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Abstract: As attention to indoor environmental quality (IEQ) grows, a systematic strategy for as-
sessing IEQ in schools needs to be developed. For this purpose, this paper presents a summary
of parameters measured in school classrooms to characterize the quality of thermal, acoustic, and
visual environments and indoor air quality (IAQ). The summary is based on a review of published
literature reporting measurements in schools in Europe and North America in the past ten years. It
also summarizes the measurement protocols and measured concentrations. Eighty-eight papers de-
scribing measurements in schools were identified and analyzed. No unique standardized measuring
method was used in the reviewed studies and different parameters were measured. The most often
measured parameters were those describing the thermal environment and IAQ. The former mainly
comprised air temperature and relative humidity. The latter mainly comprised concentrations of
carbon dioxide, particulate matter, radon, formaldehyde, and some volatile organic compounds. The
measured parameters describing acoustic and visual environments mainly comprised noise level,
reverberation time, and illuminance. A few studies reported additional measurements of radiant
temperature, operative temperature, and speech intelligibility. Measurement protocols from different
studies show inconsistency in sampling duration and location and expressed results. Measured con-
centrations also show high variation between studies, with some pollutants exceeding the threshold
values proposed by local and/or international organizations such as the World Health Organization
(WHO). This review provides the reference for developing a rating scheme and protocols for uniform
characterization of classroom IEQ.

Keywords: IEQ; thermal; acoustic; IAQ; visual; measurement

1. Introduction

Indoor environmental quality (IEQ) depends on the quality of the thermal environ-
ment, acoustic environment, indoor air quality (IAQ), and visual environment [1]. IEQ is a
primary concern because people spend a significant portion of their time in buildings [2].
A growing body of studies has shown the influence of IEQ on occupants’ health, comfort,
and well-being, at homes, offices, and schools [3,4].

In the last twenty years, it has been shown that poor schools’ IEQ can affect children’s
health. The study of Gaffin et al. [5] showed that exposure to a concentration of NO2
greater than 8 ppb in urban American schools was associated with respiratory airflow
obstruction in children. Meanwhile, a growing body of studies showed that low indoor
environmental quality in schools can impact children’s school performance. The study of
Wargocki et al. [6] showed that improved classroom ventilation, as indicated by reduced
carbon dioxide (CO2) concentrations from 2100 to 900 ppm, resulted in improved chil-
dren’s academic performance by 12%, while the performance was increased by 20% when
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classroom temperatures were reduced from 30 to 20 ◦C [7]. Most of the work published to
date examined the effects of one parameter, and no relationships were created between the
quality of the indoor environment and health effects and children’s school performance.
One reason is the complexity and cost of performing measurements. The other is the lack
of a rating scheme for IEQ. The latter is needed to take into account interactions between
different parameters and their influence on children.

Recently, Wei et al. [8] reviewed parameters measured to characterize IEQ in offices
and hotels. Nearly 100 parameters were identified, but no common rating scheme was
identified for IEQ. Consequently, the TAIL (Thermal, Acoustic, IAQ, Lighting) rating
scheme was developed including twelve IEQ parameters [9]. Moreover, the method to
predict the parameters included in TAIL through simulation was developed and is called
predicTAIL [10]. No similar rating exists for schools. In this context, the development of
this approach to assess IEQ in school buildings is a relevant issue.

Green Building Certification (GBC) schemes identify some parameters to be monitored
to describe IEQ. These are Beam plus [11], BREEAM [12], DGNB [13], Green Globes [14],
Green Mark [15], Green Star [16], GREENSHIP [17], HQE [18], KLIMA [19], LEED [20],
Lotus [21], Trees [22]. They, however, do not share similar methods or a homogeneous
approach. Furthermore, only DGNB, HQE and LEED have a specific section focusing on
classrooms and schools. GBC schemes are voluntary, therefore criteria applied in these
schemes are not systematically used during measurements in schools. In an attempt to
develop an IEQ rating scheme for schools, the present work aimed to review existing mea-
surements of IEQ parameters in schools. Three specific research questions were examined:
(1) which IEQ parameters were often measured in schools; (2) what measuring methods
were used; and (3) what are the main findings from these measurements?

2. Materials and Methods

The Scopus database was used to search for relevant literature. The following combina-
tion of keywords was used: (“indoor environmental quality” OR “IEQ” OR “thermal” OR
“acoustic” OR “indoor air quality” OR “IAQ” OR “luminous” OR “visual” OR “lighting”)
AND (“school” OR “daycare center” OR “nursery” OR “university”) AND (“measure-
ment”). To ensure a collection of studies with the latest and up-to-date measurement
protocols, the search only covered papers published from 2010 with the following topics:
environmental sciences, engineering, social sciences, energy, and multidisciplinary.

A total of 573 papers were identified. A geo-localization filter was applied as only
studies in Europe and North America were included to ensure comparability across stud-
ies regarding climate conditions, surrounding environment, and building characteristics.
Consequently, 324 articles were retained and used for screening. Non-relevant to IEQ
measurements in schools, simulation studies, and studies based only on questionnaires
were removed. This screening resulted in 79 papers. Nine additional papers were identified
and added manually although they did not appear in the initial search. Finally, 88 papers
were analyzed in this review. Figure 1 presents a PRISMA flowchart describing the paper
selection. It should be noted that 11 studies in university classrooms were included in the
review because universities are school environments, even though the students are young
adults and no longer children.
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Figure 1. Review flowchart.

3. Results

Among the 88 articles analyzed in this review, some were issued from the same study.
Two articles by Branco et al. [23,24] reported results from a measuring campaign in four
nurseries in Porto, Portugal; one focused on CO2 and comfort, the second one on IAQ
pollutants. The report by Csobod et al. [25] on the thermal environment and IAQ and the
article by Baloch et al. [26] on the results of the visual environment both reported findings
from the SINPHONIE pan-European study. Among the 88 articles, IAQ parameters were
measured in 73 studies, thermal parameters in 43 studies, visual parameters in 15 studies,
and acoustic parameters in 13 studies. In 40 studies, the parameters describing at least
two of the four IEQ components were measured. Only four studies [27–30] measured
parameters of the four IEQ components. These studies were carried out in 28 countries
(Figure S1 in Supplementary Materials (SM)).

Nine studies were conducted in day-care centers, nine in nursery schools, 40 in
elementary schools, 24 in secondary schools, 12 in high schools, and 11 in universities.
In 59 studies, schools had no mechanical ventilation system. In eight studies, an HVAC
(Heating, ventilation, and air conditioning) system with heat recovery was installed. In
nine studies, measurements were performed in both classrooms with no ventilation system
and classrooms equipped with a mechanical ventilation system. In three studies, no
information on ventilation type was available, and only acoustic and visual measurements
were conducted [31–33]. Table 1 summarizes all studies presented in this review. Table 2
summarizes the main findings with the range of results from the 88 articles.
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Table 1. Summary of the investigated studies (n = 88 articles).

Study [Reference] Location Season Type of School IEQ Component

Aguilar et al., 2022 [34] Spain Winter University Thermal, IAQ
Ahmed et al., 2019 [35] Finland, Estonia Winter Daycare, elementary Thermal, IAQ
Alves et al., 2013 [36] Portugal Winter Kindergarten,

elementary
Thermal, IAQ

Annesi-Maesano et al.,
2012 [37]

France N/A Elementary IAQ

Azara et al., 2018 Italy Spring
Summer

Elementary, secondary,
high school

IAQ

Baloch et al., 2021 [38] Europe Spring
Summer

Kindergarten,
elementary

Visual

Barmparesos et al., 2018 [39] Greece Summer Elementary Thermal, IAQ
Becerra et al., 2020 [40] Spain Spring Kindergarten,

elementary, secondary,
high school

IAQ

Branco et al., 2015 [23] Portugal Spring
Autumn

Daycare Thermal, IAQ

Branco et al., 2015 [24] Portugal Spring
Autumn

Daycare IAQ

Branco et al., 2016 [41] Portugal Year long Daycare, elementary IAQ
Brdaric et al., 2019 [42] Croatia Spring Elementary Thermal, IAQ
Buratti et al., 2018 [43] Italy Spring

Autumn
University Thermal, Acoustic,

Visual
Canha et al., 2016 [44] France Winter Daycare, elementary Thermal, IAQ

Cequier et al., 2014 [45] Norway Winter
Spring

Elementary IAQ

Chetoni et al., 2016 [46] Italy N/A Secondary, high school Acoustic
Csobod et al., 2014 [25] Europe Spring

Summer
Kindergarten,

elementary
Thermal, IAQ, Visual

de Gennaro et al., 2013 [47] Italy N/A Elementary IAQ
De Giuli et al., 2012 [48] Italy Spring Elementary Thermal, IAQ, Visual
De Giuli et al., 2014 [49] Italy Spring Elementary Thermal, IAQ, Visual
De Giuli et al., 2015 [50] Italy Spring Elementary Thermal, IAQ, Visual
de la Hoz –Torres et al.,

2022 [29]
Portugal, Spain Fall University Thermal, Acoustic,

IAQ, Visual
Dhoqina et al., 2019 [51] Albania Spring Elementary, secondary,

high school
IAQ

Erlandson et al., 2019 [52] United States University Thermal, IAQ
Fabbri 2013 [53] Italy Fall Kindergarten Thermal

Franci et al., 2014 [54] Italy Winter Elementary, secondary,
high school

IAQ

Gaffin et al., 2018 [5] United States Fall
Spring

Elementary, secondary IAQ

Harcarova et al., 2020 [28] Slovakia N/A Elementary Thermal, Acoustic,
IAQ, Visual

Heracleous et al., 2019 [55] Cyprus Winter Secondary Thermal, IAQ
Irulegi et al., 2017 [56] Spain Spring University Thermal
Istrate et al., 2016 [57] Romania Summer High school Thermal, IAQ

Ivanova et al., 2014 [58] Bulgaria Spring Kindergarten IAQ
Ivanova et al., 2021 [59] Bulgaria Fall

Winter
Elementary IAQ

Jovanovic et al., 2014 [60] Serbia Spring Elementary Thermal, IAQ
Klatte et al., 2010 [61] Germany N/A Elementary Acoustic
Kojo et al., 2020 [62] Finland Winter

Spring
Daycare, Elementary IAQ

Korsavi et al., 2019 [63] England Summer
Fall

Winter
Spring

Elementary Thermal, IAQ, Visual
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Table 1. Cont.

Study [Reference] Location Season Type of School IEQ Component

Kristiansen et al., 2011 [64] Denmark Fall
Winter
Spring

Secondary Acoustic

Krugly et al., 2014 [65] Lithuania Winter Elementary IAQ
Laborda et al., 2020 [66] Spain Winter Secondary Thermal, IAQ, Visual
Larsson et al., 2017 [67] Sweden Spring

Fall
Kindergarten IAQ

Leccese et al., 2020 [31] Italy Spring
Fall

University Visual

Liaud et al., 2021 [68] France Spring High school IAQ
Loreti et al., 2016 [30] Italy N/A Secondary Thermal, Acoustic,

IAQ, Visual
Madudeira et al., 2015 [69] Portugal Fall

Winter
Elementary Thermal, IAQ

Mainka et al., 2015 [70] Poland Winter Daycare IAQ
Mikulski et al., 2011 [71] Poland N/A Elementary Acoustic

Müllerova et al., 2017 [72] Hungary, Poland,
Slovakia

Fall
Winter

Kindergarten IAQ

Nunes et al., 2016 [73] Portugal Spring Nursery IAQ
Oldham et al., 2020 [74] United States Fall

Spring
Elementary Thermal, IAQ, Visual

Oliveira et al., 2016 [75] Portugal Spring Kindergarten Thermal, IAQ
Oliveira et al., 2017 [76] Portugal Winter

Spring
Kindergarten IAQ

Oliveira et al., 2017 [77] Portugal Spring Kindergarten Thermal, IAQ
Onishchenko et al., 2017 [78] Russia N/A Kindergarten IAQ

Papadopoulos et al., 2020 [79] Greece Winter University Thermal, IAQ
Papazoglou et al., 2019 [80] Greece Summer University Thermal

Pereira et al., 2014 [81] Portugal Spring Secondary Thermal, IAQ
Pereira et al., 2015 [82] Portugal Spring Secondary Thermal, IAQ
Persson et al., 2018 [83] Sweden Year long Kindergarten IAQ
Poulin et al., 2012 [84] Canada Winter Elementary, secondary,

high school
IAQ

Raffy et al., 2017 [85] France N/A Nursery, elementary IAQ
Ramalho et al., 2015 [86] France N/A Nursery, elementary IAQ

Rivas et al., 2014 [87] Spain Winter
Spring

Summer

Elementary, secondary IAQ

Romagnoli et al., 2014 [88] Italy Winter
Spring

Summer

Elementary, secondary,
high school

IAQ

Rovelli et al., 2014 [89] Italy Winter Elementary, secondary IAQ
Rucinska et al., 2020 [33] Poland Winter University Visual

Russo et al., 2019 [32] Italy N/A Elementary Acoustic
Sarantopoulos et al., 2014 [90] Greece Spring Elementary Acoustic
Sarka Langer et al., 2020 [91] Sweden Fall

Winter
Spring

Elementary Thermal, IAQ

Senitkova et al., 2017 [92] Czech Republic N/A Daycare Thermal, IAQ
Shield et al., 2015 [93] England N/A Secondary Acoustic

Simanic et al., 2019 [94] Sweden Fall
Winter
Spring

Elementary Thermal, IAQ

Sivanantham et al., 2021 [95] France Fall
Winter
Spring

Daycare, Elementary Thermal, IAQ

Slezakova et al., 2019 [96] Portugal Winter
Spring

Elementary IAQ



Buildings 2023, 13, 433 6 of 23

Table 1. Cont.

Study [Reference] Location Season Type of School IEQ Component

Smith et al., 2019 [97] United States N/A Elementary, secondary Acoustic
Stamp et al., 2020 [98] United Kingdom N/A Secondary Thermal, IAQ
Toftum et al., 2015 [99] Denmark N/A Elementary Thermal, IAQ
Trevisi et al., 2012 [100] Italy Year long Daycare, elementary,

secondary
IAQ

Ulla Haverinen-
Shaughnessy et al., 2015 [101]

United States Fall
Winter
Spring

Elementary IAQ

Verriele et al., 2016 [102] France N/A Elementary, secondary Thermal, IAQ
Vilcekova et al., 2017 [27] Slovakia Fall Elementary Thermal, Acoustic,

IAQ, Visual
Villanueva et al., 2018 [103] Spain Spring Elementary IAQ

Vornanen Winqvist et al.,
2018 [104]

Finland Spring Secondary Thermal, IAQ

Vornanen Winqvist et al.,
2020 [105]

Finland Winter Secondary Thermal, IAQ

Z.Curguz et al., 2020 [106] Bosnia and
Herzegovina

N/A Elementary, secondary,
high school

IAQ

Zecevic et al., 2018 [107] Bosnia and
Herzegovina

Winter
Summer

University Thermal, IAQ

Zhong et al., 2017 [108] United States Winter
Spring

Elementary Thermal, IAQ

Živković et al., 2015 [109] Serbia Winter
Spring

Elementary, secondary,
high school

IAQ

Table 2. Summary of the main results (n = 88 articles).

Parameters Number of Studies Main Findings Reference Values

Thermal environment

Air temperature (◦C) 43 Western Europe: Range: 13 ◦C
to 38 ◦C with a mean of 22 ◦C

Northern Europe: Range:
12 ◦C to 26 ◦C with a mean of

21 ◦C

22 ± 1 ◦C
(EN 16798-1)

Relative humidity (%) 43 Naturally ventilated
classrooms range 22% with a

mean air temperature of 23 ◦C
to 78% with a mean air
temperature of 25 ◦C.

Mechanically ventilated
classrooms, range: 30 to 72%

30–50%
(EN 16798-1)

PMV/PPD (derivative) 8 Mean result: ±0.5 from 0 ◦C ±0.2 ◦C (EN 16798-1)
Mean radiant temperature (◦C) 7 Range: 13 to 24 ◦C N/A

Air speed (m/s) 7 All reported results are under
0.1 m/s

N/A

Operative temperature (◦C) 5 Range: 19 to 22 ◦C N/A
Acoustic environment

Background noise level (db(A)) 8 Range: 41 to 82 db(A) <30 db(A) (EN 16798-1)
Reverberation time (s) 8 Range: 0.9 to 1.1 s 0.5 s for small spaces

0.8 for large spaces (EN
16798-1)

Speech intelligibility (%) 7 SNR range: 12 ± 3.6 db
STI range: 41–76%

C50 range: −6.3 to 5.6 db

N/A
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Table 2. Cont.

Parameters Number of Studies Main Findings Reference Values

IAQ
CO2 (ppm) 42 Naturally ventilated

classrooms, range: 591 to
3494 ppm

Mechanically ventilated
classroom, all under 1000 ppm

≤550 ppm (concentration
above outdoor)
(EN 16798-1)

PM (µg/m3) 22 PM10 range: 34 to 2061 µg/m3

PM5 range: 31 to 206 µg/m3

PM2.5 range: 1.3 to 106 µg/m3

PM1 range: 6.0 to 33 µg/m3

PM0.5 range: 2.1 to 22 µg/m3

PM2.5 ≤ 5 µg/m3

(WHO)

Radon (Bq/m3) 16 Range: 56 to 579 Bq/m3 100 Bq/m3 (WHO)
BTEX (µg/m3) 14 Benzene range: 0.5 to

3.2 µg/m3

Toluene range: 0.2 to
17 µg/m3

Ethylbenzene range: <Limit of
detection to 9.0 µg/m3

Xylene range: 1 to 12 µg/m3

Benzene: <2 µg/m3

SVOCs (ng/m3) Tables S14–S16 N/A
Aldehydes (µg/m3) 15 Formaldehyde range: 1.4 to

89 µg/m3
Formaldehyde: <30 µg/m3

ACR/ VR (h−1 or l/s/p) 11 ACR range: 0.1 to 0.4 h−1

VR range: 0.8 l/s per person
to 3.4 l/s per person

≥10 L/s per person +
2.0 L/s/m2 floor

VOCs (µg/m3) 10 Table S12 N/A
NO2 (µg/m3) 11 Range: 4.9 to 125 µg/m3 <10 µg/m3 (WHO)

Mold inspection (cm2 or CFU/m3) 4 Range: 22 to 260 CFU/m3 <400 cm2 (Nordic
classification and Levels)

Visual environment
Artificial illuminance (lx) 4 Range: 241 to 748 lx 500 lx

Can be drop to 300 lx for
younger children (EN 12464-1)

Total lighting (natural + artificial) 4 Table S19 N/A
Natural lighting 3 Table S19 >5% (EN 17037)

3.1. Thermal Environment

Thermal environment was assessed in 43 studies. The air temperature, radiant tem-
perature, operative temperature, humidity or air speed were measured. Some studies
additionally estimated thermal comfort using the model developed by Fanger [110].

3.1.1. Air Temperature

The air temperature was measured in 43 studies; it was often measured simultaneously
with relative humidity. Measurements were performed during winter (heating season) in
eight studies, during non-heating season, i.e., spring and autumn in 29 studies, during
summer in six studies, and seven studies did not provide any information.

Temperature was mainly recorded continuously for the periods of over thirty minutes
to three months with a time step ranging from two to ten minutes. In three studies, only spot
measurements were carried out. In one study, a combination of continuous measurements
over three months and spot measurements four times in each classroom were carried out.

Different numbers of sensors, at various locations in each classroom, were used. Thirty-
eight studies used only one sensor for each classroom, and three studies used three sensors
per classroom. Laborda et al. [66] measured air temperature in 12 locations in the classroom:
six at 0.6 m and six at 1.7 m, divided into two arrays close to the window and next to the
entrance doors. Papadopoulos et al. [79] measured air temperature in 11 locations in the
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classrooms, with their height situated from 0.5 to 2.5 m above the ground to be compliant
with the students’ breathing zone. Nine studies reported that their sensors were placed
at 0.6 m above the ground, and seven other studies placed their sensors from 0.7 to 2 m
above the ground. Fabbri et al. [53] measured air temperature at two different heights: 0.6
and 1.3 m. The detailed protocols and results can be found in Table S1 in Supplementary
Materials.

Studies from Western Europe (Italy, Spain, Portugal, France, and Greece) measured
temperatures ranging from 13 to 38 ◦C with a mean of 22 ◦C. Studies from Northern Europe
(Sweden and Finland) measured temperatures ranging from 12 to 26 ◦C with a mean
of 21 ◦C.

3.1.2. Humidity

Relative humidity (RH) was measured simultaneously with air temperature using
hygrometer sensor. In one study, absolute humidity was also determined along with
relative humidity. Humidity was reported in 43 studies. Findings on the number of
sensors, their location, and the duration of measurements are identical to air temperature
measurements since the two parameters were always measured together in the reviewed
studies. RH ranged between 22% with a mean air temperature of 23 ◦C and 96% with a
mean air temperature of 25 ◦C. Among the classrooms with mechanical ventilation, the
relative humidity varied between 30 and 72%, while the air temperature varied between
21 and 25 ◦C.The detailed protocols and results can be found in Table S2 in Supplementary
Materials.

3.1.3. Mean Radiant Temperature

Mean radiant temperature was measured in 11 studies. In eight studies, the mea-
surements were made using one globe thermometer, placed in the center of the room in
each study, with a measurement duration ranging from one to five days. Other studies
made spot measurements of the radiant plane temperature to estimate the mean radiant
temperature but the monitoring protocol was not detailed and in two studies, air and mean
radiant temperature were measured over 24 h. Papadopoulos et al. [79] used a thermal
imaging camera to estimate the mean radiant temperature from surface temperatures.
The mean radiant temperature measured in the 11 studies ranged between 13 and 24 ◦C.
Table S3 in Supplementary Materials shows the details concerning measuring protocols
and results.

3.1.4. Operative Temperature

Operative temperature was reported in six studies based on the measurement of globe
temperature, and air velocity. In these studies, a small sample of classrooms (less than
ten) was monitored, but the measurements were made at different classroom locations
and repeated. In their study in 145 classrooms in Sweden, Simanic et al. [94] assumed
that the operative temperature was similar to air temperature, as these schools were
well insulated [15].Reported operative temperature from five studies ranged from 19 to
22 ◦C. Table S3 in Supplementary Materials provides details regarding measuring protocols
and results.

3.1.5. Airspeed

Airspeed was measured in 12 studies in schools. These measurements were made to
assess thermal comfort. Spot measurements were always made using an anemometer, but
its position was never clearly mentioned. The reported results were all under 0.1 m/s.

3.2. Acoustic Environment

Thirteen studies reported measurements of parameters characterizing acoustic envi-
ronment in schools. Parameters measured included noise level, reverberation time (RT)
and speech intelligibility.
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3.2.1. Noise Level

The background noise level was the most frequently measured acoustic parameter. It
is also a parameter commonly used to assess occupants’ long-term noise exposure [111].
Background noise level can be estimated using the variation of the pressure in the air caused
by sound waves (sound pressure level-SPL) or the equivalent continuous sound level, e.g.,
LAeq, defined as the total energy from the sound pressure level during the measurement
period [112].

LAeq was measured in nine studies, with one or two sound meters per classroom. The
location of the sound meter was mentioned in three studies: Chetoni et al. [46] measured in
the center of the room and one meter from the window, Shield et al. [93] also measured at
two positions in the classroom, and de la Hoz-Torres et al. [29] only used one sound-meter
placed in the center of the room.

Measurements were a spot measurement of one minute or continuous from two hours
to two days. In some studies, measurements were made during day without students in
the classrooms, while in other studies, measurements were made when the students were
occupying the classrooms.

The average measured LAeq in studied classrooms varied between 29 and 82 dB(A).
Chetoni et al. [46] used the LDAY indicator, defined as the daily LAeq over the 12 h diurnal
period from 7 a.m. to 7 p.m. since this parameter is used in Italy’s national regulation
for outdoor acoustic. The LDAY ranged between 23 and 63 dB(A). Smith et al. [97] in their
study quantified the influence of the different mechanical ventilation systems (single- and
multi-zone HVAC systems) on the non-speech noise during occupied periods. The average
LAeq was 66 dB(A) for unit ventilators, 67 dB(A) for centralized systems, and 66 dB(A) for
systems with decentralized heat pumps. Details on measurement protocol and results can
be found in Table S4 in Supplementary Materials.

3.2.2. Reverberation Time

A room reverberation time (RT) expresses the time required for the sound to decay
after the sound source has stopped; for example, T20 is the time it takes for sound to
decay by 20 dB, and T60 is the time for a decay of 60 dB, T20 as the time for a decay by
20 dB, respectively [112]. There is a linear relationship between T20 and T60 in the same
environment, as the measurement of T20 can be used to evaluate T60, which is the case in
the study by Loreti et al. [30].

RT was measured in in four studies in Italy [30,32,43,46], one study in Poland [71],
one in Denmark [64], one in Germany [61], and one in England [93]; all referred to the
measurement methods defined in the ISO 3382 standard [112], using an impulsive response
method for a controlled and continuous (white noise) generated by an omnidirectional
loudspeaker, blank gun noise, or maximum-length sequence signals. Two to twelve micro-
phones were placed in children’s seat positions, i.e., at least 1.1 m of height, and the results
were expressed as the average of all these measurements. Mikulski et al. [71] measured
the Tmf which is the arithmetic mean of RT for 500 Hz, 1000 Hz, and 2000 Hz, as well as
the Twf which is the arithmetic mean of RT for 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and
4000 Hz. The authors specified that measuring Tmf alone does not always correspond with
the subjective evaluation of the acoustical properties of the room. Other studies, such as the
Klatte et al. [61] study, measured the T20 averaged from results of octave bands from 250 to
2000 Hz. The measured RT ranged from 0.9 to 1.1 s for T60 and 1.1 to 1.4 s for T20. Details
on measurement protocol and results can be found in Table S6 in Supplementary Materials.

3.2.3. Speech Intelligibility

Speech intelligibility depends on the spoken language familiarity of the listeners
and is limited in children due to a lack of vocabulary and grammar skills [113]. Speech
transmission is the physical measurement of the speech intelligibility, which depends on
classroom acoustic characteristics such as the RT and the background noise level.
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One indicator of speech intelligibility is the signal-to-noise (SNR) ratio. It is defined as
the ratio of the signal power to the background noise power and is expressed in decibels. A
review on speech intelligibility in school has shown that high background noise levels can
mask speech sounds, as the authors stated that a recommended SNR should be greater than
+15 dB, and ideally at +25 dB [114]. Sarantopoulos et al. [90] measured the SNR using LA90
in an occupied classroom with a teacher talking. LA90, defined as the 90th percentile of
LAeq in a one-minute measurement period, was considered as a proxy to background noise
during the active teaching period. The SNR was calculated by subtracting the measured
teacher’s speech noise to the LA90. For 41 teachers in 15 classrooms, the average SNR for
teaching was 12.0 ± 3.6 dB(A), ranging from +6.8 dB(A) to + 21.6 dB(A).

Another indicator of speech intelligibility is the speech transmission index (STI),
which ranges between 0 and 100% and represents the transmission quality of speech
concerning intelligibility by a speech transmission channel, according to the standard EN
60268-16, 2011 [115]. STI was assessed in four studies in Italy [30,32,43,46], one study in
Poland [71], and one in England [93] by emitting a speech-like sound signal and measuring
its transmission quantity at another point in the room, referring to the methods described
in the standard EN 60268-16, 2011 [115]. Measurements were performed in unoccupied
classrooms as students’ presence can alter the STI results, and the results ranged from
41 to 76%.

The clarity index is also used to assess speech intelligibility. It is the difference between
the emitted sound energy and the later arriving sound energy after a time limit [112],
expressed in dB. C50 is the clarity index in case of a time limit of 50 ms (ISO 3392-1
standard, 2010). C50 was measured simultaneously with STI in the same three studies in
Italy [30,32,43], and in one study in England [93]. The results ranged from −6.28 to 5.55 dB
in 66% of classrooms. Details on measurement protocol and results of measured SNR, STI,
and C50 can be found in Table S5 in Supplementary Materials.

3.2.4. Sound Insulation

Sound insulation is the ability of buildings’ components to reduce sound transmission
through the envelope and the internal walls and floors. Façade insulation measurement
can be determined by measuring the airborne sound reduction index between outside and
inside the buildings. Different methods exist (ISO 16283-3 standard, 2016 [116]) and aim
at assessing either the sound reduction index of an element of the building façade, such
as windows, or the reduction of indoor noise levels due to building façade with actual
traffic conditions. In some countries, minimum sound insulation level requirements exist in
building regulations: at least 38 dB(A) façade insulation in the Italian technical regulation
and at least 30 dB(A) façade insulation in the French regulation [116].

Chetoni et al. [46] in Italy determined the total insulation of the school building façade
exposed to road traffic and calculated the weighted standardized level insulation (D2m,nT,w),
following ISO 16283-3 [116]. The study found that the façade insulation index was below
the regulatory value of 38 dB in 23 out of 24 classrooms. Different classrooms in the same
school had different results, as there are various conditions of poor quality or even damaged
windows and doors.

In the same study, airborne sound insulation between two classrooms or between
classrooms and corridors was assessed by measuring wall insulation between interior
spaces (R’w). Results showed that in 11 out of 24 classrooms, the R’w between two class-
rooms [46] was below the Italian regulatory value of 41 dB [54]. A large variability of R’w
(at a maximum of 18 dB) between the classrooms was observed. It was explained by the
different construction technologies, either with load bearing or only with a partition wall.

3.3. Indoor Air Quality (IAQ)

IAQ depends on the concentrations of pollutants having outdoor or indoor origin.
Sixty-two studies performed IAQ measurements, including the following parameters: car-
bon dioxide, different ventilation parameters, formaldehyde and other aldehydes, volatile



Buildings 2023, 13, 433 11 of 23

organic compounds (VOC), semi-volatile organic compounds (SVOC), particulate matter,
nitrogen dioxide, bio-contaminants and radon.

3.3.1. Carbon Dioxide (CO2), Ventilation Rate (VR), and Air Change Rate (ACR)

CO2 is a marker of ventilation adequacy in the presence of people indoors and is
the most prevalently measured parameter in connection with IAQ monitoring [117]. CO2
was measured mainly with a non-dispersive infrared (NDIR) sensor. The concentrations
were determined using spot or continuous measurements, the latter for a period of 30 min
to three months with a time interval ranging from two to ten minutes. The number of
measurement locations was either one in the center of the room or in multiple locations.

Across 32 studies that measured CO2 in a naturally ventilated classroom, average mean
concentrations ranged between 591 and 3494 ppm. In all naturally ventilated classrooms,
CO2 concentration varied throughout the day depending on children’s presence and the
frequency of window opening. Studies in classrooms equipped with mechanical ventilation
systems showed that CO2 concentrations did not exceed 1000 ppm.

Details on measurement protocols of CO2 and results from studies can be found in
Table S7 in Supplementary Materials.

The air change rate (ACR) and ventilation rate (VR) can be calculated using the
measured CO2 concentrations. Six studies calculated the ACR using the CO2 decay rate
during the non-occupied period, and one study calculated VR using the CO2 production
rate during the occupied period. The estimated ACR ranged between 0.11 and 0.39 h−1 in
naturally ventilated classrooms, and between 1.4 and 3.2 h−1 in classrooms with mechanical
ventilation systems.

In 70 classrooms equipped with either air handling units (17%), fan coil units (21%),
or individual unit ventilators (62%) in the USA, VR was calculated using the peak level of
measured CO2 and mean VR was estimated to be 3.6 ± 2.3 L/s per person. The VR was cal-
culated using measured CO2 concentrations in 51 classrooms in France (14 classrooms had
mechanical ventilation systems and 37 had natural ventilation). Mean VR was estimated
to be 4.2 ± 1.7 L/s per person in mechanically ventilated classrooms and 2.4 ± 1.4 L/s
per person in naturally-ventilated classroom. In the pan-European SINPHONIE study,
the mean VR ranged from 0.87 L/s per child in Western Europe to 3.4 L/s per child in
Northern Europe.

Detailed protocols regarding ACR/VR can be found in Table S8 in Supplementary
Materials.

3.3.2. Formaldehyde and Other Aldehydes

Formaldehyde was measured in 15 studies, while other aldehydes were measured
in six studies. A summary of formaldehyde measurements is provided in Table S9 in
Supplementary Materials while Table S10 presents the measurements of other aldehydes.

Formaldehyde can be measured using passive (12 studies) or active (three stud-
ies) methods. It is sampled on a cartridge containing an organic reagent, such as 2,4-
dinitrophenylhydrazine (DNPH), then analyzed with high-performance liquid chromatog-
raphy (HPLC) and ultraviolet (UV) detection, as recommended in the ISO 16000-4 stan-
dard [118] for lightweight aldehydes. One or two passive samplers were deployed per
classroom, and their locations were not always reported. The sampling duration for passive
samplers ranged from two days to two weeks. The three studies that used active sampling
had measured in either spot measurements from one minute [24] and 30 min [108], or
2.5 h [119]. The mean concentration of formaldehyde ranged between 1.4 and 89 µg/m3.
Summaries of measurement protocols and results of formaldehyde and other aldehydes
are provided in Tables S9 and S10 in Supplementary Materials.

3.3.3. Volatile Organic Compounds (VOCs)

The most frequently measured VOCs were BTEX: benzene, toluene, ethylbenzene, and
xylenes. Fourteen studies measured BTEX, among which three also measured concentration
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of total volatile organic compounds (TVOC), and eleven measured a larger number of VOCs.
Three studies used a portable analyzer including a photoionization detector with UV to
measure organic compounds. The other studies used diffusive passive samplers for a
duration of two to four weeks. The location of the samplers was usually in the center
of the room with other measurement devices, but in most studies, it was not reported.
The mean indoor concentrations ranged between 0.5 and 3.2 µg/m3 for benzene, 0.2 and
17 µg/m3 for toluene, less than the limit of detection and 9.0 µg/m3 for ethylbenzene, and
0.6 to 12 µg/m3 for xylenes. A summary of all the measured BTEX compounds and other
VOCs, their protocols and results can be found in Table S11 and Table S12 in Supplementary
Materials, respectively.

3.3.4. Semi-Volatile Organic Compounds (SVOCs)

SVOCs are less volatile than VOCs and can also be present in the particulate phase in
addition to the gas phase. Four groups of SVOCs were measured and reported in eleven
studies. They were polycyclic aromatic hydrocarbons, PAH (acenaphthene, anthracene,
benzo(a)pyrene), flame retardants (tributylphosphate, polybrominated diphenyl ethers),
phthalates (BBP, DBP, DEHP, DEP, DiBP), and synthetic musks (tonalide, galaxolide). Phtha-
lates were the most frequently detected SVOCs in the air. Active sampling on polyurethane
foam (PUF) was often used to trap the SVOC gas phase. The samples were then ana-
lyzed using GC-MS. The sampling duration ranged from 24 h to one week at one point
in the room, with the accurate location not specified. SVOC measurement protocols and
concentrations can be found in Tables S14–S16 in Supplementary Materials.

3.3.5. Particulate Matter (PM)

Particulate matter (PM) can originate from indoor (e.g., cooking and heating) and
outdoor (e.g., traffic) sources. Twenty-two studies measured PM in classrooms, among
which ten measured PM10, 21 measured PM2.5, one measured PM4, two measured PM1,
and one measured PM0.1.

PM concentrations can be measured using optical and gravimetric methods. Optical
PM counters use a laser to count the particles passing a small volume, with results expressed
in the total particle count adjusted to the volume. The gravimetric method uses an air pump
to drive air through an impactor that collects PM according to their size. Eight studies used
an optical counter, and twelve used the gravimetric method to measure PM concentrations.
Two studies used condensation particle counters (CPC) that can measure small particles,
such as PM0.1 and PM0.5. The sampling duration ranged from eight hours to ten months,
with a time interval from one to ten minutes. The sampling locations in the classrooms
were not specified.

The measured concentrations ranged from 34 to 2061 µg/m3 for PM10, and from 1.3
to 106 µg/m3 for PM2.5. PM1 was measured in one study with a mean concentration of
19.2 ± 7.2 µg/m3 in two classrooms during school hours. One study measured PM0.5 in two
classrooms and reported concentrations ranging from 2.1 to 22 µg/m3. One study measured
the ultrafine particles, with concentrations ranging from 1560 to 16,780 particles/cm3. The
measurement protocols and results can be found in Table S13 in Supplementary Materials.

3.3.6. Nitrogen Dioxide (NO2)

Nitrogen dioxide (NO2) is primarily emitted by combustion and mainly comes from
outdoors, particularly from traffic. Among eleven studies that measured NO2, nine con-
ducted long-term (five to fourteen days) passive measurements, and two used a chemi-
luminescence continuous analyzer for a period of thirty minutes or 24 h. The location
of the samplers was usually in the center of the room with other measurement devices,
but in most studies, it was not reported. The mean NO2 concentration ranged from 4.9 to
125 µg/m3, with a maximum concentration of 292 µg/m3. Details on the measurement
protocols and results can be found in Table S17 in Supplementary Materials.
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3.3.7. Bio-Contaminants

Dampness and high relative humidity in buildings lead to microbial growth, dust
mites and their allergens [120]. Bio-contaminants assessment was reported in three studies
in Finland, one in Portugal, and in one pan-European study.

Mold exposure can be assessed either by visual inspection or by measurements of
airborne spores. Visual inspection has been reported in one study in Finland, with two
out of seventeen schools showing visible mold. For measurements of airborne spores, two
studies in Finland measured indoor airborne cultivable microorganisms, and reported an
average concentration of 22 to 260 CFU/m3 of airborne cultivable microorganisms. Finally,
the SINPHONIE pan-European study reported that 7% of classrooms had visible signs
of mold.

3.3.8. Radon

Radon is a chemically inert gas emitted naturally from underground. It was measured
in sixteen studies identified in the present review. Measurements can be made with a
passive dosimeter, which was the case in fifteen studies, for a duration ranging from
three months to one year. Passive dosimeters were placed on the ground floor or on the
lowest floor of the buildings. Only one study used an active measurement device that
provided a value every sixty minutes over 24 h. The mean radon concentration ranged
from 56 to 579 Bq/m3. The measurement protocol and the results showing measured radon
concentrations are presented in Table S18 in Supplementary Materials.

3.4. Visual Environment

Lighting conditions determine the quality of the visual environment. They include
the contributions of both daylight and artificial light emitted by the installed luminaires.
Visual environment was investigated in 15 studies; most of them were spot measurement
using an illuminance meter placed at students’ desks. The number of measurement points
varied from one per class to 319. Leccese et al. [31] measured numerous parameters for the
purpose of determining the most influential parameters on students’ visual comfort.

3.4.1. Daylighting

Daylighting measurements can be made by assessing the daylight factor via simulation
or by simply measuring desk illuminance in classrooms with artificial light turned off.
Daylight factor (%) is the ratio between the indoor horizontal illuminance at a given location
and the outdoor horizontal illuminance measured under the unobstructed sky vault in
overcast conditions. One study reported the daylight factor, with a result of 2.2%. Leccese
et al. [31] also reported that daylight glare is the most important factor contributing to
students’ visual comfort.

Five studies reported daylighting by measuring the total illuminance with artificial
lighting on students’ desk. Rucinska et al. [33] measured the average illuminance in a
classroom during two periods: one period with a clear sky and the other period with
an overcast sky. This study included the highest number of measurement points per
classroom, with 319 points grouped in three different longitudinal rows of tables, i.e., near
the windows, in the middle of the room, and next to the entrance door away from the
windows. Results showed a 9-fold decrease of mean illuminance in the middle of the room
and an 18-fold decrease next to the entrance door, compared to the illuminance on the desks
near the windows. In overcast conditions, these ratios were about 3 and 8, respectively. In
the other studies, mean measured total illuminance ranged from 303 lx to 1255 lx.

3.4.2. Artificial lighting

Artificial lighting is provided by luminaires installed inside the classroom. Artificial
lighting should be able to compensate for an insufficient level of daylight indoors.

The measurement of artificial lighting follows the same principle with the use of an
illuminance-meter. To correctly evaluate only artificial lighting, measurements should
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be done with controlled daylighting, by selecting low daylight timeframe, or simply by
closing solar protections if any in the classroom. All performed measurements were spot
measurements. Artificial lighting was measured in eight studies. Six out of the eight studies
measured only at the center of the classroom, one study reported at least four measurements
points and one study measured at six points in the room, additionally reporting the values
of the lighting uniformity factors. The illuminance values reported were in the range of
241 lx to 748 lx. Table S19 combines all measurement protocols and results of all studies on
lighting conditions.

4. Discussion

This review highlighted that out of the 88 reviewed articles, all four components of IEQ
were measured only in four studies [27–30]. Identical parameters were measured in these
four studies (air temperature, RH, CO2, illuminance, noise level), with a sample size of less
than five classrooms in three studies. The study by de la Hoz–Torres et al. [29] measured
IEQ parameters in 15 classrooms in six buildings in Portugal and Spain. As shown in
Figure 2, eight studies measured at least three out of the four IEQ components—seven
studies measured IAQ, visual and thermal parameters [25,48–50,63,66,74], and one study
measured visual, thermal and acoustic parameters [43].
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As shown in Figure 3, most studies had a small sample size; the median was six schools
and 17 classrooms. Twenty-six studies only measured IEQ parameters in one school, and
thirteen of them only instrumented one classroom. In 19 out of these 26 studies, there
were at least two IEQ components measured including three studies that measured all four
IEQ components [27,28,30]. In 11 studies that targeted more than 100 schools, only three
performed measurements of more than one IEQ component, including the pan-European
SINPHONIE study, which measured thermal, IAQ, and visual parameters in 114 schools
and 342 classrooms across 23 countries [25,38]. One study had the largest sample size of
1000 classrooms in 438 schools but only radon was measured with passive dosimeters [100].
Overall, it was seldom that many parameters were measured when the study included
many classrooms and schools.
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Among the different aspects retrieved from the reviewed studies (sampling location,
type of sampling, duration, etc.), the measured parameters were the first point of interest
of the review. Targeted parameters varied between studies depending on their objective
and their capabilities in terms of equipment, safety considerations, and cost. Whilst most
parameters could be used to characterize IEQ or evaluate children’s pollutant exposure and
comfort, some parameters show limitations. Indeed, to characterize thermal environment,
air temperature was measured in all studies. However, this measurement may not be suffi-
cient to characterize children’s thermal sensations which depends also on other parameters
such as relative humidity, airspeed, and mean radiant temperature [53,121]. Operative tem-
perature is based on the measurement of air temperature with a temperature thermocouple
sensor, air velocity with an anemometer, and mean air radiant temperature with a globe
thermometer. It requires advanced measurement systems which are complex and expensive
to implement in a large sample of classrooms over a long period [94]. We stipulate that
it was the reason why it was measured only in five studies and in two of them as spot
measurements before the monitoring week due to the safety considerations [27,81]. In
these studies, the differences between mean radiant temperature and air temperature were
always below 3 ◦C, suggesting that the choice of measuring air temperature is somewhat
justified. In 145 classrooms of six schools in Sweden, air temperature was measured from
May to October and the difference between operative temperature and air temperature was
below 1 ◦C because the schools were well insulated; this provides additional justification
for using only air temperature measurements [94].

The second discussion point deals with the measurement protocols. Measuring proto-
cols for some parameters have shown significant differences in sampling strategies and
statistical indicators. The sampling strategies were inhomogeneous concerning the position,
the height, the duration of the measurements in the classrooms, the sampling frequency,
and the devices ‘accuracy’ were not systematically mentioned in many studies including
calibration. This variability was observed for the four IEQ components, especially for the
numerous IAQ parameters. For example, particles were monitored with optical or gravimet-
ric methods, with various sampling strategies during occupancy or non-occupancy periods.
These variations were also observed for the background noise level, which was measured
either when children were in the classrooms or not in the classrooms. These differences led
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to inhomogeneity in results, metrics, and difficulty to interpret the results. Many measuring
methods and indicators were complex and trained field technicians were needed to perform
measurements. This mainly concerns parameters of acoustic and visual components. For
example, speech intelligibility, essential for providing an adequate learning environment for
children, was measured in five studies using three different indicators: SNR, STI, and C50,
RT, which is also an essential factor for acoustic quality in classrooms [122], was measured
with different protocols, especially for the generation of the noise, but always followed
the standard ISO 3382 [112]. For the visual environment, many parameters, including
illuminance, uniformity, luminance distribution, glare, effects of temporal light modulation
such as flicker and the stroboscopic effect, and color temperature, should be considered to
have well-balanced lighting in classrooms essential for health, well-being, and learning.
Illuminance on desks was measured in all the studies dealing with visual environment. It is
the less complex parameter to assess using a lux-meter. Other indices, such as glare indices,
have been shown to have more impact on students’ perception but are based on equations
correlating luminance values in the occupant’s field of view and human’ sensation. These
parameters were only measured one time, in one lighting’s specific study in one classroom,
demonstrating its difficulty to implement them in a large sample of schools [31]. The factors
that primarily influence occupant visual comfort were daylight glare and luminance, which
are not commonly measured as previously mentioned.

Finally, main results from the reviewed studies provide an overall picture of IEQ in
schools within the scope of our review. Most IEQ parameters identified in this review
have reference values in the regulations, standards, and guidelines from WHO and the
governments or GBC. Table 2 presents the summary results for each IEQ parameter from 88
retrieved papers and their reference values. IAQ parameters have fewer guideline values
compared to other parameters, especially for VOCs and SVOCs. While a growing body
of studies on IAQ parameters in schools has shown associated risks to children’s health,
well-being, and cognitive performance, further development and future studies are still
needed to highlight the relationship between children’ exposure to air pollutants and health
outcomes, for the purpose of establishing their reference values. For acoustic and visual
components, some parameters are regulated in European countries and the USA for school
buildings, such as façade insulation, sound insulation between two rooms, and RT. The
illuminance-regulated value has been mentioned in the labor code in France. This review
highlighted that many parameters in the four components exceeded threshold values [123].

This review creates the background for developing an IEQ rating scheme in schools
by listing the measured parameters and assessing their respective prominence, limitation,
and applicability to the school environment. The most measured parameters for the four
IEQ components are air temperature and relative humidity for thermal, concentrations of
carbon dioxide, particulate matter, radon, formaldehyde, and some volatile organic com-
pounds for IAQ, noise level, and reverberation time for acoustic and illuminance for visual
environments. The popularity of these parameters in studies indicates their pertinence in
characterizing the IEQ parameters in schools. However, a consensus measurement protocol
of all IEQ parameters must be set to facilitate inter-comparison between measurements at
different schools. Another question can be raised on whether and how occupant perception
can be used to assess the IEQ, as studies have shown limitations of some parameters when
evaluating children’s comfort. Future works should propose harmonized protocols and
define the threshold values for each parameter to ensure children can spend time at school
without harming their health, well-being, and cognitive performance.

5. Conclusions

This review provides an overview of IEQ parameters measured in schools in Europe
and North America since 2010 and compares different monitoring protocols and results in
88 articles. This review aims to provide an overview of IEQ parameters often measured
in schools, their measuring methods, and the main findings from these measurements.
These studies mainly focused on individual IEQ components in small samples of schools
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(median of six schools). Twenty-two parameters or families of parameters were reviewed.
Measurement protocols, including the number and position of samples and the sampling
duration, did not present a consensus between studies, which leads to the difficulty in
comparing the results. Some parameters also present limitations in the current schools’
environment and need further developments to be adapted to the school’s environment
and children’s exposure. Air temperature and relative humidity for thermal, concentrations
of carbon dioxide, particulate matter, radon, formaldehyde, and some volatile organic com-
pounds for IAQ, noise level, and reverberation time for acoustic and illuminance for visual
environments can be defined as adequate parameters for the purpose of characterizing IEQ
in schools.

Overall, a holistic approach to quantifying IEQ in schools is needed with a set of
measurable parameters for the four components with consensus on measurement protocols,
and threshold values that reflect children’s pollutant exposure and comfort perception.
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Nomenclature

Abbreviation Signification
IEQ Indoor environmental quality
IAQ Indoor air quality
CO2 Carbon dioxide
TAIL Thermal, Acoustic, IAQ, Lighting
GBC Green building certification
SM Supplementary material
HVAC Heating, ventilation, and air conditioning
PMV Perceived mean vote
PPD Percentage person dissatisfied
VOCs Volatile organic compounds
BTEX Benzene, toluene, ethyl-benzene, xylene
SVOCs Semi-volatile organic compounds
PM Particulate matter
ACR Air change rate
VR Ventilation rate
NO2 Nitrogen dioxide
CFU Colony forming unit
RH Relative humidity
LAeq Background noise equivalent level
RT Reverberation time
SNR Speech to noise ratio
STI Speech transmission index
HPLC High-performance liquid chromatography
UV Ultra violet
TVOC Total volatile organic compounds
DNPH 2,4-dinitrophenylhydrazine
PAH Polycyclic aromatic hydrocarbons
BBP, DBP, DEHP, DEP, DiBP Phthalates
PUF Polyurethane foam
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