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Abstract: With the advent of flexible working arrangements, we are observing a dramatic shift in how
buildings are occupied today, which presents an opportunity to optimize Heating, Ventilation, and
Air Conditioning system temperature setpoints based on variations in occupancy. Guidelines often
suggest the adoption of the highest or lowest setpoint or setback to minimize energy consumption in
hot or cold climates, respectively. However, at outdoor temperatures where variations in occupancy
heat loads prompt buildings to fluctuate across cooling, free-running, and heating mode, optimal
setpoints and setbacks are not always the lowest or highest. In addition, the perturbations caused
by rapid switching between setpoint and setback could diminish energy savings due to system
destabilization. This paper aims to systematically compare the potential energy savings from fixed
and optimal setpoints and setbacks across wide-ranging occupancy scenarios (four occupancy rates
and 14 patterns). Energy simulations were conducted using the Department of Energy reference
models for small, medium, and large office buildings to enable an exhaustive search of optimal
setpoint/setbacks in 17 climate zones. Explored setpoints were 19.5 ◦C to 25.5 ◦C with intervals of
1 ◦C, and setbacks were 17 ◦C/19 ◦C for heating and 26 ◦C/28 ◦C for cooling. The findings indicate
that, on average, while lower occupancy heat loads results in 5.48% energy reduction, a conventional
fixed setpoint and setback strategy provides an additional 11.80%, and optimal selection of setpoints
and setbacks could provide an additional 34.36–38.08%, emphasizing the untapped potential energy
saving. To facilitate practical applications, this paper presents an interactive graphical interface:
Optimal Temperature Setpoint Tool.

Keywords: energy reduction; decarbonization; optimization; smart buildings; absenteeism

1. Introduction

Heating, Ventilation, and Air Conditioning (HVAC) systems are responsible for ap-
proximately 40% of the total energy consumption in buildings, making them the most
energy-intensive service and a significant contributor to greenhouse gas emissions [1].
HVAC systems often employ closed-loop controllers that are regulated by temperature
setpoints [2], which directly influence energy consumption and occupants’ thermal com-
fort [3,4]. Temperature setpoints are typically selected by facility managers based on
prevailing standards and guidelines [5–8] and often remain fixed unless occupants raise a
complaint [8,9]. In addition, most HVAC systems operate based on static occupancy sched-
ules [10] that often assume maximum occupancy during working hours [11]. However,
occupancy behavior is stochastic and can deviate substantially from these set values [12],
often leading to unnecessary air conditioning [13–15]. The issue of HVAC systems operat-
ing on fixed schedules that do not match actual building occupancy is further amplified
by growing workplace flexibility and remote working trends, triggered by the COVID-19
pandemic. Even after the pandemic restrictions are mostly lifted, about 25% of workers
are expected to continue remote work either partially or fully [16]. With more flexible
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working hours, unoccupied periods might increase, and occupancy rates might drop. Con-
sequently, leveraging occupancy data to select HVAC temperature setpoints could provide a
promising solution to reduce energy waste without negatively impacting occupant comfort.

Previous studies often utilize occupancy data in the form of occupancy presence to
select fixed temperature setpoints during occupied periods, and fixed setbacks when un-
occupied [17–23], as guided by ASHRAE 36 [24]. The adoption of the highest or lowest
setpoint and setback is widely used to minimize the heat transfer with outdoors and,
thereby, energy consumption in hot or cold climates, respectively. By adopting the rule-
based setpoint/setback selection strategies, these studies achieved 20% energy savings, on
average. However, even if there was no change to setpoints (i.e., no setbacks), the lower
occupant-generated heat loads at lower occupancy would provide up to a 4.34% energy
reduction, on average [25], that is currently not reported or acknowledged by these studies.
Nevertheless, there is an additional energy-saving potential of shifting from fixed to opti-
mally selected setpoints and setbacks with respect to occupancy and weather. This occurs
at outdoor temperatures where variations in occupancy heat loads prompt buildings to
fluctuate across cooling, free-running, and heating mode, and optimal setpoint and setback
might not always be the lowest or highest [25]. Selecting the optimal temperature setpoints
and setbacks in response to changes in occupancy and outdoor weather conditions can,
therefore, minimize the HVAC energy required to maintain a heat balance between indoor
heat loads (governed mainly by varying occupancy) and outdoor heat transfer (governed
mainly by outdoor air temperature) [26–30]. In addition, it is important to consider the
potential impact of rapid switching between temperature setpoints and setbacks which
can cause frequent on–off cycles of HVAC equipment, resulting in increased energy con-
sumption. Therefore, augmenting HVAC systems operation through optimal selection
of temperature setpoints and setbacks with respect to occupancy and weather variability
could minimize heat transfers and perturbations, thereby enhancing system stability and
minimizing HVAC energy consumption.

This paper systematically compares energy savings from fixed and optimal HVAC
temperature setpoints and setbacks across wide-ranging occupancy scenarios. Three set-
point and setback selection strategies are investigated: (1) a conventional fixed setpoint and
setback, (2) optimal setpoint and fixed setback, and (3) optimal setpoint and setback. Four
scenarios as proxies for the building occupancy rate (100%, 75%, 50%, 25% of the maximum
occupancy) and 14 patterns (unoccupied periods from 0 to 6 h) were generated to account
for increasing workplace flexibility and remote working trends. Three U.S. DOE energy
models of office buildings were simulated across 17 climates to account for variations in
building sizes (small, medium, and large) and a wide variety of outdoor air temperatures.
Seven setpoints with an interval of 1 ◦C between 19.5 ◦C and 25.5 ◦C were investigated
during occupied periods, with two setbacks for heating (17 ◦C and 19 ◦C) and two for
cooling (26 ◦C and 28 ◦C), implemented during unoccupied periods. An exhaustive search
algorithm was adopted to determine the optimal setpoint and setback temperature based
on variations in occupancy and weather, i.e., setpoint and setback that minimizes HVAC
energy usage during occupied and unoccupied periods, respectively.

In this study, the HVAC system is controlled through setpoints and setbacks falling
within a range of temperatures that guarantee thermal satisfaction [29,30]. This approach
allows to reformulate the optimization problem, treating the minimization of energy con-
sumption as a single objective while carefully constraining thermal comfort. Therefore,
rather than tackling the complex interplay of energy and thermal comfort as a multi-
objective problem, this approach strikes a balance to investigate energy efficiency without
compromising occupant thermal satisfaction. This can be achieved since occupants experi-
ence comfort within a nuanced spectrum of thermal conditions [31]. Various human-related
and environmental factors, including acclimation and weather conditions, exert influence
on thermal comfort, rendering it a dynamic parameter and susceptible to alteration over
time [32,33]. However, the capacity for adaptation is a key feature of human response
to uncomfortable changes, aligning with the fundamental concept of adaptive thermal
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comfort [31]. Therefore, leveraging the adaptive capabilities of occupants within the op-
timization framework enables to quantify the maximum potential for energy savings by
investigating the variation of optimal temperature setpoints and setbacks across varying
occupancy scenarios, without compromising thermal comfort. The structure of this paper
is as follows. Section 2 reviews the literature focusing on research exploring energy savings
achieved with the selection of setpoint and setback temperatures and extrapolates the
gaps in research. Section 3 outlines the methodological workflow employed in the study,
covering the generation of the data, data mining, followed by the evaluation framework.
Section 4 presents and discusses the findings, while the limitations of this study and sug-
gestions for future research are highlighted in Section 5. Section 6 provides a breakdown of
the results and serves as the concluding section of the study.

2. Literature Review

In recognizing the dynamic landscape of energy efficiency measurement methodolo-
gies in buildings, this literature review is tailored to encompass studies specifically focused
on energy savings achieved through HVAC temperature setpoint and setback strategies, of-
fering a targeted exploration of our primary research objective. Acknowledging the effects
of temperature setpoints on HVAC energy consumption, several research efforts focused on
the development of various smart setpoint selection strategies and control systems in order
to reduce energy consumption over the past few years. HVAC systems typically operate
through a univariate control logic, which triggers cooling or heating with respect to a single
input (temperature setpoint) and single output (indoor air temperature) [34]. Hence, the
setpoint is treated as a singular parameter, without separate exploration of heating and
cooling setpoints. In general, the simplest approach to achieve energy conservation is
by widening temperature setpoints. This broadens the spectrum of temperatures within
which HVAC systems function, subsequently reducing heating and cooling demand. Hoyt
et al. [35] quantified energy reduction resulting from decreasing the reference heating
setpoint (21.1 ◦C) up to 17.7 ◦C and raising the cooling setpoint (22.2 ◦C) up to 30 ◦C. This
analysis was performed across a set of six medium-sized offices simulated across seven
climates of the U.S. The findings revealed that by raising the reference cooling setpoint to
25 ◦C and lowering the reference heating setpoint to 20 ◦C, 29% cooling energy savings and
34% for heating could be achieved, while maintaining acceptable temperature levels. It was
also found that a broader setpoint temperature range of 18.3 ◦C to 27.8 ◦C could lead to
energy savings of up to 73% of overall HVAC energy consumption. Although this research
systematically quantified energy savings across diverse climate conditions, it is important
to note that widening the temperature difference between heating and cooling setpoints
would consistently result in energy savings. Furthermore, the optimal heating and cooling
setpoints for specific climates remain unclear. Papadopoulos et al. [28] addressed this gap
by quantifying the energy saving potential of optimal heating and cooling setpoints in large
office buildings across various climate zones, accounting for the trade-off between energy
consumption and thermal comfort. For moderate to cold climate zones, it was found that
thermostat setpoints selected based on international standards, such as ASHRAE 55 [2] em-
ployed in DOE models, yield sub-optimal results. Specifically, energy savings of up to 60%
can be achieved in moderate climates without compromising occupant thermal comfort,
while minimal savings were highlighted in regions with high cooling loads. Nevertheless,
the influence of outdoor weather on energy consumption at varying setpoints was not
explored, and the energy savings were solely measured at fixed temperature setpoints.
Ghahramani et al. [36] suggested determining daily and yearly optimal setpoints based on
weather fluctuations and investigated optimal setpoint selection across various building
sizes, climate zones, and building vintages. Their findings indicated that daily optimal
setpoints in the range of 22.5 ± 3 ◦C lead to savings of up to 16.4%, compared to a 22.5 ◦C
baseline setpoint. Daily optimal setpoints resulted in energy savings ranging from 10.09%
to 37.03% for small office buildings, 11.43% to 21.01% for medium office buildings, and
6.78% to 11.34% for large office buildings. While this study delves into the possibility of
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choosing optimal setpoints with respect to outdoor weather, it overlooks the influence of
occupancy. In summary, none of the previous studies investigated optimal setbacks during
unoccupied periods.

Research investigations into HVAC system controls that consider occupancy have
encompassed the development of algorithms rooted in machine learning and model pre-
dictive control methodologies. In their evaluation conducted at the University of Florida,
Goyal et al. [20] analyzed a feedback controller and a model predictive control (MPC) sys-
tem that incorporated real-time optimization of setpoints and setbacks. In comparison to a
conventional controller, the study revealed that both occupancy-based approaches resulted
in approximately 40% energy reduction. Importantly, these controls were able to achieve
thermal comfort and maintain indoor air quality within acceptable levels. However, the
setpoint for occupied periods was fixed at 21.1 ◦C and the static nighttime setback was set
to 22.8 ◦C. In another study, Baldi et al. [17] presented an occupancy-driven controller for
setpoints and setbacks, employing three rules: a pre-cooling setpoint to activate the energy
system before occupancy, a fixed setpoint of 24 ◦C and 25 ◦C during occupancy, and a
setback of 30 ◦C during unoccupied periods. The findings indicated that compared to fixed
pre-programmed approaches, this approach could achieve energy savings of 15% while
simultaneously increasing the level of thermal satisfaction among occupants. Although
the contribution of both setpoints and setbacks was included in the quantification of the
energy-saving potential, heating and cooling were supplied at fixed temperatures during
occupied or unoccupied periods. A step forward in the development of dynamic setpoints
dependent on occupancy is represented by the research conducted by Wang et al. [37] where
they optimized HVAC temperature setpoints using predicted internal heat gain values.
The occupancy-driven optimal algorithm demonstrated energy reductions of up to 36.8%
for heating and 33.9% for cooling. Furthermore, it was noted that occupant discomfort
lessened by 3–5% during summer and winter, respectively. While this study showcased
the advantages of optimal setpoints with respect to occupancy, it did not take into account
the influence of outdoor temperatures, concentrating solely on modifying the setpoint
in response to internal heat generation. Finally, Peng et al. [22] conducted a study that
delved into the adoption of occupancy data to deduce cooling setpoints in real time. They
implemented a learning-based controller in 11 office rooms, which encompassed a range
of typical office scenarios. The findings demonstrated energy savings ranging from 7% to
52% compared to a conventional controller for cooling systems. This study investigated
four occupancy patterns, each with distinct arrival and departure times, and total occupied
durations and assigned setpoints or setbacks, respectively. However, this study evaluated
a control algorithm based on rules and static temperatures, offering just four temperature
choices: a comfort temperature setpoint, a setback 1 ◦C higher than the comfort temper-
ature, a deep setback 0.5 ◦C higher than the setback, and a 35 ◦C economy temperature.
While previous studies investigated varying the setpoint based on outdoor temperature or
estimated energy savings depending on occupancy, there is a lack of research focusing on
the combined effects of outdoor temperature and occupancy variability.

The existing literature investigating energy efficiency in buildings using setpoints and
setbacks has predominantly focused on rule-based strategies utilizing fixed temperature set-
points and setbacks based on occupancy presence. While these studies have demonstrated
significant average energy savings, the literature lacks exploration into the additional
energy-saving potential that arises from transitioning to optimally selected setpoints and
setbacks, considering the dynamic interplay between occupancy and outdoor weather
conditions. The significance of this gap lies in the potential for minimizing HVAC energy
consumption by selecting temperature setpoints and setbacks in response to changes in
occupancy and outdoor conditions, thereby achieving a more nuanced balance between
indoor heat loads and outdoor heat transfer. Additionally, the literature currently overlooks
the potential impact of rapid switching between temperature setpoints and setbacks on
HVAC system stability, presenting an avenue for further investigation. This gap under-
scores the need for comprehensive investigations that integrate both outdoor temperature
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fluctuations and occupancy dynamics, providing a more holistic understanding of the
factors influencing optimal setpoints and setbacks for HVAC systems in buildings.

3. Methodology

The methodological approach in this study involves three key components: (1) data
generation: it defines the investigated factors and their values (Section 3.1); (2) data mining:
it presents the simulation process and the identification of optimal setpoints and setbacks
and respective energy usages, in Section 3.2; and (3) evaluation framework: it illustrates
the computation of energy savings resulting from 3 selection strategies (Section 3.3). A
total of 7 temperature setpoints and 4 setbacks, 14 unoccupied patterns and 4 occupancy
rates, 17 climates and 3 building sizes are explored (Section 3.1). This study used the U.S.
Department of Energy (DOE) reference office buildings (small, medium, and large) energy
simulation models which are compatible with EnergyPlus software version 8.9 [38]. This
paper evaluates 3 setpoint and setback selection strategies: a conventional fixed setpoint
and setback, optimal setpoint with fixed setback, and optimal setpoints and setbacks
(Figure 1) and quantifies the resulting energy savings compared to a baseline value of
22.5 ◦C (Section 3.3).
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Figure 1. Conventional fixed setpoint and setback (a), optimal setpoint and fixed setback (b), and
optimal setpoint and setback (c) selection strategies.

3.1. Data Generation

The variables and the corresponding investigated values are presented in Table 1. To
discretize the temperature setpoints, a 1 ◦C interval was assigned to seven values ranging
from 19.5 ◦C to 25.5 ◦C. The range was chosen based on temperatures that enable occupants
to remain thermally comfortable [5,6]. Given that setbacks should fall outside the setpoint
range, this paper explored them by selecting two values lower than the lowest setpoint
(19.5 ◦C), 17 ◦C and 19 ◦C for heating, and higher than the highest setpoint (25.5 ◦C),
26 ◦C and 28 ◦C for cooling. In order to represent variations in occupant heat loads, this
research defined 4 ratios as proxies for the average rate of occupancy with respect to a fully
occupied building (100%), namely 25%, 50%, 75%, and 100%. The occupancy rates are to be
considered homogeneous throughout the occupied periods, allowing the quantification
of maximum potential energy savings, achievable while reducing uncertainty due to the
stochastic behavior of occupants.

Figure 2 depicts the investigated 14 unoccupied patterns across five unoccupied
periods (0 h, 1 h, 2 h, 4 h, and 6 h). They represent different distributions of unoccupied
periods that account for growing workplace flexibility and remote working trends in office
buildings. They were defined according to a rule-based strategy by iterating the length
(from 0 to 6 h), frequency (from a single unoccupied period to multiple unoccupied periods),
and distribution (early morning: 8–10 a.m., late morning: 10 a.m.–12 p.m., early afternoon:
2–4 p.m., late afternoon: 4–6 p.m.) of unoccupied periods.
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Table 1. Parameters and discrete values of the problem formulation.

Parameters Values

Setpoint (◦C) 19.5/20.5/21.5/22.5/23.5/24.5/25.5

Setback (◦C)
Occupancy rate (%)

Patterns

17/19/26/28
25/50/75/100
See Figure 2

Building size Small/Medium/Large

Climate zones (City)

0A (Singapore)
1A (Miami, Florida)
2A (Houston, Texas)

2B (Phoenix, Arizona)
3A (Atlanta, Georgia)

3B (Los Angeles, California)
3B (Las Vegas, Nevada)

3C (San Francisco, California)
4A (Baltimore, Maryland)

4B (Albuquerque, New Mexico)
4C (Seattle, Washington)

5A (Chicago, Illinois)
5B (Denver, Colorado)

6A (Minneapolis, Minnesota)
6B (Helena, Montana)
7 (Duluth, Minnesota)
8 (Fairbanks, Alaska)
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Figure 2. Patterns of unoccupied periods (white spaces) for each occupancy rate scenario.

In total, 17 different climates ranging from extremely hot and humid (0A) (Singapore)
to subarctic (8) (Fairbanks, Alaska) were simulated to generalize the findings across a range
of climate zones. In addition, the investigation across various climates allows the selection
of optimal setpoints and setbacks with respect to a wide range of outdoor air temperatures.
To study the effects of outdoor conditions on the size and geometry of buildings, the study
encompasses 3 building sizes: a small, single-story building, a medium-sized building
with 3 floors, and a large, twelve-story building. Since smart control systems can only be
operated in modern energy systems, only newly built buildings (after 2004) were included.
These models accurately simulate building construction materials and methods, adjusting
roof and wall U-values, slab-on-grade and underground R-values, window U-values, and
solar heat gain coefficients (SHGCs), in accordance with prevailing climate conditions.
Furthermore, these models incorporate various energy systems based on specific building
types. Figure 3 portrays the small, medium, and large office buildings. Table 2 details the
construction materials and equipment systems based on ASHRAE standards 90.1-2004 and
62.1-2004 [38].



Buildings 2023, 13, 2998 7 of 23

Buildings 2023, 13, x FOR PEER REVIEW 7 of 24 
 

systems can only be operated in modern energy systems, only newly built buildings (after 

2004) were included. These models accurately simulate building construction materials 

and methods, adjusting roof and wall U-values, slab-on-grade and underground R-values, 

window U-values, and solar heat gain coefficients (SHGCs), in accordance with prevailing 

climate conditions. Furthermore, these models incorporate various energy systems based 

on specific building types. Figure 3 portrays the small, medium, and large office buildings. 

Table 2 details the construction materials and equipment systems based on ASHRAE 

standards 90.1-2004 and 62.1-2004 [38]. 

 

Figure 3. Shapes and window geometry of the small, medium, and large office building  

Table 2. Construction materials and HVAC systems of small, medium, and large office buildings  

 Small Medium Large 

Floors (n) 1 3 12 

Floor Space (m2) 511 4982 46,320 

Window-to-wall Ratio 

(%) 
0.21 0.33 0.38 

Exterior Walls Construc-

tion 

Wood-frame walls (40 cm), 

2.5 cm stucco, 1.6 cm gypsum 

board, wall insulation, 1.6 cm 

gypsum board 

Steel-frame walls (40 cm) 1 cm 

stucco, 1.6 cm gypsum board, 

wall insulation, 1.6 cm gypsum 

board 

Pre-cast concrete panel of 20 

cm heavy-weight concrete, 

wall insulation, 1.3 cm gyp-

sum board 

Roof Construction 

Attic roof with wood joist: 

roof insulation, 1.6 cm gyp-

sum board 

Roof membrane, insulation, 

and metal decking 

Roof membrane, insulation, 

and metal decking 

Heating Furnace Furnace Boiler 

Cooling 
Packaged Air Conditioning 

(AC) Unit 
Packaged AC Unit 

Water-cooled centrifugal chill-

ers 

Air distribution 
Single-Zone Constant Air 

Volume 
Multi-zone VAV system Multi-zone VAV system 

The reference building models are assigned HVAC operational profiles that align 

with the occupancy patterns under investigation. On weekdays, setpoints are assigned for 

occupied periods, with setbacks applied during unoccupied periods. On Saturdays, Sun-

days, and holidays, the HVAC system remains off throughout the entire day. 

3.2. Data Mining 

The daily energy consumption for every combination of variables was simulated to 

determine daily optimal setpoints, as they provide energy savings compared to annual 

setpoints [36] and can dynamically respond to outdoor temperatures and occupancy var-

iations. Weekends and holidays were not considered since offices are mostly unoccupied, 

which leads to the HVAC systems being either turned off or operated for a shorter period 

compared to patterns identified above. In order to sample the whole search space, an ex-

haustive (full factorial) approach was utilized to generate the solutions (79,968 combina-

tions: 7 setpoints × 4 setbacks × 4 occupancy rates × 14 unoccupied patterns × 3 building 

sizes × 17 climates). The daily optimal setpoints and setbacks are temperatures that mini-

mize the energy required by the energy system to maintain a heat balance between the 

Figure 3. Shapes and window geometry of the small, medium, and large office building.

Table 2. Construction materials and HVAC systems of small, medium, and large office buildings.

Small Medium Large

Floors (n) 1 3 12

Floor Space (m2) 511 4982 46,320

Window-to-wall Ratio (%) 0.21 0.33 0.38

Exterior Walls
Construction

Wood-frame walls (40 cm),
2.5 cm stucco, 1.6 cm gypsum
board, wall insulation, 1.6 cm
gypsum board

Steel-frame walls (40 cm) 1 cm
stucco, 1.6 cm gypsum board,
wall insulation, 1.6 cm
gypsum board

Pre-cast concrete panel of 20 cm
heavy-weight concrete, wall
insulation, 1.3 cm gypsum
board

Roof Construction
Attic roof with wood joist: roof
insulation, 1.6 cm gypsum
board

Roof membrane, insulation,
and metal decking

Roof membrane, insulation, and
metal decking

Heating Furnace Furnace Boiler

Cooling Packaged Air Conditioning
(AC) Unit Packaged AC Unit Water-cooled centrifugal chillers

Air distribution Single-Zone Constant Air
Volume Multi-zone VAV system Multi-zone VAV system

The reference building models are assigned HVAC operational profiles that align
with the occupancy patterns under investigation. On weekdays, setpoints are assigned
for occupied periods, with setbacks applied during unoccupied periods. On Saturdays,
Sundays, and holidays, the HVAC system remains off throughout the entire day.

3.2. Data Mining

The daily energy consumption for every combination of variables was simulated to
determine daily optimal setpoints, as they provide energy savings compared to annual
setpoints [36] and can dynamically respond to outdoor temperatures and occupancy varia-
tions. Weekends and holidays were not considered since offices are mostly unoccupied,
which leads to the HVAC systems being either turned off or operated for a shorter period
compared to patterns identified above. In order to sample the whole search space, an
exhaustive (full factorial) approach was utilized to generate the solutions (79,968 combina-
tions: 7 setpoints × 4 setbacks × 4 occupancy rates × 14 unoccupied patterns × 3 building
sizes × 17 climates). The daily optimal setpoints and setbacks are temperatures that min-
imize the energy required by the energy system to maintain a heat balance between the
interior and exterior environment and are constrained to a defined range (i.e., constraints in
Equations (1) and (2)). The exhaustive search algorithm analyzes the energy consumption
resulting from various temperature setpoints and setbacks. It then identifies the combina-
tion with the lowest energy consumption along with its associated setpoint and setback
values for each permutation of unoccupied pattern and occupancy rate. The exhaustive
search algorithms (Equations (1) and (2)) identify the daily optimal setpoint and setback
and the associated energy consumptions for (1) optimal setpoint with fixed setback strategy
and (2) optimal setpoint and setback strategy. The conventional fixed strategy entails a
temperature setpoint of 22.5 ◦C, while the heating and cooling setbacks are, respectively,
17 ◦C and 28 ◦C. Note that this study covers analyses across diverse climates where build-
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ing envelope parameters are adjusted based on distinct climate conditions to establish
broad applicability. Due to space limitations, reported energy savings are averaged across
climates, recognizing the varied thermal loads associated with different building envelopes
in these regions.

Optimal setpoint and fixed setback strategy:

Occupied period :
min
SP

HVACEnergyi(SP, OT, OR) (1)

Subject to 19.5 ◦C < SP < 25.5 ◦C, i = 1:365

Unoccupied period: SBheating = 17 ◦C, SBcooling = 28 ◦C

Optimal setpoint and setback strategy:

Occupied period :
min
SP

HVACEnergyi(SP, OT, OR) (1)

Subject to 19.5 ◦C < SP < 25.5 ◦C

Unoccupied period :
min
SB

HVACEnergyi(SB, OT) (2)

Subject to 15 ◦C < SBheating < 19 ◦C, 26 ◦C < SBcooling < 30 ◦C

where:

SP = Daily Setpoint,
SBheating = Daily Setback for heating,
SBcooling = Daily Setback for cooling,
OT = Daily Outdoor Air Temperature,
OR = Daily Occupancy Rate.
EnergyPlus simulations were executed using the Python programming language, with

each simulation employing a customized building energy model file (.idf file) run with
parallel computing techniques to reduce the computational time. The script systematically
scanned the text file of each model to identify the variables, and their values were replaced
in a parametric manner.

3.3. Setpoints and Setbacks and Energy Evaluation Framework

In order to ensure an equitable assessment of different setpoint selection strategies,
this study quantifies the effect of reduced heat loads during lower occupancy rates and
extended unoccupied periods on HVAC energy consumption. This portion of savings
occurs regardless of adopting any setpoint selection strategy. The average daily energy
reduction resulting from occupancy heat loads was determined in relation to the HVAC
energy consumption observed in a building that remained continuously occupied (no
unoccupied periods), and at 100% occupancy (used as the baseline reference). The variation
in HVAC energy consumption for each change in occupancy rate and unoccupied period,
when compared to the baseline, was calculated as a percentage of savings using Equation (3).

Energy Reductionheat loads(%) =

∑365
d=1

( ∣∣∣Ebaselined
−E(pattern,rate)d

∣∣∣
Ebaselined

)
× 100%

365
(3)

where:

• Ebaselined
= reference daily energy usage from 0 unoccupied periods, at 100% occu-

pancy rate.
• E(pattern,rate)d

= daily energy consumption at 1 h, 2 h, 4 h and 6 h unoccupied period
and 75%, 50% and 25% occupancy rate.
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Subsequently, the additional average daily energy saving resulting from each selection
strategy was computed. The energy savings across occupancy rates and unoccupied periods
were determined with respect to the HVAC energy consumption when fixed setpoints were
applied (used as baseline reference). The variance in HVAC energy consumption between
the energy usage resulting from each selection strategy at various occupancy rates and
unoccupied periods, compared to the baseline, was computed as a percentage of savings
using Equation (4).

Energy Savingx(%) =

∑365
d=1

( ∣∣∣E(baseline,pattern,rate)d
−E(x,pattern,rate)d

∣∣∣
E(baseline,pattern,rate)d

)
× 100%

365
(4)

where:

• x = setpoint and setback selection strategy (fixed setpoint and setback, optimal setpoint
and fixed setback, optimal setpoint and setback).

• E(baseline, pattern, rate)d
= baseline daily energy consumption for a fixed setpoint strategy

at 0 h, 1 h, 2 h, 4 h and 6 h unoccupied period and 75%, 50% and 25% occupancy rate.
• E(x, pattern,rate)d

= daily energy consumption for each selection strategy at 0 h, 1 h, 2 h,
4 h and 6 h unoccupied period and 75%, 50% and 25% occupancy rate.

4. Results and Discussion
4.1. Conventional Fixed Setpoint and Setback Selection Strategy
4.1.1. Energy Savings from Fixed Setpoints and Setbacks

Figure 4 portrays the climate-averaged daily energy savings from a fixed setpoint and
setback strategy (setpoint of 22.5 ◦C, heating setback of 17 ◦C, and cooling setback of 28 ◦C)
obtained across occupancy rates and unoccupied periods, for small, medium, and large
office buildings.
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Figure 4. Energy savings from reduced occupant heat loads and a conventional fixed setpoint and
setback strategy for each occupancy rate and unoccupied period, averaged across building sizes.

It appears that extended unoccupied periods and decreased occupancy rates result in
greater energy reduction owing to reduced occupant heat loads, regardless of the building
size. Small office buildings can attain greater daily average energy savings from fluctuations
in heat loads because they rely more heavily on indoor heat loads in contrast to larger
buildings. For a lightly occupied (25% occupancy rate) small, medium, and large building
with an unoccupied period of 6 h, energy reduction of up to 11.95%, 7.25%, and 9.73% can
be achieved. While lower occupancy rates consistently lead to increased energy savings,
as unoccupied periods increase, the influence of occupancy rates on energy reduction
diminishes. On average across building sizes, an unoccupied period of 6 h results in an
energy reduction of 8.64%.
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In addition to the energy reduction resulting from decreased heat loads, adopting
a conventional fixed setpoint and setback selection strategy also yields energy savings
derived from selecting setbacks when the spaces are unoccupied. Energy savings increase
with longer unoccupied periods since an increasing portion of energy consumption is
attributable to setbacks that operate at a lower or higher temperature for heating or cooling,
respectively, compared to setpoints during occupied periods. Energy savings for a small
building range from 6.97% to 22.06% for an unoccupied period of 2 to 6 h, from 6.12% to
13.25% for a medium building, and from 7.33% to 15.05% for a large building. Averaged
across building sizes and occupancy rates, the conventional setpoint/setback strategy can
achieve 10.85%, 17.64%, and 25.05% total energy savings at unoccupied periods of 2, 4, and
6 h, respectively. In total, the fixed setpoint and setback strategy can, on average, achieve
22.76% energy savings, distributed as 5.78% from reduced occupant heat loads and 11.80%
from the setpoint and setback selection strategy.

Figure 5 dives deeper into HVAC energy savings across patterns, while averaging the
savings across building sizes.

Buildings 2023, 13, x FOR PEER REVIEW 10 of 24 
 

It appears that extended unoccupied periods and decreased occupancy rates result 

in greater energy reduction owing to reduced occupant heat loads, regardless of the build-

ing size. Small office buildings can attain greater daily average energy savings from fluc-

tuations in heat loads because they rely more heavily on indoor heat loads in contrast to 

larger buildings. For a lightly occupied (25% occupancy rate) small, medium, and large 

building with an unoccupied period of 6 h, energy reduction of up to 11.95%, 7.25%, and 

9.73% can be achieved. While lower occupancy rates consistently lead to increased energy 

savings, as unoccupied periods increase, the influence of occupancy rates on energy re-

duction diminishes. On average across building sizes, an unoccupied period of 6 h results 

in an energy reduction of 8.64%. 

In addition to the energy reduction resulting from decreased heat loads, adopting a 

conventional fixed setpoint and setback selection strategy also yields energy savings de-

rived from selecting setbacks when the spaces are unoccupied. Energy savings increase 

with longer unoccupied periods since an increasing portion of energy consumption is at-

tributable to setbacks that operate at a lower or higher temperature for heating or cooling, 

respectively, compared to setpoints during occupied periods. Energy savings for a small 

building range from 6.97% to 22.06% for an unoccupied period of 2 to 6 h, from 6.12% to 

13.25% for a medium building, and from 7.33% to 15.05% for a large building. Averaged 

across building sizes and occupancy rates, the conventional setpoint/setback strategy can 

achieve 10.85%, 17.64%, and 25.05% total energy savings at unoccupied periods of 2, 4, 

and 6 h, respectively. In total, the fixed setpoint and setback strategy can, on average, 

achieve 22.76% energy savings, distributed as 5.78% from reduced occupant heat loads 

and 11.80% from the setpoint and setback selection strategy. 

Figure 5 dives deeper into HVAC energy savings across patterns, while averaging the 

savings across building sizes. 

 

Figure 5. Energy savings across occupancy rates and patterns from occupant heat loads and fixed 

setpoints and setbacks, averaged by climate and building size. 

It can be seen that longer unoccupied periods and lower occupancy rates result in 

lower occupant heat loads, leading to increased energy reduction. However, while the 

extent of energy reductions does not significantly vary across different patterns with con-

tinuous or intermittent occupancy for up to 4 h of unoccupancy, greater variations can be 

observed during longer unoccupied periods (6 h). This is due to the interactions between 

indoor and outdoor heat loads. A combination of high heat loads from both outdoors and 

occupants results in lower energy reductions across predominantly unoccupied patterns 

(6 h). In addition, as unoccupied periods increase, the sensitivity of energy consumption 

to occupancy rates becomes negligible. Comparatively, the impact of fixed setpoints and 

setbacks on energy savings across different patterns appears to increase with longer 

Figure 5. Energy savings across occupancy rates and patterns from occupant heat loads and fixed
setpoints and setbacks, averaged by climate and building size.

It can be seen that longer unoccupied periods and lower occupancy rates result in
lower occupant heat loads, leading to increased energy reduction. However, while the
extent of energy reductions does not significantly vary across different patterns with
continuous or intermittent occupancy for up to 4 h of unoccupancy, greater variations can
be observed during longer unoccupied periods (6 h). This is due to the interactions between
indoor and outdoor heat loads. A combination of high heat loads from both outdoors and
occupants results in lower energy reductions across predominantly unoccupied patterns
(6 h). In addition, as unoccupied periods increase, the sensitivity of energy consumption
to occupancy rates becomes negligible. Comparatively, the impact of fixed setpoints
and setbacks on energy savings across different patterns appears to increase with longer
unoccupied periods. On average, the impact of the selection of setpoints and setbacks was
8.68% and occupant heat loads was 4.72%. It is noticeable that rapidly switching between
setpoint and setback during high heat loads results in lower energy savings due to the
short on–off cycle of the HVAC system which causes destabilization. This is evident for the
pattern characterized by a short 1 h unoccupied period in between two longer periods of
occupancy of 3 h each, where daily energy savings are 3.12% lower compared to a pattern
that ensures enough time for the system to achieve and maintain the desired temperature.
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4.2. Optimal Temperature Setpoints and Fixed Setbacks Selection Strategy
4.2.1. The Impact of Occupancy Rates and Unoccupied Periods on Optimal Temperature
Setpoints with Fixed Setbacks

Figure 6 illustrates optimal setpoints for the small building (computed using Equa-
tion (1)) in relation to outdoor air temperature, unoccupied periods, and occupancy rates.
Due to space limitations and the stronger influence of outdoor temperatures on optimal
setpoints in comparison to larger buildings, only the results for the small building size
are showcased [25]. Applying a regularized linear regression on the optimal setpoints
reveals a robust correlation in the form of a monotonic behavior between setpoints and
the outdoor conditions across various occupancy rates and unoccupied periods. Generally,
as the outdoor environment becomes hotter, the optimal setpoint increases. However,
the variation in occupant heat loads due to different occupancy rates and unoccupied
periods also appears to impact optimal setpoints. Consequently, different optimal setpoints
are identified for the same outdoor air temperature. This is evident from the diverging
color-coded regression lines representing different lengths of unoccupied periods.
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Figure 6. Climate-based optimal setpoints based on outdoor temperatures, unoccupied periods, and
occupancy rates for the small-sized building.

Figure 7 details the variation in optimal setpoints across occupancy rates and unoccu-
pied periods, averaged building size, and climate. Building upon the findings presented
in [25], the lowest assessed setpoint (i.e., 19.5 ◦C) was optimal when the outdoor temper-
ature remained below 5 ◦C, and it gradually rose as the outdoor temperature increased.
When outdoor temperature exceeded 32 ◦C, the optimal setpoint temperature was 25.5 ◦C,
the highest among those evaluated. Hence, in the case of an outdoor temperature below
5 ◦C and above 32 ◦C, the optimal setpoints (19.5 ◦C and 25.5◦ C) exhibited no alteration
across different occupancy rates and unoccupied periods. Nonetheless, in the outdoor
temperature range of 5 ◦C to 32 ◦C, differing occupancy led to distinct optimal setpoints,
contingent on the extent of unoccupied periods and occupancy rates. This variability can
lead buildings to switch between cooling, free-running, and heating mode.
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Figure 7. Climate- and size-averaged optimal setpoints based on outdoor temperatures, unoccupied
periods, and occupancy rates.

Compared to the optimal setpoint identified for a building continuously occupied (no
unoccupied periods), and at 100% occupancy (baseline reference), a higher setpoint was
found to be optimal for cooling and a lower setpoint for heating for longer unoccupied
periods and lower occupancy rates. Within the moderate outdoor temperature range of
5 ◦C to 32 ◦C, the optimal setpoints at an occupancy rate of 25% were, on average, 1 ◦C
lower when below 17 ◦C, or higher when above 17 ◦C, than those at 100% occupancy
rate due to lower occupant-generated heat. Additionally, the optimal setpoints for an
unoccupied period of 6 h were found to be, on average, 2 ◦C lower (heating) or higher
(cooling) compared to the optimal setpoint identified for no unoccupied periods.

4.2.2. Energy Savings from Optimal Setpoints and Fixed Setbacks

Figure 8 illustrates the daily energy savings averaged across different climates, achieved
through an optimal temperature setpoint and fixed setbacks strategy (calculated using
Equation (3)). These savings are presented across various occupancy rates and unoccupied
periods for a small, medium, and large building.
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Figure 8. Energy savings from reduced occupant heat loads and an optimal setpoint with fixed
setback strategy for each occupancy rate and unoccupied period, averaged across building sizes.

As highlighted in Section 4.1.1, an energy reduction of up to 11.95%, 7.25%, and 9.73%
can be obtained from lower heat loads. The implementation of an optimal setpoint and fixed
setback strategy provides energy savings derived from selecting setpoints that minimize
heat transfer with the outdoor environment. It could be due to the fact that larger office
buildings tend to have a lower surface area to volume ratio compared to smaller buildings.
This lower ratio means that larger buildings have less exposed surface area relative to
their interior volume. As a result, they are typically less sensitive to variations in outdoor
temperature; thus, optimal setpoints can result in larger energy savings when occupancy
heat loads are reduced. Furthermore, energy savings increase at lower occupancy rates and
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for longer unoccupied periods. Energy savings for a small building range from 29.2% to
35.46% for an unoccupied period of 2 to 6 h, from 24.78% to 30.92% for a medium building,
and from 39.79% to 46.05% for a large building. On average across building sizes and
occupancy rates, 38.67%, 32.85%, and 48.88% total energy savings can be obtained for an
unoccupied period of 2, 4, and 6 h, respectively. In total, the optimal setpoint and setback
strategy can, on average, achieve 40.14% energy savings distributed as 5.78% from reduced
occupant heat loads and 34.36% from the setpoint and setback selection strategy. This
represents an increase of 22.56% compared to fixed setpoints and setbacks.

Figure 9 depicts the breakdown of HVAC energy savings across different occupancy
rates and patterns, resulting from reduced heat loads and an optimal setpoint with the
fixed setback strategy. These averages are calculated considering different climates and
building sizes.
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Figure 9. Energy savings across occupancy rates and patterns from occupant heat loads and optimal
setpoints with fixed setbacks, averaged by climate and building size.

As discussed in Section 4.1.1, extended unoccupied periods and decreased occupancy
rates lead to reduced occupant heat loads, which in turn, result in greater energy savings.
Compared to occupant heat loads, the impact of optimal setpoints and fixed setbacks on
energy consumption across different patterns appears to be higher. Additionally, only across
predominantly unoccupied patterns (6 h), significant differences across patterns can be
identified, where most of the energy consumption is dictated by the optimal setpoint. In this
scenario, the highest energy consumption is obtained from a pattern with three unoccupied
hours early in the morning and three early in the afternoon, where a fixed setback is
implemented to contrast high outdoor heat loads (44.67% energy savings, averaged across
occupancy rates). Comparatively, the lowest energy consuming pattern involves three
unoccupied hours during late morning and three during late afternoon, where outdoor
heat loads are lower and optimal setpoints are implemented during high heat loads (48.82%
energy savings, averaged across occupancy rates).

4.3. Optimal Temperature Setpoints and Setbacks Selection Strategy
4.3.1. The Impact of Occupancy Rates and Unoccupied Periods on Optimal Temperature
Setpoints and Setbacks

Figure 10 depicts optimal setpoints and setbacks (calculated using Equation (4)) in
relation to outdoor temperatures, occupancy rates, and unoccupied periods. The findings
are only presented for the small building due to limited space and the stronger impact of
outdoor temperatures on the optimal setpoint compared to larger buildings [25]. Using
regularized linear regression, this study demonstrates a robust correlation in the form of a
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monotonic behavior between the optimal setpoint and outdoor conditions across differ-
ent occupancy rates and unoccupied periods. In general, as outdoor conditions become
warmer, the optimal setpoint tends to increase. However, compared to solely optimizing
setpoints, the simultaneous selection of setbacks reduces the impact of occupancy rates
and unoccupied periods on optimal setpoint selection. It is worth noting that a significant
portion of optimal setpoints remains the same, regardless of the duration of unoccupied
periods and occupancy rates. This is evident from the overlapping color-coded regression
lines, representing different lengths of unoccupied periods.
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Figure 10. Optimal setpoints and setbacks based on outdoor temperatures, unoccupied periods, and
occupancy rates across various climate conditions for the small-sized building.

As depicted in Figure 11 and in line with the findings of [25], the optimal setpoint
exhibited its lowest value (i.e., 19.5 ◦C) for outdoor temperature below 5 ◦C, and it rose
as outdoor temperatures increased. Beyond the outdoor temperature reaching 32 ◦C, the
optimal setpoint shifted to the highest value assessed, which was 25.5 ◦C. Therefore, for an
outdoor temperature below 5 ◦C and above 32 ◦C, it was observed that optimal setpoints
(19.5 ◦C and 25.5 ◦C) remained unchanged regardless of fluctuations in occupancy rates
and unoccupied periods. Nonetheless, when the outdoor temperature fell within the range
of 5 ◦C to 32 ◦C, the optimal setpoints showed variability in response to shifts in occupancy
conditions. Similarly, when outdoor temperatures fell below −5 ◦C, the optimal setback
was determined to be the lowest evaluated value (17 ◦C), whereas temperatures above
22 ◦C indicated that the highest evaluated setback (28 ◦C) was optimal. Consequently, for
outdoor temperatures below −5 ◦C and above 22 ◦C, optimal setbacks (17 ◦C and 28 ◦C)
remained consistent regardless of changes in occupancy rates and unoccupied periods.
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However, for outdoor temperatures ranging between −5 ◦C and 22 ◦C, the optimal setbacks
varied depending on varying occupancy conditions. In general, outdoor temperatures were
observed to exert a greater influence on the selection of optimal setpoints and setbacks
compared to variations in occupancy. It is worth noting that although the temperature
range where occupancy affects the optimal selection of setbacks is the same as for setpoints,
it is shifted towards cooler outdoor temperatures.
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4.3.2. Energy Savings from Optimal Setpoints and Setbacks

Figure 12 illustrates the daily energy savings averaged across different climates, ob-
tained from an optimal setpoint and setback strategy, for small, medium, and large building.
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Figure 12. Energy savings from reduced occupant heat loads and optimal setpoint and setback
strategy for each occupancy rate and unoccupied period, averaged across building sizes.

Total energy savings can be attributed to reduced occupant heat loads by up to 11.95%,
7.25%, and 9.73% for small, medium, and large building sizes, respectively. In addition,
energy savings for an unoccupied period of 2 to 6 h from optimal selection of setpoints and
setbacks range from 35.12% to 40.87% for a small building size, from 31.57% to 38.03% for
a medium building, and from 47.28% to 51.39% for a large building. As reported for the
optimal setpoint and fixed setback strategy, a larger office building can achieve higher daily
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average energy savings since it is less sensitive to occupant heat loads and heat transfer
from outdoors. Furthermore, energy savings increase at lower occupancy rates and longer
unoccupied periods. On average across building sizes and occupancy rates, 45.65%, 38.34%,
and 49.74% total energy savings can be obtained for an unoccupied period of 2, 4, and 6 h,
respectively. In total, the optimal setpoint and setback strategy can, on average, achieve
43.86% energy savings, distributed as 5.78% from reduced occupant heat loads and 38.08%
from the setpoint and setback selection strategy. This represents an increase of 27.08%
compared to fixed setpoints and setbacks.

Figure 13 illustrates the HVAC energy savings resulting from variations in occupancy
rates and patterns, attributable to reduced heat loads and the optimal setpoint and setback
strategy. These averages are calculated considering various climates and building sizes.
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Figure 13. Energy savings across occupancy rates and patterns from occupant heat loads and optimal
setpoints and setbacks, averaged by climate and building size.

As discussed in Section 4.1.1, prolonged periods of unoccupancy and reduced occu-
pancy rates lead to diminished occupant heat loads, which in turn, contribute to heightened
energy savings. Compared to the optimal setpoints and fixed setback strategy, the impact
of optimal setpoints and setbacks on energy consumption across different patterns appears
to be around 9.21% larger. However, similarly to all three setpoints and setbacks election
strategies, only across predominantly unoccupied patterns (6 h) can significant differences
across patterns be identified. In this situation, it is evident that frequent switching be-
tween optimal setpoint and setback during periods of high heat loads leads to reduced
energy savings. This is due to the short on–off cycles of the HVAC system, which causes
destabilization. This effect is particularly noticeable in a pattern where there is a short 1 h
unoccupied period sandwiched between two longer 3 h occupancy periods. In comparison
to a different pattern characterized by 3 h unoccupied periods early in the morning and
afternoon, which allows sufficient time for the system to reach and maintain the desired
temperature, the daily energy savings are 9.33% lower.

4.4. Comparing Fixed Setpoints and Setbacks, Optimal Setpoints and Fixed Setbacks, and Optimal
Setpoints and Setbacks

Figure 14 illustrates the variation in setpoints and setbacks across outdoor tempera-
tures for the three setpoint and setback selection strategies evaluated in this study: fixed
setpoint and setback (blue line), optimal setpoint and fixed setback (red line), and optimal
setpoint and setback (green line), averaged by climate and building size. In addition, the
light and dark grey areas depict the variation due to occupancy rates and unoccupied
periods. While fixed setpoints and setbacks remain constant across outdoor temperatures,
both strategies involving optimization result in increasing optimal setpoints and setbacks
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as the outdoor environment becomes warmer. However, the impact of occupancy on
optimal setpoints varies depending on whether the setbacks are fixed or optimized. When
fixing the setback, reduced occupant-generated heat (25% occupancy rate) resulted in an
average difference of 1 ◦C in optimal setpoints compared to a fully occupied building
(100% occupancy). When the outdoor temperature was below 17 ◦C, optimal setpoints
were lower than the ones at full occupancy since heating occurred. Contrarily, when the
outdoor temperature exceeded 17 ◦C, optimal cooling setpoints were higher than when at
100% occupancy. Longer unoccupied periods instead resulted in an average difference of
2 ◦C compared to occupancy all the time. The optimal setpoints for an unoccupied period
of 6 h were found to be, on average, 2 ◦C lower (heating) or higher (cooling) compared
to the optimal setpoint identified for no unoccupied periods. When both setpoints and
setbacks were simultaneously optimized, the effect of varying occupancy on optimal set-
points was lower compared to fixing the setbacks. Therefore, when in combination with
optimal setbacks, optimal setpoints show less variation across different occupancy rates and
unoccupied periods. Hence, regardless of the length of unoccupied periods and occupancy
rates, a substantial portion of the optimal setpoints remains identical. While the influence
of occupancy rates on optimal setpoint selection appears to be negligible, the difference in
optimal setpoints during longer unoccupied periods is reduced to 1 ◦C, on average, com-
pared to 2 ◦C observed when the setbacks are fixed. Note that the maintenance practices
of HVAC systems have a substantial impact on optimal setpoints and setbacks. In fact,
regular maintenance prevents malfunctions and ensures operation at peak efficiency and
better adherence to the identified optimal setpoints and setbacks. Maintenance practices
often involve calibrating sensors and controls. Accurate sensors are critical for maintaining
the desired setpoints, as they inform the HVAC system about the current outdoor environ-
mental conditions and occupancy. Reliable operation ensures that these sensors function
correctly, preventing inaccuracies that could lead to deviations from optimal setpoints once
indoor and outdoor conditions change.
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Figure 14. Variations in setpoints and setbacks influenced by outdoor conditions and varying
occupancy, compared between fixed and optimal selection strategies and averaged across different
climates and building size.

Figure 15 presents the trends of HVAC energy savings across patterns for each setpoint
and setback selection strategy, averaged across climates and building sizes. In general,



Buildings 2023, 13, 2998 18 of 23

longer unoccupied periods and lower occupancy rates lead to increased energy savings, ir-
respective of the chosen selection strategy. The trends of energy savings across patterns with
continuous or intermittent occupancy remain consistent for different selection strategies
for unoccupied periods lasting up to 4 h. However, when considering the same occupancy
pattern, the energy savings achieved through optimal setpoints and setbacks are greater
compared to optimal setpoints with fixed setbacks or fixing setpoints and setbacks. In this
scenario, occupancy rates play a significant role in energy consumption. In fact, a lightly
occupied building (25% occupancy rate) with optimal setpoints and fixed setbacks can
obtain equivalent energy saving values to a fully occupied building (100% occupancy rate)
where setpoints and setbacks are optimally selected. Contrarily, during a longer unoccu-
pied period (6 h), the impact of occupancy rates becomes negligible, and greater variations
in energy savings can be observed across patterns. In this scenario, different selection
strategies result in different energy consumption across patterns. In fact, a pattern with
three unoccupied hours early in the morning and three early in the afternoon is the highest
or lowest energy consuming when fixing or optimally selecting the setbacks, respectively.
Therefore, the selection of selection strategy affects energy consumption across patterns
due to the interactions between indoor and outdoor heat loads. In addition, rapid changes
in setpoints and setbacks diminish energy savings by up to 9.33% due to the short on–off
cycle of HVAC systems which causes destabilization.
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building size.

Figure 16 demonstrates the energy savings from reduced occupant heat loads and the
additional savings derived from the three setpoint and setback selection strategies investi-
gated in this paper. While occupant heat loads results in a 5.48% energy reduction for lower
occupancy rates and during longer unoccupied periods, the conventional fixed setpoint
and setback selection strategy provides an additional 11.80% energy savings. Furthermore,
optimal setpoint selection provides an additional 34.36% savings, and simultaneous opti-
mization of setpoints and setbacks provides an additional 38.08%, averaged across building
sizes and climates. Implementing adaptive predictive controls in HVAC systems enables
dynamic adjustments of optimal setpoints and setbacks based on forecasted occupancy and
weather, potentially leading to additional energy savings. Adaptive control mechanisms,
integrating machine learning algorithms, continuously learn from historical data to opti-
mize energy efficiency over time. These mechanisms facilitate proactive adjustments like
pre-cooling or pre-heating spaces based on occupancy forecasts and prioritizing areas with
anticipated high occupancy, directing energy resources where needed and scaling back in
less utilized space. The integration of IoT devices and real-time data analysis enhances the
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refinement of optimal setpoints and setbacks. Continuous monitoring of weather condi-
tions allows dynamic adjustments, while real-time occupancy data enable the system to
respond based on current occupancy levels. Machine learning algorithms process real-time
data, facilitating continuous learning and adaptation for optimal setpoints. Feedback loops
enable ongoing monitoring, and automatic adjustments are made in response to deviations,
ensuring ongoing optimization and flexibility in unpredictable situations.
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Figure 16. Comparison of energy savings across different selection strategies: fixed setpoints and
setbacks, optimal setpoints with fixed setbacks, and optimal setpoints and setbacks.

4.5. Optimal Temperature Setpoint Tool

This paper presents an interactive graphical interface, the Optimal Temperature Set-
point Tool, to facilitate practical applications. As depicted in Figure 17, the online tool
allows users to identify the optimal setpoint based on occupancy rates, patterns, and out-
door air temperature values. Building stakeholders can select: (1) the desired temperature
scale for results visualization (Celsius—◦C and Fahrenheit—◦F), (2) the climate zone (from
0A to 8), (3) the patterns of unoccupied periods (14 unoccupied patterns across five unoccu-
pied periods—0 h, 1 h, 2 h, 4 h, and 6 h, as described in Figure 2), (4) the occupancy rate
(from a lightly occupied, 25%, to a fully occupied building, 100%), (5) and the outdoor air
temperature value based on the climate zone. With respect to these inputs, the tool returns
the temperature setpoint that minimizes energy consumption (Equation (1)). Multiple
scenarios with various inputs can be tested and the results can be downloaded as a .csv file.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 

Figure 16. Comparison of energy savings across different selection strategies: fixed setpoints and 

setbacks, optimal setpoints with fixed setbacks, and optimal setpoints and setbacks. 

4.5. Optimal Temperature Setpoint Tool 

This paper presents an interactive graphical interface, the Optimal Temperature Set-

point Tool, to facilitate practical applications. As depicted in Figure 17, the online tool 

allows users to identify the optimal setpoint based on occupancy rates, patterns, and out-

door air temperature values. Building stakeholders can select: (1) the desired temperature 

scale for results visualization (Celsius—°C and Fahrenheit—°F), (2) the climate zone (from 

0A to 8), (3) the patterns of unoccupied periods (14 unoccupied patterns across five unoc-

cupied periods—0 h, 1 h, 2 h, 4 h, and 6 h, as described in Figure 2), (4) the occupancy rate 

(from a lightly occupied, 25%, to a fully occupied building, 100%), (5) and the outdoor air 

temperature value based on the climate zone. With respect to these inputs, the tool returns 

the temperature setpoint that minimizes energy consumption (Equation (1)). Multiple sce-

narios with various inputs can be tested and the results can be downloaded as a .csv file. 

 

Figure 17. User interface displaying inputs and outputs of the Optimal Temperature Setpoint Tool. 

5. Limitations and Recommendations for Future Research 

Although this paper explored a relatively wide-ranging set of occupancy rates and 

patterns (4 × 16 = 64 occupancy scenarios), they represent a finite number of scenarios due 

to the computational expense of energy simulation. In addition, they represent proxies for 

building occupancy and may not fully capture the nuances of real-world occupancy 

Figure 17. User interface displaying inputs and outputs of the Optimal Temperature Setpoint Tool.

https://building-robotics-lab.github.io/brlab/#/otst
https://building-robotics-lab.github.io/brlab/#/otst


Buildings 2023, 13, 2998 20 of 23

5. Limitations and Recommendations for Future Research

Although this paper explored a relatively wide-ranging set of occupancy rates and
patterns (4 × 16 = 64 occupancy scenarios), they represent a finite number of scenarios due
to the computational expense of energy simulation. In addition, they represent proxies
for building occupancy and may not fully capture the nuances of real-world occupancy
dynamics and patterns within buildings. In reality, the rate of occupancy in the zones and
the occupied or unoccupied patterns are not constant but vary stochastically, dictated by
occupant behaviors. Furthermore, although the study simulates three different building
sizes (small, medium, and large) across 17 climate zones, the extent to which findings can be
generalized across diverse building types is limited to office settings. Moreover, exhaustive
search algorithms are computationally intensive. The feasibility of implementing such
an algorithm in real-world HVAC control systems may be challenging due to potential
time and resource constraints. In addition, this study assumed uniform temperature
setpoints/setbacks across all building zones. However, a more detailed spatial and temporal
resolution could increase energy savings and might enhance the effectiveness of HVAC
operation. For example, heightened solar heat gain in a zone positioned at a building’s
perimeter could influence the optimal setpoint and setback. Similarly, the heat loads
from diverse occupancy rates, patterns, appliances, and lighting systems may vary among
different zones based on their unique end uses. Furthermore, it could be possible to
compute optimal values on an hourly basis or group them according to specific periods,
such as “seasons”. Further research is needed to define periods based on similar variations
in outdoor air temperatures. Nevertheless, when making decisions about the selection
of spatial and temporal granularity, considering the balance between the controller’s
complexity and the potential energy savings is of utmost importance.

While this paper serves a basis to provide a systematic methodology to study the
of impact of varying occupancy on optimal setpoints and setbacks, future research could
focus on specific use cases and develop and implement techniques that can efficiently select
optimal setpoints and setbacks depending on outdoor weather and occupancy variability.
Given that exhaustive search methods are impractical for real building HVAC controllers,
we anticipate the emergence of data-driven algorithms for HVAC operation that rely on
minimal data prerequisites. Further research efforts will focus on the development of
a data-driven algorithm based on occupancy and weather and its deployment in a real-
world office setting. The findings will be compared against simulated data to provide
insights of the actual energy consumption data and potential savings. Adaptive predictive
control algorithms based on machine learning will be incorporated in future research. This
will include the forecasting of occupancy and weather to enhance the responsiveness of
HVAC systems and the ability to learn from historical data to refine predictions and adapt
over time. By leveraging IoT devices and real-time data analysis, building management
systems can create a responsive and adaptive environment that not only validates optimal
setpoints but also continually refines them based on evolving conditions. Further research
avenues will include a comprehensive assessment of maintenance practices, considering
their influence on the long-term reliability of HVAC systems, to ascertain practical viability
of the optimization of setpoints and setbacks based on outdoor weather and occupancy. As
maintenance plays a pivotal role in sustaining the efficiency and functionality of HVAC
systems over time, this evaluation will involve a detailed examination of how these systems
perform under varying conditions and stresses based on real-world scenarios. Furthermore,
the assessment under recommended setpoints and setbacks will provide valuable insights
into potential challenges and practical implications. Integrating optimal setpoint and
setback strategies within a broader EMS necessitates a holistic evaluation to identify and
capitalize on synergies, while also addressing potential conflicts with other energy-saving
strategies and operational considerations. This approach, ensuring a comprehensive and
optimized energy management solution, will be investigated in future research.
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6. Conclusions

This study systematically compared the energy-saving potential between fixed and op-
timal HVAC temperature setpoints and setbacks under typical occupancy scenarios. Three
strategies were examined: conventional fixed setpoints and setbacks, optimal setpoints
with fixed setbacks, and optimal setpoints and setbacks. The investigation considered four
occupancy rates (25%, 50%, 75%, 100%) and 14 patterns (unoccupied periods from 0 to 6 h)
to reflect workplace flexibility and remote working trends. Seven setpoints (19.5–25.5 ◦C at
1 ◦C intervals) were explored during occupied periods, with two heating (17 ◦C and 19 ◦C)
and two cooling (26 ◦C and 28 ◦C) setbacks during unoccupied periods. U.S. DOE reference
models for small, medium, and large office buildings were simulated for 17 climate zones to
account for a wide variety of outdoor air temperatures. An exhaustive search algorithm was
adopted to determine the optimal setpoint and setback temperature based on variations
in occupancy and weather, i.e., setpoint and setback that minimizes HVAC energy usage
during occupied and unoccupied periods, respectively. Energy reduction due to occupant
heat loads and the additional savings from each setpoint and setback selection strategy
were calculated in comparison to the sole implementation of fixed setpoints regardless of
flexible occupancy. The primary findings are outlined as follows:

• Occupant heat loads results in a 5.48% energy reduction for lower occupancy rates
and during longer unoccupied periods. In addition, a conventional fixed setpoint and
setback selection strategy provides 11.80% energy savings, optimal setpoint selection
provides 34.36% savings, and simultaneous optimization of setpoints and setbacks
provides 38.08% savings.

• Optimal setpoints (19.5 ◦C and 25.5 ◦C) remain constant regardless of occupancy,
for outdoor temperatures below 5 ◦C and above 32 ◦C. However, in the case of
outdoor temperatures spanning from 5 ◦C to 32 ◦C, fluctuations in occupancy can shift
buildings between cooling, free-running, and heating modes.

• A lower occupancy rate (25%) results in a 1 ◦C lower or higher optimal setpoint
compared to a fully occupied building (100% occupancy rate) for heating and cooling,
respectively. Optimal setpoints for a predominantly unoccupied building (6 h) were
found to be, on average, 2 ◦C lower or higher compared to the optimal setpoint
identified for a building occupied all the time (no unoccupied hours) for heating and
cooling, respectively.

• When simultaneously optimizing setpoints and setbacks, the effect of varying occu-
pancy on optimal setpoints is lower compared to optimal setpoints and fixed setbacks
(Figure 11). This results in a significant portion of identical optimal setpoints, regard-
less of the duration of unoccupied periods and occupancy rates.

• The energy savings trends for various setpoint and setback selection strategies re-
main consistent across patterns with continuous or intermittent occupancy for short
unoccupied periods (up to 4 h), where occupancy rates impact energy consumption.
However, during longer unoccupied periods (6 h), the influence of occupancy rates
becomes insignificant, and the adoption of different setpoint and setback strategies
affects energy consumption across patterns, resulting in varying energy savings. In
such cases, rapid changes in setpoints and setbacks during periods characterized by
high heat loads may not allow sufficient time for the system to reach and maintain the
desired temperature, leading to system destabilization and reducing energy savings
by up to 9.33%.

The results presented in this paper can assist stakeholders in the building industry
in evaluating the energy savings that can be obtained by integrating weather and occu-
pancy data into fixed and optimal setpoint and setback selection strategies. Moreover, this
research establishes the groundwork for future research avenues focused on developing
efficient techniques for selecting optimal HVAC setpoints and setbacks based on outdoor
weather and occupancy variability, moving beyond exhaustive search methods to embrace
data-driven algorithms with minimal prerequisites. This includes deploying and validating
such algorithms in real-world office settings, integrating adaptive predictive control algo-
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rithms based on machine learning for enhanced system responsiveness, and conducting a
comprehensive assessment of maintenance practices’ impact on HVAC system reliability.
Additionally, further research will explore the integration of optimal setpoint and setback
strategies within broader Energy Management Systems for a comprehensive evaluation of
energy management solutions.
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