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Abstract: The Goles, ti Manor ensemble consists of architectural monuments dating back to the 17th,
18th, and 19th centuries, with ephemeral architecture roots from Phanariot times but also some pre-
Brancovan influences. The Turkish steam bath is placed in the northeast of the enclosure, and it is
thought to have been built by Stroe Leurdeanu. Although there are still original fragments of the old
plaster that have been preserved, the Turkish bath has undergone several restorations through time,
some of them poorly documented. Hyperspectral imaging (HSI) combined with LIBS were used
in order to analyze the bricks and the mortars, evaluate their preservation state, map the original
elements, and document and classify the interventions previously made. Based on the supervised
classifications, several areas of interest were selected for LIBS elemental analysis, and multivariate
data analysis was conducted in order to discriminate similar composition materials and to map
the interventions and the original. By analyzing the variability of the spectral profiles, different
algorithms were applied to the SWIR hyperspectral images in order to classify the main elements of
the brickwork.

Keywords: medieval bricks; Turkish bath; LIBS; hyperspectral imaging

1. Introduction

The subject of the current study is a building made from clay bricks and mortars: the
Turkish bath from the Goles, ti Manor estate. Clay brick structures, with or without mortars,
represent one of the oldest and sturdy techniques used since the Mesopotamian, Egyptian,
and Roman times until medieval and modern times. Although technology advanced
through the ages, bricks continued to have a simple manufacturing process based on clay,
a raw material available in large quantities all over the Earth. There are a lot of brick
masonries that lasted through centuries of thaw–freezing cycles, high temperatures, and
anthropogenic factors that prove that it is an effective building material that provides both
resistance to prevalent climatic conditions and insulation from cold and heat [1].

In the 17th century, the feudal ensemble of Goles, ti (Arges, County) was built around
two major constructions: the manor built in 1640 and the church erected six years later. For
200 years, the main buildings and annexes underwent major changes, but only a small part
of them can be documented with the existing information [2].

In the northwest corner of the enclosure is located the only part of the building that
was once the Turkish bath. The only documentary mention of the bathing custom at the
Goles, ti mansion was written by Paul of Aleppo and is dated 12 January 1657. Speaking
about the house built by the great boyar Stroe Leurdeanu in 1640 on his rural estate, the
Syrian deacon says: “His palace is big, with many baths” [3]. Built according to the Ottoman
model, which in turn inherited the water culture from the Roman–Byzantine area, the hot
baths (hammams) have been present in Romanian cultural spaces since the middle of the
16th century [4]. Constantin Cantacuzino, Stroe Leurdeanu’s political rival, and also a great
and powerful boyar, had baths both in his house in Bucharest and in his aristocratic estate
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from Filipes, ti (Prahova County), as Paul of Alep himself testifies: ‘an elegant bath whose
marble is marvelous; the water that feeds it is brought by wheels with buckets placed on
the river; these wheels also sprinkle the vegetable gardens and the beautiful orchards; they
set many mills in motion’ [3]. The bath was not only hygienic, but a place of socializing
and relaxation, where men and women spent hours of delight.

In the interwar period, the Golescu manor was almost in ruins; the outbuildings had
collapsed, and the vaults of the Turkish bath were about to fall down, as can be seen in
Figure 1a. During the 1942–1943 restoration, only one room was preserved from the Turkish
bath: the warm space with a single dome and the adjacent furnace.
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Figure 1. The outbuildings featuring the Turkish bath in 1942 (a) and at present time (b).

The casuistic under discussion is focused on the discrimination of the original mate-
rials, bricks, and mortars, considering that, during the restoration, new bricks were also
incorporated in addition to the original remains. Another question was if the mortars
used in the restoration also contain shards from the original bricks. In such a compli-
cated situation where we need to discriminate between very similar objects, statistical
and classification methods are the only solution [5,6]. Thus, hyperspectral analysis (HSI)
and laser-induced breakdown spectroscopy (LIBS) were selected for their great classifica-
tion and chemometric capabilities [7], and a charting of the original bricks and mortars
was obtained [8].

2. Materials and Methods

In the form in which it was restored, as can be seen in Figure 1b, the Turkish bath
has the following characteristics: a rectangular shape with sides of 8 m/6.3 m and a 6.4 m
height, thick walls of about 0.8 m built of bricks bonded with thick layers of mortar. The
bath room itself is square in shape with a side of about 5.5 m. The ceiling, also made
of bricks, is built in a semicylindrical vault pierced by openings for excess steam. The
lime and sand plaster were mixed with crushed brick, giving the interior a reddish color.
On the outside, it has a profiled cornice made of several successive layers of brick. The
ornamentation features a saw tooth or wolf’s tooth motif [9]. In this paper, discussions will
envisage an area from the most representative part of the historical building in terms of age
value that is alleged to contain original bricks and mortars, as well as materials from later
restoration interventions. In the middle of the investigated area, there is a brick that stands
out due to its aspect and its length, which is known to be part of a restoration.

As the properties of medieval and modern bricks vary in terms of raw materials,
production methodology, as well as mortars used, his combined with LIBS were used
in order to analyze them, evaluate their preservation state, map the original elements,
and document and classify the interventions previously made [10,11]. The main chemical
constituents of clay are silicon (Si) and aluminum (Al), but also a number of minor and
trace elements that will be used in multivariate data analysis in order to discriminate and
map the original materials.



Buildings 2023, 13, 321 3 of 11

Hyperspectral imaging or imaging spectroscopy is a noninvasive, noncontact tech-
nique which combines digital imaging and spectroscopy [12]. HSI offers both imaging and
spectral data, measuring the spatial information and the spectral parameters for each pixel
simultaneously. The hyperspectral image is expressed as a hypercube I(x, y, λ), containing
wavelength λ and spatial (x, y) dimensions. The results of the hyperspectral analysis can be
used either as spectral data I(λ) for each individual pixel (x, y) or as an image I(x, y) for
each wavelength λ [13]. Each pixel is attributed a unique spectral fingerprint, which can be
used to characterize its chemical composition. As such, hyperspectral imaging can be used
for the identification and quantification of chemical compositions and, at the same time, for
mapping their distribution [14].

For each pixel in an image, a hyperspectral camera acquires the light intensity (ra-
diance) for a large number of contiguous spectral bands; every pixel in the image thus
includes a continuous spectrum (in radiance) and can be used in order to characterize
the objects in the scene with great precision and detail. For the HSI analyses, a HySpex
SWIR-384 hyperspectral camera from NEO equipped with a state-of-the-art Mercury–
Cadmium–Telluride (MCT) detector was used, calibrated for the following lenses: 0.3 m,
3 m, 9 m, and for a field of view (FOV) of 16 degrees. The system covers parts of the NIR
and SWIR spectra from 954 nm to 2550 nm and has 288 spectral channels. Taking into
consideration the available working conditions on-site (very narrow access, see Figure 2a
but also the need for the best available resolution, a 30 cm distance close-range lens was
installed. It was highly important to record from close range in order to obtain greater
details but also to avoid spectral mixing of the pixel signals (when pixels become larger in
size with the increase in distance, the spectral profile can combine the specific signals of
different types of materials).
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Figure 2. HSI system (a) and LIBS (b) data acquisition on the NE side of the Turkish bath.

Data was recorded using the push-broom technique (a long-track scanner meaning
successive lines of 384 pixels, which represent the width of a recording) by scanning the
vertical surface using a motorized translation stage.

During the investigation, diffuse illumination was provided by two custom-made
lamps, which focused the illumination to a line overlapping with the camera FOV. The
lens ensured a FOV (field of view) of 16 degrees, meaning an 84 mm width for each
acquisition. For the recording of the interest area, 7 acquisitions were necessary. Processing
was conducted using ENVI® L3Harris Geospatial. All data were converted from DN
(digital number) to radiance units and were later radiometrically calibrated using QUAC
(quick atmospheric correction).

LIBS is a microinvasive technique, and each triggered pulse generates a spectrum,
advancing deeply in the layers, pulse by pulse, until it reaches the original material unaf-
fected by adherent deposits, corrosion, chemical changes, etc. [15]. The main feature of the
technique is the fact that each laser pulse delivers information about the chemical elements
present in the ablated material, providing a sort of cross-sectional analysis until it reaches
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the core of the material [16,17]. Thus, the major advantage that the LIBS technique has
over other methods of analysis currently used in the field of investigations (e.g., XRF, FTIR,
XRD) is determined by the possibility to perform in situ stratigraphic analyses without
sampling the object (without processing or even cleaning of surfaces) [18–21]. LIBS analy-
ses were made using a handheld spectrometer from SciAps that works in an argon purge
environment, see Figure 2b. The equipment has a Q-switched Nd:YAG emitting at 1064 nm
with 5 mJ of energy and a 50 µm laser spot. Its spectrometers cover a spectral range from
190 nm to 950 nm. Due to the fact that the bricks are a heterogenous materials, the LIBS
acquisitions were made using matrix features of the equipment for 3 × 3 to 6 × 6 spots and
20 to 100 series, depending on the area investigated (mortar, brick, adherent deposits).

In order to discriminate the original materials as well as historical and current inter-
ventions in the brickwork, the LIBS data were subjected to principal component analysis
(PCA) conducted using Origin Lab. Afterwards, the hyperspectral and LIBS PCA results
were correlated and, further on, processed in ENVI using spectral angle mapper (SAM)
and linear spectral unmixing (LSU) algorithms in order to classify and trace the different
areas of interest [22]. Both algorithms were applied complementary in order to validate
the accuracy of the classifications and mapping [23,24]. SAM is a supervised spectral
classification algorithm that uses the difference between angles in an n-dimensional space
to classify pixels in an image [25]. It determines the similarity degree from spectral pro-
files by calculating the angle between the spectra while interpreting them as vectors in
an n-dimensional space, where n equals the number of bands. Smaller angles indicate a
higher degree of similarity to the reference spectrum, while larger angles designate a lower
degree of similarity. Pixels with the smallest angle values are associated (grouped) to the
same class of materials. Due to the fact that the SAM algorithm is part of the supervised
classification, the manual selection of the endmembers represents a key feature for class
assignment [26]. ENVI enables two types of threshold value selections: (1) a single value
for all classes and (2) a customized value for every type of class. The value of 0.100 radians
is the default value of the menu, and it means that a group of pixels is assigned to a class if
the difference between them is not greater than 0.100 radians (in SAM, pixels are considered
as vectors in an n-dimensional space). The spectral profile selected for each class is different
enough in order to enable the classification (spectral variability) since several values were
used, and no major variations in the results were observed.

LSU is a method able to generate abundance maps of pixels with specific spectral
profiles based on the pixel purity characteristics [27]. This is made by identifying the
endmembers in the scene and the fractional abundances that correspond to each pixel
category. Moreover, LSU calculations allow for the classification of areas with mixed pixels
based on their statistical values.

3. Results and Discussions
3.1. HSI Analysis

The different behavior of materials at various wavelengths can be observed as sig-
nificant changes in the absorbance and reflectance of the NIR and SWIR radiation on the
surface through the 954–2550 nm spectral domain [28].

Raw hyperspectral data were expressed in digital numbers (DN) and were made avail-
able via HySpex GROUND. Using HySpex RAD, the raw data were converted into radiance
units. HySpex RAD is a standalone postprocessing software facilitating radiometric cali-
bration of HySpex images. HySpex RAD enables both raw (_raw) and real-time-calibrated
(_corr) images to be converted to at-sensor absolute radiance values (W/sr·nm·m2). The
output files were stored in BSQ format and were converted to 32 bits, which do not need a
scaling factor to convert the images to radiance. A second radiometric calibration of the
radiance data was made using the QUACK module (quick atmospheric correction) of ENVI
in order to minimize the influence of the air and light [29]. This atmospheric correction
is based on the empirical finding that the average reflectance of diverse material spectra
(excluding highly structured materials, such as vegetation, shallow water, and mud) is not
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dependent on each scene. The output after correction is expressed as apparent reflectance
integer data, where pixel values range from 0 to 10,000 (representing 0 to 100% reflectance).

Figure 3a,b presents relevant images acquired for 954 and 2200 nm wavelengths, and
absorption, reflectance, and transmittance differences can be observed. As the wavelength
increases, some insight on the bricks prevails. Using the false colour infrared (FCIR)
function, RGB channels were assigned to different combinations of wavelengths ranging
from 954 to 2250 nm in order to track the similarities and differences in the material
behaviour. Figure 3c presents the FCIR for the RGB channels attributed to 954, 1200, and
2000 nm in which one can observe three colours for bricks and mortars that are used further
on for endmember selection.
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3.2. LIBS

The areas for LIBS stratigraphy were selected based on the hyperspectral imaging
results, and they are presented in Figure 4.
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The main chemical elements identified using LIBS, presented in Table 1, can be traced
to oxides commonly found in clay bricks as follows: silica (SiO2), alumina (Al2O3), iron
(Fe2O3) or ferrous oxide (Fe3O4), potassium oxide (K2O), titanium dioxide (TiO2), sodium
oxide (Na2O), calcium oxide (CaO), and magnesium oxide (MgO), as well as other elements
such as barium (Ba), strontium (Sr), rubidium (Rb), and manganese (Mn) [1].
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Table 1. Chemical elements identified using LIBS.

Type of Material Main Chemical Elements Identified by LIBS Averaged Data

Bricks Si, Al, Mg, Fe, K, Na, Ca, O, C, Ti

Reddish mortar areas Ca, Si, Sr, Al, Na, Mg, K, C, Fe, O, Ti

Grey mortar areas Ca, Si, Na, Al, K, C, Sr, O

The spots where LIBS spectra were acquired were carefully selected using the magni-
fying camera of the system to focus on similar structure areas for the bricks and the mortars,
respectively. Figure 5 presents the averaged signals obtained for the Si, Al, and Ca lines for
the whole batch.
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PCA was applied to the LIBS data to help classify and discriminate them. Taking
into consideration previous studies related to the statistical analysis of bricks, all chemical
elements were used in the analysis as they all may influence the discrimination and need to
be considered [30,31]. As can be observed in Figure 6, the PCA helped distinguish mainly
two types of bricks and mortars.
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3.3. Classification

The selection of the endmembers was the most important step in generating the results
of the supervised classification. Based on the preliminary imagistic analyses correlated with
the PCA results, seven endmembers were extracted according to the characteristic spectral
profiles of the materials: three types of bricks (#1, #2, and #3), three types of mortars (#1, #2,
and #3), and one material that visually seemed impregnated in the surface. As presented in
Figure 7, red markers were attributed to brick #1, green to brick #2, blue to brick #3, yellow
to mortar #1, cyan to mortar #2, and magenta to mortar #3.
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For LSU, we used a weighted unit-sum constraint, so the results were in the range
from 0 to 1. For each endmember selected, the algorithm generated a specific greyscale
image in which light tones designate higher probabilities (a better fitting), while darker
tones relate to smaller probabilities (see Figure 8).
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Figure 8. LSU classification results for (a) brick #1, (b) brick #2, (c) brick #3, (d) mortar #1, (e) mortar #2,
and (f) mortar #3.

The LSU classification depicts the adherent deposit’s presence on more areas than
were initially identified in the initial HSI analysis, as can be seen in Figure 9

The SAM classification was applied, and the threshold for each category of class was
0.100 radians. The number of unclassified pixels was insignificant, and the mapping of the
generated classes has great accuracy.

Figure 10 presents the results obtained for one of the seven acquisitions made in
order to cover the interest area. It was very interesting to highlight the distribution of
materials on the surface: the red hue is used for depicting the areas where brick #1 had a
higher probability, the green hue for brick #2, the blue hue for brick #3, the yellow hue for
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mortar #1, the cyan hue for mortar #2, the magenta hue for mortar #3, and the kaki hue for
the impregnated layer.
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(f) mortar #3, and (g) impregnated.
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Figure 11 presents the final image obtained by overlapping all the SAM classifications
(red, green, blue, yellow, cyan, magenta, and kaki) for the whole investigated area—all
seven acquisitions stitched together in one image.
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Figure 11. Spectral angle mapper (SAM) classification.

Using PCA, SAM, and LSU we can discriminate brick#1 from brick #2 and #3 and
mortar #1 from mortar #2 and #3. Taking into consideration the fact that the long brick,
known to be a recent material, is classified as brick #1, we can see the extent of the restora-
tion. The LIBS PCA data can clearly differentiate brick #1 from the other two, but the
LIBS-HSI corroboration was able to depict a slight difference between brick #2 and #3. The
LIBS analyses did not identify Fe in the grey mortar areas attributed to mortar #1, and
the data corresponding to it in the PCA was grouped apart from all of them; thus, we can
assume that mortar #1 is a new material that does not contain brick shards. We can observe
in Figure 11 that it was used for restoration on more areas in addition to the ones around
the new inserted bricks. Mortar #2 and #3 contain brick shards and tend to group in the
PCA. In Figure 11e,f, we can observe that they have a similar response; therefore, we can
assume that they are the same material, and the difference is made by the thickness of the
surface adherent deposit layer. It is interesting to see also the presence in traces of mortars
on these bricks—traces that are not visible with the naked eye. In addition, the presence
of some impregnated material is noted, a material with a more distinctive spectral profile
than the rest, that will be the subject of further studies in order to see if it can be correlated
with the early development of Algae or Lichens [32], and deep learning algorithms are
considered to be applied [33].

The results of the LSU were similar to the SAM classification, meaning that the selection
of the endmembers was accurate. However, the root mean square (RMS) fraction displayed
some errors (proportionally insignificant), depicted in Figure 12, that correlated to the
LIBS data, displaying a high content of C which can be associated to smoke scraps on the
outer walls.
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4. Conclusions

This paper discusses the results obtained by corroborating LIBS and HSI data acquired
on an area of the Turkish bath from the Goles, ti Museum, which was selected because it is
representative in terms of age value, covering both original and restoration materials. The
two complementary techniques were used in order to map the original elements and trace
the undocumented interventions previously made on the Turkish bath. Using the FCIR
mode, RGB channels were assigned to different combinations of wavelengths ranging from
954 to 2250 nm in order to track the similarities and differences in the material behaviour,
and a total of seven areas were selected for endmembers’ attribution. LIBS stratigraphy was
performed based on the HSI results. The main chemical elements identified using LIBS can
be traced to oxides commonly found in clay bricks, and the PCA helped distinguish two
main types of bricks and mortars. The LIBS PCA results were correlated and, further on,
processed in ENVI using SAM and LSU, applied complementary, in order to validate the
accuracy of the classification and mapping, as seven endmembers were extracted for three
brick areas (#1, #2, and #3), three mortar areas (#1, #2, and #3), and one material considered
to be impregnated in the surface. Using PCA, SAM, and LSU, a distribution map of the area
was obtained where previous interventions were identified and mapped. The impregnated
material detected will be the subject of further studies in order to see if it is a biological
attack. Based on the results, deep learning algorithms are considered to be used for further
applications on the building.
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HIS acquisition and processing, L.C.R.; LIBS acquisition and processing, M.D.; writing—original
draft preparation, M.D.; writing—review and editing, M.D., L.C.R., C.C. and G.C. All authors have
read and agreed to the published version of the manuscript.
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tion, under Program 1—Development of the National Research-Development System, Subprogram
1.2—Institutional performance—Projects to finance the excellence in RDI, SUPECONEX grant nr.
18PFE/30.12.2021, under Core Program 18N/08.02.2019, project PN 19-18.01.02 and under PNCDI III,
CNCS—UEFISCDI, project number PN-III-P4-PCE-2021-1605.

Data Availability Statement: The data that support the findings of this study are available upon
request from the corresponding authors.
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of this study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
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