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Abstract: Failure mode identification and shear strength prediction are critical issues in designing
reinforced concrete (RC) structures. Nevertheless, specific guidelines for identifying the failure modes
and for accurate predictions of the shear strength of rectangular hollow RC columns are not provided
in design codes. This study develops hybrid machine learning (ML) models to accurately identify
the failure modes and precisely predict the shear strength of rectangular hollow RC columns. For
this purpose, 121 experimental results of such columns are collected from the literature. Eight widely
used ML models are employed to identify the failure modes and predict the shear strength of the
column. The moth-flame optimization (MFO) algorithm and five-fold cross-validation are utilized
to fine-tune the hyperparameters of the ML models. Additionally, seven empirical formulas are
adopted to evaluate the performance of regression ML models in predicting the shear strength. The
results reveal that the hybrid MFO-extreme gradient boosting (XGB) model outperforms others in
both classifying the failure modes (accuracy of 93%) and predicting the shear strength (R2 = 0.996) of
hollow RC columns. Additionally, the results indicate that the MFO-XGB model is more accurate
than the empirical models for shear strength prediction. Moreover, the effect of input parameters on
the failure modes and shear strength is investigated using the Shapley Additive exPlanations method.
Finally, an efficient web application is developed for users who want to use the results of this study
or update a new dataset.

Keywords: extreme gradient boosting; failure mode; machine learning; moth-flame optimization;
rectangular hollow reinforced concrete columns; shear strength; web application

1. Introduction

Columns are considered one of the most critical components of a structure as column
failure may lead to the collapse of an entire structure. Among many structural characteris-
tics of reinforced concrete (RC) columns, failure modes and the shear strength are often
more difficult to identify than others. Therefore, failure mode identification and shear
strength prediction play an essential role in adequately designing new RC structures and
retrofitting existing ones.

Rectangular hollow RC (RHRC) columns have been popularly employed in bridges
since they satisfy the efficient lateral load-resisting capacity and beneficial construction
costs [1–4]. Several conventional approaches have been employed to identify the failure
modes (FMs) of RC columns with solid cross-sections. The FMs of rectangular RC columns
can be identified using the shear span-to-effective depth ratio or simply the aspect ratio
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(a/d). If a/d ≥ 4, the flexural failure (FF) governs; if 2 < a/d < 4, the column suffers from
flexure-shear failure (FSF); if a/d ≤ 2, the shear failure (SF) governs [5]. However, this
method did not reflect the effects of the characteristics of materials [6]. Another parameter,
the ratio of shear demand to shear capacity (Vr), can be alternatively used to identify the
failure modes of rectangular RC columns [5]. SF governs if Vr > 1; FF governs if Vr ≤ 0.6;
otherwise, FSF governs. However, some studies critisize the accuracy of this method [5,7,8].
Ghee et al. [9] used the displacement ductility factor (displacement at the maximum shear
strength to the yield displacement ratio) (µ) for identifying the FMs of circular RC columns.
They proposed thresholds of µ for classifying FF, SF, and FSF. However, since this method
is based on a small set of experiments, the application of this method should be limited.
Qi et al. [5] predicted FMs of solid RC columns based on the Fisher discriminant technique.
A total of 111 experiments were used in this research. However, a low accuracy was
achieved for the FSF. A probabilistic approach was also presented in Ning and Feng [10],
however this method was not in line with the data of Berry et al. [11].

In general, an RHRC column under lateral and vertical loadings can suffer from one of
the three typical failure modes, which are FF, SF, and FS [3,12,13], as illustrated in Figure 1.
As presented in Yeh et al. [13], FF has high ductility, in which the column experiences lateral
cracks, yielding of longitudinal reinforcing bars, spalling of cover concrete, crushing of
compressive concrete, or bulking/rupturing of longitudinal reinforcements (Figure 1a),
whereas SF is a brittle failure due to significant diagonal cracks without yielding the
longitudinal reinforcement, as depicted in Figure 1b. SF reduces the ductility and load
capacity of the column dramatically. FSF combines FF and SF, in which the yielding of the
longitudinal reinforcing bar can be formed at the bottom. Even though a certain ductility
can be achieved, the column is mostly failed by shear (Figure 1c). Since the column suffers
brittle and sudden damage during the shear-controlled failure, the identification and
prevention of this failure mechanism are crucial issues in the seismic design process. When
an RHRC column has sufficient transverse reinforcement, FF may govern; otherwise, SF or
FSF may govern [13]. However, the failure mechanism of the column also strongly depends
on the aspect ratio and material properties [6,7]. Moreover, since there are numerous
existing uncertainties along with the complexity of the damage mechanisms, it is difficult
to estimate the failure modes of RHRC columns.
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Figure 1. Illustration of failure modes of RHRC columns.

Several empirical and analytical models were developed to determine the shear
strength of RC members, namely, the strut-and-tie model [14,15], the modified compres-
sion field theory [16,17], softened truss model [18,19], critical shear crack theory [20], and
damage models [21]. They mainly focus on calculating the shear strength of solid RC
members [22–28]. However, these models heavily depend on additional assumptions
and their simplified nature [6]. Additionally, since shear transfer mechanisms are usually
complex, derived models based on these mechanisms will also be difficult, despite some
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simplifications [29,30]. As a result, a large scatter exists compared to experimental tests and
predictive equations [29].

Machine learning (ML) techniques have been extensively applied in various engineer-
ing problems since it owns great advantages such as computational efficiency and sufficient
consideration of uncertainties [31]. Numerous studies used ML techniques to estimate
the structural response of civil engineering structures [32,33]. The ML-based failure mode
identification was well performed for buildings [34–36] and bridges [37]. Moreover, some
researchers employed ML models for determining the failure modes of structural elements
such as beam–column joins [38], shear walls [39], and RC panels [40]. The mentioned
studies highlighted the capability of using ML techniques in estimating responses and
failure modes of structures, and some methods were superior to others.

Recently, several studies have applied ML techniques to recognize the FMs and predict
the capacity of RC columns with solid sections, of which typical works include Mangalathu
and Jeon [41], Feng et al. [6], Mangalathu et al. [39], and Phan et al. [42]. Although previous
ML models showed good promise, they are still unclear on optimizing hyperparameters
effectively. Therefore, the ML models can overfit or underfit and have low generalization
performance with small datasets. Moreover, there are no ML studies on identifying the
failure modes and predicting the shear strength of RHRC columns so far.

This study aims to develop ML models to identify the failure modes and improve the
shear strength prediction of RHRC columns. Firstly, 121 experimental results of RHRC
columns are collected from the literature. Then, eight ML algorithms, namely, support
vector machine (SVM), multi-layer perceptron (MLP), K-nearest neighbors (KNN), decision
tree (DT), RF, gradient boosting (GB), AGB, and extreme gradient boosting (XGB), are
employed to identify the failure modes and predict the shear strength of RHRC columns.
For the classification of the failure modes, the synthetic minority over-sampling technique
(SMOTE) is employed to handle the imbalanced class problems of the database. The
moth-flame optimization (MFO) algorithm and five-fold cross-validation are utilized to
fine-tune the hyperparameters of the ML models. Additionally, seven code formulas are
adopted to evaluate the performance of the regression ML models in predicting the shear
strength of RHRC columns. Based on the best classification and regression ML models, a
web application is developed and readily used in identifying the FMs and shear strength of
RHRC columns.

2. Description of Data Collected

This study collects experimental test results of RHRC columns from the literature
[1,2,5,12,13,29,30,43–49] to develop ML models. It should be noted that all experimental
samples were published in scientific journals and conference proceedings from 1983 to
2022. The maximum strength values of experimental RC columns are selected as the output
values of the database. Moreover, failure modes were emphasized in those experiments.
Meanwhile, all eleven design parameters of hollow columns are used for input parameters
of the database. Based on the previous studies [6,39,41,50,51], the factors affecting the
failure modes and shear strength of RC members can be grouped as geometric dimensions,
reinforcing bar details, and material properties. The structural configuration includes
the column height (Lv), the cross-section width (B), the cross-section length (H), and the
wall thickness (tw). In the case of the reinforcing bar details, the longitudinal reinforcing
bar ratio (ρl), the transversal reinforcement ratio (ρw), and the spacing of transversal
reinforcements (s) are included. And for the level of material properties, the yield strength
of the longitudinal (fyl), the yield strength of the transversal (fyw), and the compressive
strength of concrete (f′c) are crucial. Moreover, the axial load (P) also affects the failure
modes and shear strength of RC columns. Therefore, these parameters are collected and
considered input variables in this study.

Before constructing the ML models, it is essential to perform comprehensive data
analysis. Exploratory data analysis uses statistics and graphs to help recognize trends and
examine the consistency and irregularity of the data. In our study, the exploratory data
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analysis has been completed before moving on to developing ML models. Therefore, the
unwanted and incomplete information data points are removed from the database.

It is noted that outlier data points are unusually close together or significantly different
from the rest of the dataset. Outliers can reduce the performance of the ML models.
However, there is a point of diminishing returns where adding more data may not improve
the model performance significantly. In addition, removing outliers can result in losing
many data points and information and reducing the data size. As a result, the model’s
generalizability is lessened. Notably, some advanced ML models (i.e., XGB) are not affected
by outliers. Therefore, only the extreme outliers have been removed from the database.
Accordingly, 121 experimental results are retained and used to develop the ML in this study.

Figure 2 schematically shows the configurations and reinforcement properties of
RHRC columns. The frequency histograms and statistical properties of input parameters,
shear strength, and failure modes of the database are shown in Figures 3 and 4. It should be
noted that there are 61, 42, and 18 column samples failed with FF, FSF, and SF, respectively.
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3. Overview of ML and Optimization Algorithms

This study uses eight efficient ML algorithms, including SVM, MLP, KNN, DT, RF,
GB, AGB, and XGB, for classifying the FMs and predicting the shear strength of RHRC
columns. The ML algorithms used in this study can be used for classification and regression
problems. They were implemented in the Scikit-learn package [52]. Commonly, the
outputs of classification problems are discrete labels, while those of regression problems
are continuous values. The following section will briefly introduce eight ML algorithms,
while the details of these algorithms have been presented in the previous studies.

3.1. Support Vector Machine

SVM uses statistical learning theory to minimize both the empirical risk and the
confidence interval and achieve a good generalization capability. SVM is a highly efficient
and robust algorithm for regression and classification problems [53]. The basic idea behind
the SVM algorithm is to map the original datasets from the input space to a high- or infinite-
dimensional feature space to simplify the problems. To minimize the model complexity and
prediction error, SVM uses kernel tricks to build expert knowledge about a problem [54].

3.2. Multi-Layer Perceptron

MLP is a particular class of deep neural network algorithms [55]. The MLP structure
consists of an input layer, hidden layer(s), and an output layer. The nodes in the layers are
interconnected and have associated thresholds and weights. The training process involves
assigning values to these weights. The nodes’ weights are constantly updated to reduce the
difference between the predicted and target values.

3.3. K-Nearest Neighbors

KNN locates the k-nearest data points in the training set to the point where a target
value is missing and applies the approximate value of the identified datasets to it [56]. It
has no assumptions about the data distribution. Thus, it is efficient for extensive amounts
of training data.

3.4. Decision Tree

The DT model is a simple yet powerful ML algorithm that is commonly used for
both classification and regression tasks. It is a tree-like structure, where each internal
node represents a feature or attribute, each branch represents a decision based on that
feature, and each leaf node represents the outcome or prediction [57]. When training a DT
model, the algorithm learns to create the tree by splitting the data based on the features
that best separate the classes or explain the target variable. The objective is to minimize
the impurity or maximize the information gain at each split, so that the resulting tree can
effectively classify or predict the target variable. Once the DT is trained, making predictions
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is straightforward. The training process starts at the root node by evaluating the feature
values and following the corresponding branches until reaching a leaf node. The prediction
at that leaf node becomes the final output.

3.5. Random Forest

RF is a popular ML algorithm used for both classification and regression tasks. It is a
versatile and powerful model that combines multiple decision trees to make predictions [58].
Random forest would create an ensemble of DTs, in which each tree is trained on different
subsets of the data and different subsets of the features. This randomness adds diversity
to the individual trees. During prediction, each tree in the forest independently makes its
own prediction, and then the final prediction is determined by voting or averaging the
predictions of all the trees. This ensemble approach helps to reduce overfitting and improve
the accuracy and generalization of the model.

3.6. Boosting Algorithm

The boosting method is an ensemble algorithm that establishes the same structure for
all learners trained sequentially [59]. Herein, AGB, GB, and XGB are the boosting algorithms
that develop a strong learner based on a set of weak learners. The XGB algorithm enhances
the GB algorithm with the objective function that adds a regularization parameter to deal
with the overfitting or underfitting problems and reduce model complexity.

3.7. Moth-Flame Optimization Algorithm

The moth-flame optimization (MFO) algorithm is a nature-inspired optimization
algorithm that is inspired by the behavior of moths attracted to a flame [60]. The MFO
algorithm is based on the concept that moths are attracted to light sources, such as flames,
and tend to move closer to them. However, as they get closer, they also tend to lose energy
due to the heat. MFO mimics the behavior of moths in a three-stage process: initialization,
attraction, and updating.

• During the initialization stage, a population of moths is randomly placed in the search
space. Each moth is represented by a potential solution to the optimization problem.

• In the attraction stage, moths are attracted to a flame, representing the global best
solution found so far. The intensity of the flame is determined by the fitness value
of the current best solution. Moths are then attracted to the flame based on their
proximity to it, with closer moths having a stronger attraction.

• In the updating stage, moths update their positions based on their current position,
the position of the flame, and a randomization factor. This movement promotes
exploration of the search space, allowing the moths to potentially find better solutions.

The MFO algorithm continues to iterate through the attraction and updating stages un-
til a stopping criterion is met, such as reaching a maximum number of iterations or finding
a satisfactory solution. Below is a brief introduction to MFO’s mathematical formulation.

As a first step, the algorithm creates a matrix to represent the set of moths:

M =


m1,1 m1,2 . . . m1,d

: : . . . :
: : . . . :

mn,1 mn,2 .. mn,d

 (1)

In the second step, the algorithm expresses the flames in a matrix as follows:

F =


F1,1 F1,2 . . . F1,d

: : . . . :
: : . . . :

Fn,1 Fn,2 .. Fn,d

 (2)
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where d and n are the numbers of variables and moths, respectively.
The fitness values are as follows:

OM =


OM1

:
:

OMn

 and OF =


OF1

:
:

OFn

 (3)

In the MFO algorithm, each moth seeks around a flame to update its position using
the equation below:

Mi = S
(
Mi, Fj

)
= Di·ebt·cos(2πt) + Fj (4)

t = (a− 1)× rand() + 1 (5)

a = −1 + Iter× ((−1)/MaxIter) (6)

where Mi is the ith moth, Fj is the jth flame, S is the spiral function, b is a constant, and Di
is the distance of the ith moth from the jth flame. Di is calculated as below:

Di =
∣∣Fj −Mi

∣∣ (7)

The flames’ number is calculated as follows:

flame_no = round
(

N− Iter ∗ (N− 1)
MaxIter

)
(8)

where N, Iter, and MaxIter are the maximum numbers of flames, the current number of
iterations, and the maximum iterations, respectively. Figure 5 demonstrates the flowchart
of the MFO algorithm. The detail of the MFO algorithm can be found in Mirjalili [60].
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3.8. Synthetic Minority Over-Sampling Technique

Figure 4 shows that the failure modes are highly imbalanced for the classification
task. The database contains 61, 42, and 18 samples for FF, FSF, and SF modes, respectively.
Therefore, this issue can adversely affect the accuracy of ML algorithms. In this study,
the SMOTE [61] is used to overcome this drawback. Accordingly, the SMOTE increases
the number of small classes to the largest one. However, the SMOTE algorithm remains
the same for each class’s statistics and region. The SMOTE has proven successful for the
class imbalance problem. After adopting the SMOTE technique, the database comprises
61, 61, and 61 samples for FF, FSF, and SF modes, respectively. This synthetic database
can be found in Supplementary Materials. Following typical steps are required to perform
the SMOTE.

(1) Identify the imbalanced dataset: Determine which class in your dataset is the minority
class that needs to be oversampled.

(2) Import necessary libraries: Depending on the programming language used, the
required libraries or packages for SMOTE implementation are imported. In this study,
we adopt the scikit-learn library for Python.

(3) Split the dataset: Divide the dataset into features (X) and the corresponding class
labels (Y).

(4) Apply SMOTE: the SMOTE algorithm is employed to generate synthetic samples for
the minority class. This involves the following sub-steps:

• Identify the minority class samples: Separate the minority class samples from
the majority class samples.

• Determine the number of synthetic samples to generate: Decide on the desired
ratio of minority to majority class samples after oversampling. This ratio can be
adjusted based on the specific problem and dataset.

• Compute the k-nearest neighbors: For each minority class sample, identify its
k-nearest neighbors from the minority class samples.

• Generate synthetic samples: Randomly select one of the k-nearest neighbors and
create a new synthetic sample along the line connecting the two points. Repeat
this process for the desired number of synthetic samples.

(5) Combine the original and synthetic samples: Combine the original minority class
samples with the newly generated synthetic samples to create a balanced dataset.

4. Performance Metrics

Performance metrics are essential in evaluating ML models since they provide values
to objectively measure and analyze the performance of the predictive model. This helps
users understand the strengths and weaknesses of the model and identify areas for im-
provement. Performance metrics are also indicators for comparing different models and
determining which one is the most effective for a specific task.

Furthermore, performance metrics work by analyzing the output of an ML model
against a known set of data (i.e., experimental data). This is required to measure the
accuracy, precision, and recall of the model, among other metrics. The results are then
compared to a desired level of performance, and any discrepancies can be addressed
through further training or adjusting the model’s parameters.

4.1. Classification Metrics

To evaluate the classification ML models’ efficiency, several metrics, such as accuracy,
recall, precision, f1-score, and area under the curve (AUC) of the receiver-operating char-
acteristic (ROC) curve, are used in this study. These metrics are calculated based on the
confusion matrix, as shown in Figure 6.
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In the confusion matrix, the diagonal values correspond to the correct prediction failure
modes; the off-diagonal values correspond to the failure modes not correctly predicted.
Each row denotes an actual class, while each column indicates a predicted class. The
accuracy, recall, precision, and f1-score are expressed as:

Accuacy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

f1-score = 2× Precision× Recall
Precision + Recall

(12)

It is noted that the higher the accuracy, recall, precision, and f1-score, the more efficient
performance of ML models.

4.2. Regression Metrics

This study uses three prevalent metrics, including goodness of fit (R2), root mean
squared error (RMSE), and mean absolute error (MAE), to evaluate the performance of the
regression ML models.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (13)

A10 =
n10

n
(14)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (16)

where yi is the target shear strength, ŷi is the predicted shear strength, y is the average
value of target shear strength, n10 is the number of samples with the value of the ratio of
experimental value to a predicted value falling between 0.90 and 1.10, and n is the number
of data points.
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4.3. K-Fold Cross-Validation

In this study, K-fold CV is used to avoid overfitting and get the ML models’ generaliza-
tion performance on the unseen data. The process of this technique is presented in Figure 7.
The K-fold CV divides the training set into K subsets of the same size. Accordingly, training
folds consist of K− 1 subsets, while testing folds consist of the remaining subset. Thus, the
ML model is trained K times. Performance of the model is measured using average K folds.
Herein, the stratified five-fold CV is used for classification ML models, while the standard
five-fold CV is used for regression ML models.
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5. Development of ML Models

Figure 8 shows the flowchart for developing the classification and regression ML
models used in this study. The following section introduces the detailed descriptions of the
procedure.
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5.1. Input and Output Variables

In this study, Lv, B, H, tw, ρl, ρw, s, f′c, fyl, fyw, and P are used as input variables to clas-
sify the failure modes (i.e., FF, SF, and FSF), and predict the shear strength of RHRC columns.

This study uses z-normalization for input variables to develop the ML models since
raw data extracted from various sources have different units and ranges. This method
converts the mean of each input variable to around zero and the standard deviation to
about one and retains the distribution of values. The z-normalization is expressed as:

zI,j =
I − xj

σj
(17)

where xi,j Is the jth input variable of ith data sample, zi,j is the standardized value of xi,j, xj
is the mean of jth input variables, and σj is the standard deviation of jth input variables.

5.2. Hyperparameter Tuning

Parameters and hyperparameters are fundamental to ML algorithms. Parameters are
internal configuration variables whose values can be inferred from the dataset. Meanwhile,
hyperparameters are used to regulate how the model learns [62,63]. The hyperparameter
value can be set by default in the ML package or adjusted by the user. However, ML models
with default parameters have the major disadvantage of overfitting or underfitting because
they introduce bias and variance [64–66]. Therefore, hyperparameter selection becomes an
important criterion in every ML model. Model prediction can be significantly enhanced
by selecting precise hyperparameters [65,67,68]. However, manually choosing all possible
hyperparameter values for each ML model is time-consuming and impractical. Therefore,
this study utilizes the MFO algorithm for tuning the hyperparameters of the ML models.

The step-by-step procedure for constructing the hybrid ML models is shown in
Figure 8. Firstly, the data samples are arbitrary split into training and test sets. Mod-
els are established from the training set to choose the best values of hyperparameters;
meanwhile, the test set is used to see how the models perform. In this study, eight training
ratios (i.e., 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90) and corresponding test ratios
(i.e., 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, and 0.10), respectively, are used to investigate the
effect of training and test data partitions. Additionally, six population sizes (50, 100,150,
200, 250, and 300) in the MFO algorithm are considered. This study utilizes a five-fold CV
for the training dataset. The process is repeated five times via the MFO algorithm, and
the test folds are averaged to establish a prediction model. The fitness functions are the
average f1-score of five testing folds in the classification models and the average MAE of
five testing folds in the regression ones. The primary hyperparameters and their ranges
for the classification and regression ML models are presented in Tables 1 and 2. Detailed
descriptions of the hyperparameters were presented in the Scikit-learn package [52].

Table 1. Hyperparameters of classification ML algorithms.

Model No. Hyperparameters Range Optimal Value

SVM 1 C (0.01, 1.0) 0.968473
2 degree (1, 5) 2
3 tol (0.01, 1.0) 0.056104

MLP 1 alpha (0.01, 1.0) 0.711483
2 batch_size (1, 100) 26
3 hidden_layer_sizes (1, 100) 10
4 momentum (0.01, 1.0) 0.155035

KNN 1 leaf_size (1, 100) 64
2 n_neighbors (1, 50) 1
3 p (1, 2) 1
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Table 1. Cont.

Model No. Hyperparameters Range Optimal Value

DT 1 max_depth (1, 100) 79
2 min_samples_leaf (1, 10) 5
3 min_samples_split (1, 10) 8
4 min_weight_fraction_leaf (0.1, 1.0) 0.036477

RF 1 max_depth (1, 100) 17
2 min_samples_leaf (1, 10) 5
3 min_samples_split (1, 10) 3
4 n_estimators (5, 1000) 23

AGB 1 learning_rate (0.01, 1.0) 0.629896
2 n_estimators (5, 1000) 165

GB 1 learning_rate (0.01, 1.0) 0.681775
5 n_estimators (5, 1000) 689
3 min_samples_split (1, 10) 3
2 min_samples_leaf (1, 10) 9
1 max_depth (1, 100) 16

XGB 1 learning_rate (0.01, 1.0) 0.557980
2 max_depth (1, 100) 8
3 n_estimators (5, 1000) 921

Table 2. Hyperparameters of regression ML algorithms.

Model No. Hyperparameters Range Optimal Value

SVM 1 C (0.01, 1.0) 0.999992
2 gama (0.01, 1.0) 0.086386
3 degree (1, 5) 2
4 epsilon (0.01, 1.0) 0.602402

MLP 1 alpha (0.01, 1.0) 0.541640
2 batch_size (1, 100) 4
3 hidden_layer_sizes (1, 100) 66
4 momentum (0.01, 1.0) 0.752071

KNN 1 leaf_size (1, 100) 27
2 n_neighbors (1, 50) 1
3 p (1, 2) 2

DT 1 max_depth (1, 100) 53
2 min_samples_leaf (1, 10) 1
3 min_samples_split (1, 10) 4
4 min_weight_fraction_leaf (0.1, 1.0) 0.1

RF 1 max_depth (1, 100) 100
2 min_samples_leaf (1, 10) 1
3 min_samples_split (1, 10) 2
4 n_estimators (5, 1000) 649

AGB 1 learning_rate (0.01, 1.0) 0.543211
2 n_estimators (5, 1000) 452

GB 1 learning_rate (0.01, 1.0) 0.343455
2 n_estimators (5, 1000) 204
3 subsample (0.1, 1.0) 0.916063
4 max_depth (1, 100) 4
5 alpha (0.1, 1.0) 0.468587

XGB 1 learning_rate (0.01, 1.0) 0.745099
2 max_depth (1, 100) 55
3 n_estimators (5, 1000) 5
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6. Results and Discussions
6.1. Choosing the Best Regression and Classification Models

Data splitting plays a crucial role in ML models’ performance assessment [68]. For
this purpose, eight ratios (i.e., 0.55–0.45, 0.60–0.40, 0.65–0.35, 0.70–0.30, 0.75–0.25, 0.80–0.20,
0.85–0.15, and 0.90–0.10 for training and test set, respectively) and six population sizes
(i.e., 50, 100, 150, 200, 250, and 300) are investigated in this section. Statistical metrics are
employed for evaluating the performance of ML models. The classification ML models
perform better when the measuring paramenters (i.e., accuracy, precision, recall, and f1-
score) are high. Moreover, the regression ML models perform better when the R2 and A10
are high. In contrast, the regression ML models perform better when RMSE and MAE are
low. It is observed that the ML models’ performance changes according to the variation of
training–test ratios and population sizes.

6.2. Performance of ML Models for Failure Modes

The best training–test ratio and population size for the classification MFO-SVM, MFO-
MLP, MFO-KNN, MFO-DT, MFO-RF, MFO-AB, MFO-GB, and MFO-XGB models are (75–25,
50), (55–45, 50), (80–20, 150), (70–30, 250), (85–15, 150), (85–15, 150), (85–15, 50), and (85–15,
50), respectively. Optimal hyperparameter values of the classification and regression ML
models are listed in Tables 1 and 2.

Figure 9 presents the classifying performance of eight data-driven models using
confusion matrices in the normalized form (the non-normalized form can be found in
Supplementary Materials). The accuracy, recall, precision, and f1-score metrics of the
training and test sets are calculated from the confusion matrix and used to evaluate the
performance of the classification ML models, as shown in Table 3.

Table 3. Performance of classification ML models.

Model
Training Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

MFO-SVM 0.825 0.827 0.825 0.824 0.870 0.879 0.870 0.871

MFO-MLP 0.780 0.789 0.780 0.780 0.807 0.807 0.807 0.806

MFO-KNN 1.0 1.0 1.0 1.0 0.784 0.788 0.784 0.779

MFO-DT 0.812 0.816 0.812 0.813 0.836 0.852 0.836 0.836

MFO-RF 0.819 0.821 0.819 0.819 0.893 0.899 0.893 0.894

MFO-AGB 0.839 0.843 0.839 0.840 0.893 0.908 0.893 0.888

MFO-GB 1.0 1.0 1.0 1.0 0.925 0.925 0.925 0.925

MFO-XGB 1.0 1.0 1.0 1.0 0.929 0.929 0.929 0.929

The confusion matrix has three rows and three columns according to three FMs. In the
confusion matrix, labels 1, 2, and 3 represent FF, SF, and FSF, respectively. The diagonal cells
indicate the correct samples’ prediction, and the off-diagonal numbers are the misclassified
samples. Overall, all the ML models perform well with the training set. Since the testing
set represents the generalization capability, it is used to evaluate the performance of the ML
models. The results show that the MFO-GB and MFO-XGB models are superior to other
models. In addition, the MFO-AGB, MFO-RF, MFO-DT, MFO-MLP, and MFO-SVM models
also have good accuracy for the test set. Meanwhile, the MFO-KNN model performs worst
among the models. In summary, the MFO-XGB model yields the best accuracy in the FM
identification of the RHRC columns.
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For a better understanding of the model performance, the ROC curve is also used to
compare the classification ML models, as shown in Figure 10. In these plots, the x-axis
represents the FP rate while the y-axis represents the TP rate. The diagonal red dashed
lines indicate random-guess models. The model with higher TP and AUC and lower FP
rates is more accurate.
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Figure 10. ROC curves of the classification ML models.

According to these figures, the AUC values of the MFO-SVM, MFO-MLP, MFO-KNN,
MFO-DT, MFO-RF, MFO-AGB, MFO-GB, and MFO-XGB models are (0.87, 0.90), (0.84, 0.85),
(1.0, 0.83), (0.86, 0.89), (0.86, 0.92), (0.88, 0.92), (1.0, 0.95), and (1.0, 0.95), for the training and
test sets, respectively. One can observe that the MFO-GB and MFO-XGB models are better
than the other models, since they reach more quickly towards the top left. Overall, these
results show that the MFO-XGB model is the most reliable and accurate in classifying the
failure modes of the RHRC columns.
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6.3. Performance of ML Models for Shear Strength

The best training–test ratio and population size for the regression MFO-SVM, MFO-
MLP, MFO-KNN, MFO-DT, MFO-RF, MFO-AB, MFO-GB, and MFO-XGB models are (55–45,
150), (80–20, 100), (80–20, 50), (80–20, 50), (80–20, 250), (80–20, 50), (80–20, 50), and (90–10,
250), respectively. Optimal hyperparameter values of the classification and regression ML
models are listed in Tables 1 and 2.

Figure 11 and Table 4 show the training and test performances of the regression ML
models. This figure shows that the MFO-XGB model has the highest potential for estimating
the shear strength of RHRC columns when most prediction values are in good agreement
with the actual values. The R2, A10, RMSE, and MAE values of the MFO-XGB model for
training and test sets are (0.997, 0.996), (0.944, 0.615), (35.186, 62.427) kN, and (10.514, 46.027)
kN, respectively. The second-best models are MFO-KNN, MFO-GB, MFO-RF, MFO-DT,
and MFO-AGB models. Moreover, the MFO-SVM model presents the worst performance,
with the R2 value being lower than 0.2 for the training and test sets. In addition, the RMSE
and MAE values of the MFO-SVM model are higher than that of the other models.

Buildings 2023, 13, 2914 20 of 31 
 

 

   

   

  

 

Figure 11. Shear strength prediction results of regression ML models. 

Figure 12 show the box-plot of all the metrics of the ML models in the test phases 
after ten runs. It can be seen again that the MFO-XGB is the best one among ML models. 
Among the considered ML models, the MFO-XGB model has the highest R  and A10 val-
ues (0.997 and 0.615, respectively) and the smallest RMSE and MAE (62.4 kN and 46 kN, 
respectively). The second-best model is MFO-KNN with R  , A10, RMSE, and MAE of 
0.975, 0.4, 116 kN and 71 kN, respectively. The excellent performance of MFO-XGB ob-
tained may be due to the combination of the powerful XGB and the strong optimization 
algorithm like MFO [62]. This implies that MFO-XGB is the optimal model in predicting 
the shear strength of RHRC columns. 

Figure 11. Shear strength prediction results of regression ML models.



Buildings 2023, 13, 2914 20 of 30

Figure 12 show the box-plot of all the metrics of the ML models in the test phases
after ten runs. It can be seen again that the MFO-XGB is the best one among ML models.
Among the considered ML models, the MFO-XGB model has the highest R2 and A10
values (0.997 and 0.615, respectively) and the smallest RMSE and MAE (62.4 kN and 46 kN,
respectively). The second-best model is MFO-KNN with R2, A10, RMSE, and MAE of 0.975,
0.4, 116 kN and 71 kN, respectively. The excellent performance of MFO-XGB obtained may
be due to the combination of the powerful XGB and the strong optimization algorithm
like MFO [62]. This implies that MFO-XGB is the optimal model in predicting the shear
strength of RHRC columns.

Buildings 2023, 13, 2914 20 of 29 
 

 

 

 

 
Figure 12. Statistic results of regression metrics for the test set after ten runs: (a) R2, (b) A10, (c) 
RMSE, and (d) MAE. 

Table 4. Performance of regression ML models. 

Model Training Set Test Set 
 R2 A10 RMSE (kN) MAE (kN) R2 A10 RMSE (kN) MAE (kN) 
MFO-SVM 0.136 0.106 667.668 337.376 0.139 0.145 731.866 367.893 
MFO-MLP 0.695 0.188 349.179 192.981 0.675 0.320 416.404 203.310 
MFO-KNN 1.0 1.0 0.0 0.0 0.975 0.400 116.123 71.106 
MFO-DT 0.992 0.854 55.347 22.437 0.922 0.360 203.606 97.192 
MFO-RF 0.962 0.677 123.997 50.529 0.952 0.400 160.101 88.156 
MFO-AGB 0.977 0.365 96.286 75.644 0.916 0.360 212.269 120.163 

Figure 12. Statistic results of regression metrics for the test set after ten runs: (a) R2, (b) A10, (c) RMSE,
and (d) MAE.



Buildings 2023, 13, 2914 21 of 30

Table 4. Performance of regression ML models.

Model Training Set Test Set

R2 A10 RMSE (kN) MAE (kN) R2 A10 RMSE (kN) MAE (kN)

MFO-SVM 0.136 0.106 667.668 337.376 0.139 0.145 731.866 367.893

MFO-MLP 0.695 0.188 349.179 192.981 0.675 0.320 416.404 203.310

MFO-KNN 1.0 1.0 0.0 0.0 0.975 0.400 116.123 71.106

MFO-DT 0.992 0.854 55.347 22.437 0.922 0.360 203.606 97.192

MFO-RF 0.962 0.677 123.997 50.529 0.952 0.400 160.101 88.156

MFO-AGB 0.977 0.365 96.286 75.644 0.916 0.360 212.269 120.163

MFO-GB 1.0 1.0 0.008 0.006 0.963 0.488 140.724 79.073

MFO-XGB 0.997 0.944 35.186 10.514 0.996 0.615 62.427 46.027

6.4. Comparison of Shear Strength between Different Predictive Models

Previous studies mainly developed formulas for estimating the shear strength of
solid RC columns [4,22–26]. Those equations also have been applied to RHRC columns.
However, hollow columns may behave differently from the solid ones when subjected to
lateral loads. So far, only one specific equation for predicting the shear strength of RHRC
columns was developed by Shin et al. [29]. This study employs seven typical equations for
estimating the shear strength of the RHRC columns, as expressed in Table 5.

Table 5. Equations for calculating shear strength of RHRC columns.

No. Reference Equation

1 Ascheim and Moehle [22]

VR1 = Vc + Vw

Vc = 0.3
(

k + P
13.8Ag

)
0.8Ag

√
f′c

k = 4−µ
3 , µ is the displacement ductility

Vw =
Aswfywd
stan(300)

; d = 0.8H

(18)

2 Priestley et al. [23]

VR2 = Vc + Vw + Vp

Vc = 0.8Agk
√

f′c
k = 0.29 for µ < 2
k = 0.29− 0.12(µ− 2) for 2 < µ < 4
k = 0.10 for µ > 4
Vw =

AswfywD′
s cot(300)

Vp = Ptan(α) = D−c
2a P

(19)

3 Kowalsky and Priestley [24]

VR3 = Vc + Vw

Vc = αβk0.8Ag

√
f′c

1 ≤ α = 3− Lv
H ≤ 1.5;

β = 0.5 + 20ρl ≤ 1
k = 0.29 for µ < 2.0
k = 0.05 for µ > 8.0

Vw =
Aswfyw(D′−c)

s cot(300)

(20)

4 Sezen and Moehle [25]

VR4 = Vc + Vs

Vc = k

(
0.5
√

f′c
a/d

√
1 + P

0.5Ag

√
f′c

)
0.8Ag; d = D− cover

Vs = k Aswfywd
s

k = 1 for µ < 2.0
k = 0.7 for µ > 6.0
a is the shear span.

(21)
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Table 5. Cont.

No. Reference Equation

5 Biskinis et al. [26]

VR5 = Vp + k(Vc + Vw)

Vc = 0.16max(0.5; 100ρl)
(
1− 0.16min

(
5; a

d
))

Ac

√
f′c

Vw = Asw
s (d− d′)fyw

Vp = D−x
2a min

(
P; 0.55Acf′c )

x is the neutral axis depth, d′ is the depth of the
compression reinforcement layer.
k = 1 ∼ 0.75 for µ < 1 ∼ 6
Ac = bwd, (d = 0.8H is the effective depth).

(22)

6 Shin et al. [29]

VR6 = (αβk)5
√

f′c
√

1 + P
0.5Ag

√
f′c
(Ae) +

Avfvyd
s ;

d = 0.8H;
α = 1.35− 0.3 Lv

H

(
1.5 ≤ Lv

H ≤ 3
)

;
β = 0.5 + 20ρl ≤ 1;
γ = 8−µ

6 (2 ≤ µ ≤ 5 );

(23)

7 Cassese et al. [4]
VR7 = αβk

√
f′c(2twd); d = 0.8H;

1 ≤ α = 3− Lv
H ≤ 1.5;

β = 0.5 + 20ρ′ ≤ 1; ρ′ = A
BH

(24)

Figure 13 and Table 6 compare the experimental and predicted shear strength values
using empirical formulas and the MFO-XGB model. It is observed that the MFO-XGB
model show the best prediction accuracy, while the existing empirical models show a
wider deviation from the 1:1 line. The R2, RMSE, MAE, mean, SD, and COV values of the
MFO-XGB model are 0.996, 39.035, 14.329, 1.015, 0.089, and 0.088, respectively. The model
given by Priestley et al. [23] outperforms the other empirical formulas, even though some
discrepancies exist between the calculated and experimental results. The R2, RMSE, MAE,
mean, SD, and COV values of the model given by Priestley et al. [23] are 0.635, 458.767 kN,
219.070 kN, 1.687, 2.367, and 1.408, respectively. However, the performance of the model
given by Priestley et al. [23] is not better than that of the MFO-XGB model. Therefore,
the MFO-XGB model is optimal for predicting the shear strength of RHRC columns in
this study.

Table 6. Comparison between MFO-XGB and empirical equations.

Model R2 RMSE (kN) MAE (kN) Mean SD COV

MFO-XGB 0.996 39.035 14.329 1.015 0.089 0.088

Ascheim and Moehle [22] 0.219 615.668 310.073 2.351 4.949 2.105

Priestley et al. [23] 0.635 458.767 219.070 1.687 2.367 1.408

Kowalsky and Priestley [24] 0.216 606.427 300.966 1.838 3.135 1.705

Sezen and Moehle [25] 0.617 443.584 188.419 1.617 3.990 2.468

Biskinis et al. [26] 0.600 513.379 241.413 1.890 3.314 1.753

Shin et al. [29] 0.533 518.671 282.644 2.021 2.166 1.072

Cassese et al. [4] 0.178 637.842 306.089 2.116 3.555 1.680
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Figure 13. Shear strength predictions of the MFO-XGB and empirical models for all data [4,22–26,29]. Figure 13. Shear strength predictions of the MFO-XGB and empirical models for all data [4,22–26,29].

It should be noted that the empirical formulas were proposed for solid rectangular
cross-section columns. They do not reasonably apply to hollow sections, resulting in
low prediction accuracy. Meanwhile, the high prediction accuracy of MFO-XGB can be
attributed to several reasons. Firstly, XGB is an ensemble learning algorithm that combines
the predictions of multiple decision trees, resulting in a more accurate and robust model.
Secondly, XGB has a regularization term that helps to prevent overfitting by penalizing
complex models and encouraging simple models. Thirdly, the loss function in XGB contains
a more accurate second-order Taylor expansion on the error component. Finally, the MFO
has proven to be highly appropriate in assisting the learning phase of the ML models. This
metaheuristic shows good convergence properties and helps locate a good solution for the
hyperparameters of the ML models.

6.5. Explanation of the ML Models Using the SHAP Method

This section uses the SHAP method [69] to explore the feature importance and interpret
the MFO-XGB model’s predictions. The SHAP method uses game theory to determine how
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parameters affect the response. The SHAP method assigns the input features an average
importance value for a given prediction. It is advantageous to use the SHAP value because
it reflects how the feature influences each sample positively and negatively. The influence
of the Shapley value on the prediction value is depicted in Figure 14.
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Figure 15 shows the feature relative importance plot, which ranks the features’ 
importance in identifying the failure modes. The features’ importance values are the mean 
absolute SHAP values of each variable in the data. Different colors represent the failure 
modes. The color in each input variable indicates its effect on the failure modes. This figure 
shows that L  and s are the most critical and least important features, respectively, for 
classifying the FMs of RHRC columns. 

Figure 14. Effect of Shapley value.

Figure 15 shows the feature relative importance plot, which ranks the features’ im-
portance in identifying the failure modes. The features’ importance values are the mean
absolute SHAP values of each variable in the data. Different colors represent the failure
modes. The color in each input variable indicates its effect on the failure modes. This figure
shows that Lv and s are the most critical and least important features, respectively, for
classifying the FMs of RHRC columns.
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A class with a wider range indicates that features are more important. For example, Lv
has the most critical effect on the FF mode (class 1). Meanwhile, fyw has the most significant
impact on the SF mode (class 2) and FSF mode (class 3). Additionally, fyl has a significant
effect on the SF mode (class 2). The effect of input variables on each failure mode is depicted
in Figure 16.

The relative importance of input variables are depicted in Figure 17 for each failure
mode. The most important feature to each class is located at the top of the figure. In
Figure 17, the red and blue dots indicate high and low feature values. The high SHAP
value of the feature increases the likelihood of the failure mode with a slight increase in the
corresponding value. Figure 17a shows that when Lv increases, the SHAP value increases,
and the model tends to show FF. Figure 17b depicts that the higher value of tw corresponds
to a lower SHAP value, and the model tends to show SF. However, when B increases, the
model tends to show FSF, as shown in Figure 17c. The variations of other parameters on
the failure modes can be explained similarly.
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The effects of the input parameters on predicting the shear strength of RHRC columns
are presented in Figure 18. A SHAP summary plot of the regression MFO-XGB model is
presented in Figure 19, where each dot is an individual data point in the dataset. These
figures show that the most influential feature to shear strength is B, followed by Lv, f′c, H,
ρl, P, tw, s, ρw, fyl, and fyw. Moreover, Figure 19 shows that shear strength increases when
B, Lv, and H increase, while an increase in f′c will lead to a decrease in shear strength.
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This study also develops a web application (WA) based on the proposed classification 
and regression XGB models to help potential users and designers assess the failure modes 
and shear strength of RHRC columns. To use this WA, the eleven numeric values of L , B, H, t , ρ , ρ , s, f , f , f , and P are required to predict the failure modes and the 
shear strength of RHRC columns. The WA allows users with limited coding experience to 
adopt and apply in structural engineering, safety and design applications. It helps to 
immediately obtain the results. The WA is provided freely in the link: https://sakat92-rhrc-
rhrc-yqci89.streamlit.app (accessed on 6 June 2023). 
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This study also develops a web application (WA) based on the proposed classification
and regression XGB models to help potential users and designers assess the failure modes
and shear strength of RHRC columns. To use this WA, the eleven numeric values of Lv,
B, H, tw, ρl, ρw, s, f′c, fyl, fyw, and P are required to predict the failure modes and the shear
strength of RHRC columns. The WA allows users with limited coding experience to adopt
and apply in structural engineering, safety and design applications. It helps to immediately
obtain the results. The WA is provided freely in the link: https://sakat92-rhrc-rhrc-yqci89.
streamlit.app (accessed on 6 June 2023).

7. Conclusions

The failure mode classification and shear strength prediction of RHRC columns are
complex engineering tasks. This study investigates the performance of eight ML models,
including SVM, MLP, KNN, DT, RF, AGB, GB, and XGB, for classifying the failure modes
and predicting the shear strength of RHRC columns. The key findings of this study are
as follows:

• Since failure modes are highly unbalanced, the SMOTE technique deals with the class
imbalance of the database for the failure mode problems.

• MFO has proven to be highly appropriate for fine-tuning the hyperparameters of the
ML models.

• Among the ML models, the MFO-XGB model outperforms others in both classifying
the failure modes (accuracy of 92.9% for test set) and predicting the shear strength
(R2= 0.996 for test set) of RHRC columns. In addition, the results indicate that the MFO-
XGB model is more accurate than the empirical models for shear strength prediction.

• According to the SHAP method, Lv is the most influential feature to the FF mode and
fyw for the SF and FSF modes. B is the most influential feature to the shear strength
prediction of RHRC columns.

• This study develops a web application, an engineer-friendly tool, that civil engineers
can conveniently use in practice with less computational cost and effort. The web link
of the WA can be found at https://sakat92-rhrc-rhrc-yqci89.streamlit.app (accessed
on 6 June 2023).

It is noted that the developed ML models in this study only confidently apply to the
database with the range of parameters indicated in Figure 4. Therefore, the ML models
should be retrained when the database is updated. The current study dealt with predicting
the shear strength and identifying the failure modes of hollow RC columns. However,
other important issues such as prediction of plastic hinge length and ductility ratio of this
column should be studied in future works.

Supplementary Materials: The following supporting information can be downloaded at: https://
github.com/VietLinhTran/RHRC-columns (accessed on 10 May 2023).
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