the compressive stress can reach a maximum of 4.2, with a larger magnitude.
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4.2. Stress Distributions on the Inner and Outer Surfaces of the Plate Thickness

The lateral distribution of temperature-induced stress along the inner and outer sur-
faces of the top plate is depicted in Figure 20. The center of the box girder is the most
critical stress location for the top plate, as illustrated in Figure 1. Under the most daily
unfavorable temperature load, the upper edge of the top plate experiences a maximum
compressive stress of 8.5 MPa and a maximum tensile stress of 1.5 MPa. When subjected to
a negative temperature gradient, the upper edge of the top plate consistently experiences
tensile stress, with relatively uniform tensile stress values. Conversely, under the influence
of a positive temperature gradient, the upper edge of the top plate is consistently under
compressive stress, with compressive stress gradually decreasing from the box girder’s
center towards the flange plates. The temperature-induced stress on the lower edge of
the top plate gradually transitions from tensile stress at the center of the box girder to
compressive stress on both sides of the flange plates.
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Figure 20. Stress distributions on the inner and outer surfaces of the top plate.

Figure 21 illustrates the lateral distribution of temperature-induced stress on the inner
and outer surfaces of the bottom plate. Notably, the temperature-induced stress on both the
upper and lower surfaces of the bottom plate exhibits a symmetrical distribution. Under
the influence of the most unfavorable daily temperature load, the temperature stress on
the inner and outer surfaces of the bottom plate is generally uniform, except for a notable
reduction in stress at the junction between the bottom plate and the web. The center of the
box girder is the most critical stress location on the bottom plate surface. In the presence
of a positive temperature gradient, the inner surface experiences compression, while the
outer surface experiences tension, resulting in maximum tensile and compressive stresses
of up to 1 MPa. Conversely, with a negative temperature gradient, the inner surface of the
bottom plate experiences tensile stress, while the outer surface experiences compressive
stress, with maximum tensile and compressive stresses also reaching 1 MPa.

Figure 22 shows the distributions of temperature stress along the inner and outer sur-
faces of the web. The outer surface of the web experiences a more pronounced impact from
temperature loading compared to the inner surface. Notably, the stress at the intersection of
the web’s outer surface and the stem undergoes a sudden transformation. The temperature
stress gradually decreases along the inner and outer surfaces of the web, starting from the
top plate and extending to the bottom plate, under both positive and negative temperature
gradients. This observation highlights the proximity of the top plate and the web to the
primary stress points on both the inner and outer surfaces of the web.
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4.3. Stress Distributions along the Thickness Direction of the Section Plate

The temperature transfer in the thickness direction varies across the top plate, bottom
plate, and web of the box girder. There is a disparity between the internal stress in the
direction of plate thickness and the surface stress. Hence, it is crucial to examine the
dispersion of temperature-induced stress in the direction of plate thickness. Figure 23
illustrates the distribution of stress along the thickness of the top plate. Compared with
the internal temperature stress in the thickness direction of the top plate, the temperature
stress on the inner and outer surfaces of the top plate is maximal, displaying distinct time-
dependent characteristics. During daytime, the outer surface of the top plate undergoes a
shift in temperature stress, transitioning from compressive to tensile stress, with the reverse
occurring at night. Along the vertical direction of the top plate, the diurnal variation in
the temperature stress is different, and the temperature stress varies greatly during the
day. The maximum variation occurs at 14:00. The compressive stress on the outer surface
gradually diminishes from 8.5 MPa to 0 MPa at position 1/3 from the top plate’s outer
surface. Then, the temperature stress is converted into tensile stress and then gradually
increases. The maximum tensile stress at the inner surface of the top plate is 4.5. The
variation in temperature stress at night is small. This is because the temperature gradient
distribution inside the top plate is different during the day and night, which makes the
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stress distribution different in the daytime and at night. The top plate experiences direct
sunlight exposure during the day, resulting in significant temperature fluctuations, whereas
at night, in the absence of light exposure, temperature variations are gradual.
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Figure 24 depicts the distribution of temperature-induced stress in the direction of
the bottom plate’s thickness. The temperature-induced pressure on the bottom plate’s
thickness can be considered to be approximately symmetrically distributed during the day
and night. Commencing at the outermost layer of the bottom plate and extending up to a
distance of 0.2 m from the outermost layer of the bottom plate, the maximum compressive
stress decreases linearly to 0 MPa in the daytime and increases linearly with the same slope
as the maximum tensile stress. At night, the maximum tensile stress decreases linearly to
0 MPa and increases linearly with the same slope as the maximum compressive stress. The
trends exhibit a contrasting pattern between the outer and inner surfaces of the bottom
plate, spanning a distance of 0.3 m. Within the range from 0.2 m to 0.3 m from the outer
surface of the bottom plate, the temperature stress changes slightly during the day and
night and can be considered to remain unchanged.
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5. Conclusions

By analyzing the temperature data of the prestressed concrete continuous box girder
bridge and conducting simulation calculations on the temperature field of the box girder,
this research looks into how the temperature field affects the thickness of the concrete box
girder and how it is distributed. The key findings are as follows:

(1) Along the thickness direction of the concrete box girder, there exists a temperature
gradient. The maximum temperature gradient occurs along the top plate thickness
direction, reaching a maximum value of up to 10.7 ◦C. The gradient is somewhat
smaller in the bottom plate, and even smaller in the web. There are temperature
difference changes in the full range of the top plate thickness direction. The web and
the bottom plate at the center of the outer surface plate thickness exhibit a disparity in
temperature. There is an approximate temperature difference of 0 between the center
of the plate thickness and the inner surface of the web.

(2) The concrete box girder’s top surface is subjected to considerable temperature-induced
stress, reaching a maximum compressive stress of 8.5 MPa and a maximum tensile
stress of 1.5 MPa. The temperature pressure stress on the outer surface of the web is
4.0~8.0 MPa, the temperature stress on the inner surface is smaller than that on the
outer surface, and the temperature stress on both the inner and outer surfaces of the
bottom plate is less than 1 MPa.

(3) The top plate experiences significant fluctuations in temperature stress as it moves
along its thickness. The inner and outer surfaces experience the most significant
temperature stresses, which gradually diminish as the plate thickness increases. The
distribution of temperature stress along the thickness direction of the bottom plate
can be regarded as approximately symmetrical throughout the day and night.

(4) With the increase in thickness, the standard value of positive temperature difference
decreases, the standard value of negative temperature difference increases, and the
thermal stress is proportional to the gradient of thickness direction.
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