
Citation: Li, Y.; Im, P.; Lee, S.; Bae, Y.;

Yoon, Y.; Lee, S. Sensor Incipient

Fault Impacts on Building Energy

Performance: A Case Study on a

Multi-Zone Commercial Building.

Buildings 2023, 13, 520.

https://doi.org/10.3390/

buildings13020520

Academic Editors: Rafik Belarbi

and Md Morshed Alam

Received: 13 December 2022

Revised: 19 January 2023

Accepted: 7 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Sensor Incipient Fault Impacts on Building Energy Performance:
A Case Study on a Multi-Zone Commercial Building
Yanfei Li 1, Piljae Im 2,*, Seungjae Lee 3, Yeonjin Bae 1, Yeobeom Yoon 2 and Sangkeun Lee 4

1 Electrification and Energy Infrastructures Division, Building Technologies Research and Integration Center,
Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA

2 Buildings and Transportation Science Division, Building Technologies Research and Integration Center,
Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA

3 Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St,
Toronto, ON M5S 1A4, Canada

4 Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd,
Oak Ridge, TN 37830, USA

* Correspondence: imp1@ornl.gov

Abstract: Existing studies show sensor faults/error could double building energy consumption
and carbon emissions compared with the baseline. Those studies assume that the sensor error is
fixed or constant. However, sensor faults are incipient in real conditions and there were extremely
limited studies investigating the incipient sensor fault impacts systematically. This study filled in this
research gap by studying time-developing sensor fault impacts to rule-based controls on a 10-zone
office building. The control sequences for variable air volume boxes (VAV) with an air handling unit
(AHU) system were selected based on ASHRAE Guideline 36-2018: High-Performance Sequences
of Operation for HVAC Systems. Large-scale simulations on cloud were conducted (3600 cases)
through stochastic approach. Results show (1) The site energy differences could go −3.3% lower or
18.1% higher, compared with baseline. (2) The heating energy differences could go −66.5% lower or
314.4% higher, compared with baseline. (3) The cooling energy differences could go −11.5% lower
or 65.0% higher, compared with baseline. (4) The fan energy differences could go 0.15% lower or
6.9% higher, compared with baseline.

Keywords: building energy; sensor impact; building control; incipient sensor faults

1. Introduction

The building sector consumes 40% of energy consumption and 16% carbon emissions
in the United States, based on the 2020 Energy Outlook from the United States Energy
Information Administration [1]. It has remained a challenge to reduce building energy
consumption and carbon emissions, although many advanced building technologies have
been proposed. A few well-known technologies are continually evolving, such as ground
source heat pumps [2] and heat pumps in cold climates [3], with the goal of building elec-
trifications and carbon reductions. For any of those building heating/cooling equipment,
control loops are an essential part of the system, aiming for optimal operation to reduce
energy consumption, power demands, and carbon emissions.

In the past 10 years, building controls have been actively advancing and sensors have
not been well studied. Sensors are critical components for controls systems, collecting
inputs to controls for subsequent control actions. When sensors work in fault (or unhealthy)
conditions, the control benefits will be compromised regardless of the effectiveness of
the controls [4]. Buildings are easily operating under fault conditions [5]. For buildings,
multiple components directly influence the sensor placement and deployment, such as
sensor errors, sensor locations, sensor types, and sensor costs [4].
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Sensors are usually calibrated by manufacturers. However, sensor accuracy might drift
with time after being installed. There are many reasons for sensor abnormalities, such as
harsh environments and manufacturing defects. In such scenarios, sensor reading accuracy
might suffer, which is commonly regarded as a sensor fault. Usually, HVAC systems have
multiple sensors to assist the controls and multiple sensors might have multiple faults [6].
A study described a total of nine types of sensor fault patterns based on measurement
datasets [7]:

• Outlier: usually a small number of isolated sensor readings, unexpectedly far from the
majority of normal readings. This reason is usually unknown but could be related to
the data logger;

• Spike: a pattern with a much higher rate of change for multiple data points or sensor
readings in a short time period. It might be related to battery failure, other hardware
failure, or connection issues;

• Stuck-at: a pattern with zero variance or constant sensor readings or data points.
The reason is usually associated with hardware malfunction;

• High noise or variance: a pattern with higher variance or noise than historical data
suggests or normally expects for sensor readings or data points. The reasons might be
associated with hardware failure, environmental conditions, or weakening battery power;

• Calibration: a pattern in which the sensor readings are always offset from ground
truth values. It might be related to calibration error or sensor drifting. Often, incipient
sensor drift (the amount of drift change with time) is also common in modern sensors;

• Connection or hardware: usually inaccurate sensor readings because of malfunctioning
hardware (i.e., hardware dependent). Typical patterns are unusually high/low data
readings that are frequently out of normal ranges. The possible reasons might be
environment changes, sensor aging, short circuit, or loose wires;

• Low battery: usually inaccurate sensor readings because of low battery power.
Typical patterns are unexpected gradient followed by zero variance, or lack of data, or
excessive noise;

• Environment out of range: when the environment conditions go beyond what the
sensor system can read. Typical examples are extreme high and low temperatures.
Patterns might be much higher noise or flattening of the data. Similar patterns occur
with improper calibrations;

• Clipping: sensor readings max out. The patterns could be sticking with maximum or
minimum readings, perhaps because of environmental conditions.

Multiple sensors (e.g., temperature, flowrate) usually work together as a sensor sets.
Sensor sets are different, depending on the HVAC system types and the controls loops.
HVAC systems vary based on different building characteristics and functions. For small to
medium office buildings, rooftop units (RTUs) are usually used. Typical sensors are air-
related [8], such as air temperature, airflow rate, and pressure sensors. For large commercial
buildings (e.g., large office buildings), a chiller and cooling tower are usually applied.
More sensors are placed on water loops [9], such as water flow rate and water temperature
sensors. There are three types of controls: rule-based control, local control, and supervisory
control for HVAC systems. Different control strategies might require different sensor sets.
Demand control ventilations need zone CO2 sensors for control actions [8,10]. Occupant
control, relying on occupant sensors, is another popular topic attracting attention in the
past few years [11,12].

In the context of buildings and HVAC systems, limited studies have investigated
sensor fault impacts on HVAC systems. Past studies show that the impact of sensor faults
poses a great challenge to optimal performance of advanced control solutions [13,14].
Sensor fault modeling study could be classified into two groups: white-box and black-
box [5,15]. The majority of studies applied the white-box method. Black-box method is
suitable for fault detection. Due to the severe fault impacts, sensor calibration and fault
mitigation become more important. The detailed literature reviews are summarized as:
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(1) A study investigated sensor impact on building energy consumption [16], through a
small office model in the EnergyPlus platform. Their study proposed a new concept
for sensor fault impacts: one-way impact and two-way impact. The one-way impact
means that sensor faults cause decreased or increased energy consumption or thermal
comfort. The two-way impact means that there could be higher energy consumption
for a certain desired energy item (e.g., cooling), and simultaneously lower energy
consumption for another desired energy item (e.g., heating). Another recent study
proposed the sensor fault impact analysis framework [9] to investigate sensor fault
impacts. This framework is based on white-box methods, which opened a door
for sensor fault studies on building performance. Their results show that sensors
could cause more than double energy consumption. Another study, using white-box
modeling platform, demonstrated sensor fault impacts for demand control ventilation
(DCV) on building energy consumption [8]. Results show that sensor faults severely
downgraded the control performance, leading to increased energy consumption.
Another recent study developed a few fault models in the EnergyPlus platform, which
were validated through experiments [17,18];

(2) Black-box, or machine learning algorithm, is becoming a new trend in fault detection
and diagnostics. This study applied artificial intelligence (AI) algorithms to detect the
sensor faults, based on a large dataset. A review study [19] pointed out the biggest
issue for black-box method is how to identify the baseline data (data without fault)
from the building energy management system;

(3) Sensor fault calibration and mitigation are receiving attention. This study aimed to
calibrate the sensor faults [20], to which they applied the virtual in-situ calibration
method. Their results showed that the systematic errors of sensors were less than 2%
and the random errors were also reduced by as much as 74%. The benefit of such
sensor calibration significantly reduced the possibility of abnormal data and enhanced
the reliability of sensor measurements. This can effectively eliminate the sensor
negative impacts on building energy consumption and thermal comfort. A study [21]
applied fault mitigation techniques for sensors (read back for sensor readings and
nearest neighbor monitoring for fault sensor correcting), which demonstrated up to
38% improvement in energy consumption and up to 75% improvement in thermal
comfort. The sensor faults include stuck-at fault, spike-and-stay (SAS) fault with negative
spike, spike-and-stay (SAS) fault with positive spike, single-sample-spike (SSS) fault
with negative spike, and single-sample-spike (SSS) fault with positive spike.

However, current literature studies assume sensor fault or errors are constant [5,9,15,22,23].
In real conditions, sensor fault magnitude could evolve or develop over time, which is
often observed from field measurements. This is the essence of incipient sensor faults.
This is also the main purpose of this study. How to address such an issue is relying
on correct modeling of sensor errors. Another research gap is that there was no study
proposing a sensor impact evaluation framework. Available studies use their own sensor
impact evaluation platform.

The structure of this study is organized as follows: Section 2 summarizes the sensor
impact and evaluation framework, which is the methodology; Section 3 describes the
surrogate model; Section 4 describes the uncertainty analysis; Section 5 describes the
sensitivity analysis; and Section 6 provides conclusions.

2. Methodology

This study aimed to systematically investigate incipient sensor faults for building
control performance. The US Department of Energy’s Oak Ridge National Laboratory’s
(ORNL’s) two-story Flexible Research Platform (FRP-2) building was used to study the
sensor fault impacts. It is a two-floor building with five zones on each floor. The cooling
is from rooftop unit (RTU). The heating is from a gas heating coil and VAV electric coils.
The control strategy for single-duct variable air volume (VAV) terminal boxes and the air
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handling unit (AHU) is implemented based on the control logics from ASHRAE Guideline
36-2018, High-Performance Sequences of Operation for HVAC Systems [24].

A sensor-impact oriented framework is proposed for this purpose. The framework is
comprised of (1) a physics-based emulator integrated with sensor faults, control sequences,
and building/HVAC models; (2) large-scale simulations for sensor error samplings to the
controls on the cloud; (3) a surrogate model development based on cloud simulation results
for sensitivity analysis; and (4) sensitivity and uncertainty analyses for the sensors and
desired outputs (e.g., energy consumption, thermal comfort).

This study is based on EnergyPlus platform through building energy models.
The overall workflow is illustrated in Figure 1. Cloud simulation was used to quicken
the 3600 simulation cases, using a stochastic approach. The uncertainty and sensitivity
analyses are based on simulation data from cloud simulation. The building model details
are not presented here. Interested readers, please refer to the recent publications on the
building [25].
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Figure 1. Sensor impact and evaluation framework.

The pseudo code for the sensor fault injection and simulation is shown in Figure 2.
The pseudo code follows the basic flowchart in Figure 1, which demonstrates the basic
principle of how to implement the sensor impact analysis.
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Figure 2. Pseudo code for sensor fault injection and simulation.

2.1. Sensor Sets

Based on extensive literature reviews, 34 sensors were identified. They are typical
sensors used to operate RTU and variable air volume (VAV) systems in small to medium
office buildings. The sensors were prioritized based on the severity of indoor air (IA)
temperature impacts, which can significantly affect energy efficiency and occupant thermal
comfort. The identified sensors are frequently used in commercial buildings. They are
listed in Table 1.
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Table 1. Comprehensive sensor list.

Location Measurement Priority Location Measurement Priority

Room IA temperature 1 RTU OA CO2 4

Room IA humidity 3 RTU OA flow rate 3

Room IA CO2 4 RTU SA temperature 1

Room Lighting condition 5 RTU SA humidity 3

Room Occupancy 5 RTU SA CO2 4

VAV box SA temperature 1 RTU SA flow rate 3

VAV box SA humidity 3 RTU RA temperature 2

VAV box SA flow rate 1 RTU RA humidity 3

Main duct Static pressure 2 RTU RA CO2 4

Exhaust fan EA temperature 4 RTU RA flow rate 3

Exhaust fan EA humidity 4 RTU MA temperature 2

Exhaust fan EA flow rate 4 RTU MA humidity 3

Exhaust fan EA CO2 4 RTU MA CO2 4

Other Plug load 5 RTU MA flow rate 3

Other Lighting load 5 RTU Refrigerant
temperature 5

RTU OA temperature 1 RTU Refrigerant pressure 5

RTU OA humidity 3 RTU Refrigerant flow rate 5
SA = supply air; EA = exhaust air; OA = outdoor air; RA = return air; MA = mixing air; IA = indoor air.

Based on the actual HVAC system configuration of the FRP-2 building, five sensor
types were selected for the following reasons: (1) Those sensors were closely matching
with the selected control logics. Different control logics might need different sets of sensors;
(2) the IA temperature is the most important variable to be controlled to meet the heating
and cooling set point temperatures; (3) the VAV box supply air (SA) temperature and SA
flow rates (SAFs) directly affect the IA temperature from the control perspective; (4) RTU
system-level operation also directly affects the VAV box operations; and (5) RTU outdoor
air (OA) temperature (OAT) and SA temperature (SAT) are important for determining
system-level energy consumption. The sensor types are listed in Table 2. The specification
of the selected sensors is described in Table 3.

Table 2. Selected sensor list.

Location Measurement Priority Note

Room IA temperature 1 IA temperature

VAV box SAT 1 VAV box SAT

VAV box SAF 1 VAV box SAF

RTU OAT 1 OAT

RTU SAT 1 SAT
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Table 3. Specification of the selected sensor.

Measured Data Range

Outdoor air temperature

−50~100 ◦CIndoor air temperature

Supply air temperature

Supply airflow rate 0~15.24 m/s

2.2. Sensor Errors

Available literature assumes fixed or constant sensor errors. Here, we proposed
the incipient sensor error as bias error and precision (random) error. This research team
identified two components for sensor faults [4]: precision and bias. Precision is used to
measure how precise the sensor reading is from the true reading because of measuring
noise. Bias is used to measure how far the sensor reading is from the true reading because
of system bias. Figure 3 shows a diagram for precision and bias. A typical characteristic of
incipient faults is that the fault magnitude might change slowly with time and effects on
control performance might go unnoticed.

Buildings 2023, 13, x FOR PEER REVIEW 6 of 28 
 

Supply air temperature 
Supply airflow rate 0~15.24 m/s 

2.2. Sensor Errors 
Available literature assumes fixed or constant sensor errors. Here, we proposed the 

incipient sensor error as bias error and precision (random) error. This research team iden-
tified two components for sensor faults [4]: precision and bias. Precision is used to meas-
ure how precise the sensor reading is from the true reading because of measuring noise. 
Bias is used to measure how far the sensor reading is from the true reading because of 
system bias. Figure 3 shows a diagram for precision and bias. A typical characteristic of 
incipient faults is that the fault magnitude might change slowly with time and effects on 
control performance might go unnoticed. 

 
Figure 3. Sensor error component. 

For a sensor, an ideal reading (or true reading) exists at a given time step, as shown 
by the black line in Figure 4. The bias error is the system deviation from the ideal readings, 
as shown by the green dotted lines in Figure 4. The precision error is the random deviation 
or noise from the average sensor readings, as shown by the blue dashed lines in Figure 4. 

 
Figure 4. Sensor error diagram. 

The mathematical expression of such a fault profile is given as 𝑋 (𝑡) = 𝑋 (𝑡) 𝑋 (𝑡) 𝑋 (𝑡) (1) 

where 𝑋  is the fault reading, 𝑋  is the ideal reading (no fault), 𝑋  is the bias error, 
and 𝑋  is the precision error. 

The bias error is a normal distribution with a certain standard deviation. The expres-
sion is given as 𝑋 (𝑡) = 𝑁(0, 𝜎 ) (2) 

Figure 3. Sensor error component.

For a sensor, an ideal reading (or true reading) exists at a given time step, as shown by
the black line in Figure 4. The bias error is the system deviation from the ideal readings, as
shown by the green dotted lines in Figure 4. The precision error is the random deviation or
noise from the average sensor readings, as shown by the blue dashed lines in Figure 4.
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The mathematical expression of such a fault profile is given as

X f (t) = Xo(t) + Xbias(t) + Xprecision(t) (1)

where X f is the fault reading, Xo is the ideal reading (no fault), Xbias is the bias error, and
Xprecision is the precision error.
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The bias error is a normal distribution with a certain standard deviation. The expres-
sion is given as

Xbias(t) = N(0, σbias) (2)

The precision error is also a normal distribution with a certain standard deviation. The
expression is given as

Xprecision(t) = N
(
0, σprecision

)
(3)

where σbias is the standard deviation of bias error and σprecision is the standard deviation of
precision error.

The sensor errors were incorporated based on the emulator of EnergyPlus and Python
EMS. Due to the technical difficulties from larger airflow sensor errors, the airflow sensor
errors need to be within an effective range. The standard deviations for the five types of
selected sensors are shown in Table 4.

Table 4. Standard deviation of selected sensor errors.

Location Measurement Bias Precision

Room IA temperature (◦C) 1 0.1

VAV box SAT (◦C) 1 0.1

VAV box SAF (m3/s) 0.005 0.0005

RTU OAT (◦C) 1 0.1

RTU SAT (◦C) 1 0.1

2.3. Control Logic for RTU and Single-Duct VAV System (ASHRAE Guideline 36)

The installed HVAC systems in the FRP-2 building are RTUs, in which cooling is from
a direct expansion cooling coil and heating is from a gas heating coil. The FRP-2 building
has 10 conditioned zones. Each conditioned zone is served by a VAV box with an electricity
reheat coil. The air handling unit (AHU) connects all the zone VAV boxes and the RTU.
Control logic from ASHRAE Guideline 36-2018, High-Performance Sequences of Operation
for HVAC Systems [24], was developed for the RTUs and VAV boxes.

1. AHU: Trim and Respond (T&R) Set Point Logic

The first control logic is the T&R set point logic for the AHU. T&R logic resets set
points of the pressure, temperature, or other variables on the AHU or plant side. T&R logic
reduces the set point at a fixed rate until the zone thermal comfort is no longer satisfied;
then, it generates the request. The set point is increased in response to a sufficient number
of requests. By adjusting the importance of each zone’s requests, the critical zones will
always be satisfied. If there are not a sufficient number of requests, then the set point
decreases at a fixed rate.

The term “request” refers to a request to reset a static pressure or temperature set point
generated by downstream zones or AHUs. These requests are sent upstream to the AHU
or plant that supplies the zone or area that generated the request. For more details of Trim
& Respond logic, please refer to the documents of [24,26].

T&R control was used to reset the RTU SA set point temperature in the emulator. When
the OAT was higher than the maximum OAT (21 ◦C), the RTU SAT was set to the minimum
RTU SA set point temperature (12 ◦C). When the OAT was lower than the minimum OAT
(16 ◦C), the RTU SAT was set to the maximum RTU SA set point temperature (18 ◦C). If
the OAT was between the minimum and maximum OAT when the OAT was increased,
then the RTU SAT was linearly increased from the minimum RTU SA set point temperature
to the maximum RTU SA set point temperature. For T&R control, as ASHRAE Guideline
36 describes, fewer than two requests were ignored.
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2. VAV box control logic

The VAV box control is the second control logic applied to the emulator. Figure 5
shows the control logic for the VAV box from ASHRAE Guideline 36. The control logic has
three sections, which correspond to the heating mode, cooling mode, and dead-band, and it
uses the heating loop demand concept. Heating loop demand is the ratio (as a percentage)
of the actual required heating load of the VAV box to the size of the VAV box. Equation (4)
describes how to calculate the heating loop demand.

Heating loop demand =
Heating load o f the VAV box

Capacity o f the VAV box
× 100 (4)

Buildings 2023, 13, x FOR PEER REVIEW 8 of 28 
 

and it uses the heating loop demand concept. Heating loop demand is the ratio (as a per-
centage) of the actual required heating load of the VAV box to the size of the VAV box. 
Equation (4) describes how to calculate the heating loop demand. 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑙𝑜𝑜𝑝 𝑑𝑒𝑚𝑎𝑛𝑑 = 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑉𝐴𝑉 𝑏𝑜𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑉𝐴𝑉 𝑏𝑜𝑥 × 100 (4) 

 
Figure 5. Control logic for VAV box from ASHRAE Guideline 36 [24,26]. 

The detailed logics are threefold: 
a. In the heating mode, when the heating loop is less than or equal to 50%, the dis-

charge air (DA) set point temperature of the VAV box is increased from the RTU 
SAT to the maximum DA set point temperature of the VAV box, and the minimum 
SAF is maintained. When the heating loop is greater than 50%, if the DA tempera-
ture of the VAV box is greater than the IA temperature plus 3 °C, then the SAF of 
the VAV box is increased from the minimum SAF to the maximum SAF while main-
taining the maximum DA set point temperature of the VAV box; 

b. In the cooling mode, the DA temperature of the VAV box is the same as the RTU 
SAT because no option exists to decrease the SAT using the VAV box. Therefore, 
VAV box control is linked with T&R control in the cooling season, when the VAV 
box control must be considered the RTU SAT. The four cooling SA set point temper-
ature reset requests are as follows: 
• If the IA temperature exceeds the indoor cooling set point temperature by 3 °C 

for 2 min and after the suppression period resulting from an RTU SA set point 
temperature change via the T&R control, then send three requests; 

• Else, if the IA temperature exceeds the indoor cooling set point temperature by 
2 °C for 2 min and after the suppression period resulting from an RTU SA set 
point temperature change via the T&R control, then send two requests; 

• Else, if the cooling loop is greater than 95%, then send one request until the 
cooling loop is less than 85%; 

• Else, if the cooling loop is less than 95%, then send no request. 
In terms of the SAF in the cooling season, the SAF of the VAV box is increased from 

the minimum SAF to the maximum SAF as the cooling loop is increased; 
c. In the dead-band mode, when neither heating nor cooling are needed, the SAF is set 

to the minimum SAF, and the DA temperature of the VAV box is set to the RTU 
SAT. 
The overall control logic is shown in Figure 6. 
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The detailed logics are threefold:

a. In the heating mode, when the heating loop is less than or equal to 50%, the discharge
air (DA) set point temperature of the VAV box is increased from the RTU SAT to
the maximum DA set point temperature of the VAV box, and the minimum SAF is
maintained. When the heating loop is greater than 50%, if the DA temperature of
the VAV box is greater than the IA temperature plus 3 ◦C, then the SAF of the VAV
box is increased from the minimum SAF to the maximum SAF while maintaining the
maximum DA set point temperature of the VAV box;

b. In the cooling mode, the DA temperature of the VAV box is the same as the RTU SAT
because no option exists to decrease the SAT using the VAV box. Therefore, VAV box
control is linked with T&R control in the cooling season, when the VAV box control
must be considered the RTU SAT. The four cooling SA set point temperature reset
requests are as follows:

• If the IA temperature exceeds the indoor cooling set point temperature by 3 ◦C
for 2 min and after the suppression period resulting from an RTU SA set point
temperature change via the T&R control, then send three requests;

• Else, if the IA temperature exceeds the indoor cooling set point temperature by
2 ◦C for 2 min and after the suppression period resulting from an RTU SA set
point temperature change via the T&R control, then send two requests;

• Else, if the cooling loop is greater than 95%, then send one request until the
cooling loop is less than 85%;

• Else, if the cooling loop is less than 95%, then send no request.

In terms of the SAF in the cooling season, the SAF of the VAV box is increased from
the minimum SAF to the maximum SAF as the cooling loop is increased;
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c. In the dead-band mode, when neither heating nor cooling are needed, the SAF is set
to the minimum SAF, and the DA temperature of the VAV box is set to the RTU SAT.

The overall control logic is shown in Figure 6.
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2.4. Large-Scale Simulation

The large-scale simulation was based on a commercial cloud platform, Microsoft
Azure. In total, 3600 cases were simulated on the cloud. The inputs were the sensor errors
incorporated into the five selected sensors for the FRP-2 building emulator, as shown in
Table 2. The sensor errors were obtained using normal distribution samplings. EnergyPlus
internal programming limits caused simulation crashes when larger sensor errors were
incorporated. The standard deviations of sensor errors were based on multiple trials. The
thresholds were based on engineering experience, domain knowledge, and actual RTU-
and zone-level sensor ideal readings. The outputs were the target variables for energy
consumption and thermal comfort, such as fan electricity consumption and reheat coil
electricity energy in the VAV box.

The basic diagram is shown in Figure 7. The basic workflow is as follows:

(1) A Python script was developed to generate 3600 simulation input data files (IDF files).
Each IDF file was associated with a Python class of sensor errors through Python
EMS. During the simulation, at each time step, a new sensor error (including bias and
precision) was injected into the ideal sensor readings from EnergyPlus;

(2) After 3600 cases were generated, they were uploaded to the Azure cloud platform;
(3) In the Azure cloud platform, a bash script selected the appropriate virtual machine

configurations (e.g., memory and hard drive, as shown in Table 4) and a number of
virtual machines. The team’s subscription included 300 nodes (virtual machines);

(4) The Azure cloud provided a job scheduler, which automatically distributed all
3600 cases across 300 nodes;

(5) The simulation ran automatically until all cases were accomplished;
(6) Finally, all the results were selected to set up the data sets (inputs and outputs) to

create the black-box models.
(7) The configuration for the cloud is shown in Table 4.
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A total of 300 nodes were used for the cloud simulation, in which each node is a
standard node: 16 cores, 64 GB memory, and 600 GB storage capacity. The total simulation
time is about 9 h.

The sensor errors were sampled using a normal distribution for each time step.
The sensor readings from EnergyPlus used the sensor errors to form the faulty sensor
readings. The faulty sensor readings were used as inputs to control sequences to calculate
new set points. These new set points were used to control the performance of buildings.
Ultimately, the simulated energy consumption and thermal comfort were different from
the results obtained using the ideal sensor readings.

2.5. Other Aspects

In order to ensure that the simulation results are correct, there are a few extra explana-
tions summarized below.

(1) The baseline model was calibrated with the actual components and systems within
the FRP2 building at ORNL campus. The input values for the HVAC system are from
the measurement and nameplate values. The simulation results demonstrated the
consistency between model and measurements [25];

(2) The simulation cases have a total of 3600 sets. Each case matches with a sensor error
module. In each timestep, the sensor error value will be injected into the model
following the sensor error components (bias and precision). The energy consumption
differences were easily calculated between baseline case and sensor-error case, which
was caused by the sensor errors. If sensor errors were made to be zero all through the
simulation timesteps, the same energy consumption was obtained with baseline model;

(3) We analyzed the results and see that they are reasonable for sensor errors. For example,
(a) when we increase the sensor error to the zone temperature for cooling mode (lower
zone temperature than it is supposed to be), we can see the energy consumption
increasing. This is because the building model thinks it needs more cooling energy
to meet the cooling setpoints. (b) When we increase the sensor error to the zone
temperature sensor for heating mode (higher zone temperature than it is supposed
to be), we can see the energy consumption decreasing. This is because the building
model thinks it needs less heating energy to meet the heating setpoints;

(4) To explain in detail, the sensor error in this study followed the normal distribution
(Figure 4) and the sensor error range was calculated by bias sensor error plus precision
error. For example, if the standard deviation of sensor error of the temperature sensor
is 1 ◦C, the temperature sensor error range is within −3 ◦C and +3 ◦C with a probability
of 99.76%. Similarly, the probability of sensor error range between −1 ◦C and +1 ◦C
is about 68%. The probability of sensor error range within −2 ◦C and +2 ◦C is about
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95.4%. The extreme cases are within 0.24% of scenarios on the two ends. Therefore,
the differences (numbers) mentioned above occur when the sensor error is the largest
(either positive or negative values).

3. Surrogate Model

To accomplish sensitivity analysis, the surrogate model was developed based on cloud
simulations. The long short-term memory (LSTM) model was selected because it includes
previous time step input impacts. These impacts are important because inertia phenomena
exist in buildings. The LSTM model internally reflects thermal inertia.

3.1. LSTM Setup

The LSTM model is a neural network model suitable for time-series forecasting.
For building energy simulations, the results are time-series variables. The thermal state
of buildings at previous time steps has certain impacts on the later time steps. The main
purpose of the LSTM model is to find the mapping of inputs and outputs. Figure 8 shows
that the input variables were transformed into multiple routes as a way of including
previous states’ impacts. Detailed mathematics are not included here because the goal was
to use the LSTM model to make a black-box model. Many publications already investigated
the mathematical details, such as the inventor of LSTM algorithm [27].
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3.2. Training and Setting

The whole data set was divided into a training data set (80% of total) and a validation
data set (20% of total). The training data set was used to learn the weights of input variables
to output variables. The validation data set was used to test the accuracy of the surrogate
model prediction from the emulator output variables. The data sets were shuffled to avoid
the input data internal impacts. The root mean square error was used to quantify the
modeling accuracy:

RMSE =

√
∑N

1 (yi − ŷi)
2

N
(5)

where RMSE is the root mean square error, yi is the emulator output variable, ŷi is the
surrogate model output variable, and N is the total number of variables in the prediction.

3.3. Input/Output Variables

The surrogate model established the mapping relationship between input and output
variables. The input variables were based on the FRP-2 EnergyPlus models. A detailed list
of variables is provided in Table 5.
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Table 5. Input variables.

Variable Name Quantity

OAT 1

OA relative humidity 1

OA pressure 1

Wind speed 1

Wind direction 1

Horizontal infrared radiation rate 1

Diffuse solar radiation rate 1

Direct solar radiation rate 1

Lighting energy 1

Internal heat gains: equipment 1

People activity 1

SensorBias: AHU OAT 1

SensorPrecision: AHU OAT 1

SensorTotalError: AHU OAT 1

SensorBias: AHU SAT 1

SensorPrecision: AHU SAT 1

SensorTotalError: AHU SAT 1

SensorBias: zone VAV SAF 10

SensorPrecision: zone VAV SAF 10

SensorTotalError: zone VAV SAF 10

SensorBias: zone VAV SAT 10

SensorPrecision: zone VAV SAT 10

SensorTotalError: zone VAV SAT 10

SensorBias: zone air temperature 10

SensorPrecision: zone air temperature 10

SensorTotalError: zone air temperature 10

Total 107

The output variables were also based on FRP-2 EnergyPlus simulation models.
A detailed list of output variables is provided in Table 6.

Table 6. Output variables.

Variable Quantity

Fan electricity rate (W) 1

Main cooling coil sensible cooling rate (W) 1

Main cooling coil electricity rate (W) 1

Main heating coil heating rate (W) 1

Zone air sensible heating rate (W) 10

Zone air sensible cooling rate (W) 10

Zone air temperature (◦C) 10

Zone predicted percentage dissatisfied (%) 10

VAV box reheat energy (W) 10

Total 54
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3.4. Workflow for Surrogate Model Training

In total, 3600 simulation cases were simulated on the cloud. Each case generated
1.3 GB of data with 1 min time resolution. A 4.7 TB data set was obtained. To expe-
dite the surrogate model training, a distributed machine learning framework was used.
The workflow is shown in Figure 9. Through the cloud, 32-core machines were used.
The 3600 cases were divided into 20 groups, or cores, with each group responsible for
180 cases. After all training was completed for each group, the final model parameters were
obtained by averaging model parameters from the 20 groups of training.
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4. Uncertainty Analysis
4.1. Uncertainty Analysis Setup

Uncertainty analysis assesses the uncertainty of output/target variables in the model in
which the inputs are under uncertainty samplings. The purpose of this uncertainty analysis
was to identify how output variables were distributed in response to uncertainties of input
values. Generally, a wider distribution of output variables corresponds with increased
sensitivity of the output variables to the input variables. For this uncertainty analysis, the
large-scale simulation (3600 cases) was conducted on a cloud platform. Figure 10 illustrates
the overall process of the uncertainty analysis. The standard deviations of input values
(sensor errors) of the uncertainty analysis are listed in Table 5 and selected output variables
are listed in Table 6. Before the uncertainty analysis, HVAC system controls based on
ASHRAE Guideline 36 [24] were applied using the Python EMS function, as described in
Section 2.3. Input values for the system control were obtained from the simulation results;
then, the total sensor error was added to the HVAC system control. Using the physics-based
emulator, 3600 cases were generated. The results are described in Section 4.2.
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4.2. Uncertainty Analysis Results

For large-scale simulations, each case generated the aggregated energy consump-
tion: site energy, heating energy, cooling energy, and fan energy. The baseline results are
304,083 kBTU (site energy), 60,081 kBTU (heating energy), 105,482 kBTU (cooling energy),
and 50,422 kBTU (fan energy). Figure 11 demonstrates the energy distributions under sen-
sor fault and baseline energy items. It shows that the energy consumption varies drastically
from the baseline cases, due to the sensor errors.
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Figure 11. Energy distributions and baseline energy items.

Figure 12 shows the site energy consumption with averaged sensor error distribu-
tions. The top left shows the AHU OAT and SAT sensor errors with site energy consump-
tion. The top right shows the VAV box SAT sensor errors and site energy consumption.
The bottom left shows the zone temperature sensor errors with site energy consumption.
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The bottom right shows the VAV box SAF sensor errors with site energy consumption.
From the distributions, the sensor errors show normal distributions instead of a linear
relationship. The site energy consumption was 294,000~359,000 kBtu/year based on
the distribution of sensor total errors. The change of total site energy consumption was
65,000 kBtu/year, which is 21.4% of the average site energy consumption (340,083 kBtu/year).
The site energy impacts could go −3.3% lower or 18.1% higher, compared with base-
line. The above energy patterns are a comprehensive demonstration of sensor errors.
The underlying logics are: (1) For negative sensor errors under cooling mode, zone temper-
ature sensors would deliver smaller sensor readings to the controls. This could make the
control systems call on a larger supply air flow rate or supply air temperature to meet the
zone thermal setpoints. This could cause more energy consumption for the cooling coils.
(2) For positive sensor errors under cooling mode, zone temperature sensors might deliver
higher sensor readings to the controls. This could fool the control system to call on a smaller
supply air flow rate or supply air temperature. This will cause the zone to be too hot, subject
to thermal comfort issue. (3) For negative sensor errors under heating mode, the zone
temperature sensor reading would be smaller, which fools the control system to increase the
supply air temperature or supply air flow rate to maintain the zone temperature setpoints.
This could cause more heating energy consumption from the heating coils. (4) For positive
sensor errors under heating mode, the zone temperature sensor reading would be higher,
which leads the control system to decrease supply air temperature or supply air flow rate
to maintain the thermal setpoints. This would cause less heating energy demands from the
heating coils. Since the sensor errors evolve each time step, this adds more complexity to
the control actions, which lead to complicated energy consumption patterns.
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Figure 13 shows the total heating energy consumption with averaged sensor error
distributions. The top left shows the AHU OAT and SAT sensor errors with heating energy
consumption. The top right shows the VAV box SAT sensor errors and heating energy
consumption. The bottom left shows the zone temperature sensor errors with heating
energy consumption. The bottom right shows the VAV box SAF sensor errors with heating
energy consumption. From the distributions, the sensor errors show normal distributions
instead of a linear relationship.
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Figure 13. Heating energy and sensor errors.

The heating energy consumption was 20,130~249,000 kBtu/year based on the distribution
of sensor total errors. The change of total heating energy consumption was
228,870 kBtu/year, which is 380% of the baseline heating energy consumption (23,265 kBtu/year).
The heating energy impacts could go −66.5% lower or 314.4% higher, compared with baseline.

Figure 14 shows the total cooling energy consumption with averaged sensor error
distributions. The top left shows the AHU OAT and SAT sensor errors with cooling energy
consumption. The top right shows the VAV box SAT sensor errors with cooling energy con-
sumption. The bottom left shows the zone temperature sensor errors with cooling energy
consumption. The bottom right shows the VAV box SAF sensor errors with cooling energy
consumption. From the distributions, the sensor errors show normal distributions instead
of a linear relationship. The cooling energy consumption was 93,320~174,000 kBtu/year
based on the distribution of sensor total errors. The range of total cooling energy con-
sumption change was 80,680 kBtu/year, which is 76.5% of the baseline cooling energy
consumption (133,660 kBtu/year). The cooling energy impacts could go −11.5% lower or
65.0% higher, compared with baseline.
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Figure 15 shows the total fan energy consumption with averaged sensor error distribu-
tions. The top left shows the AHU OAT and SAT sensor errors with fan energy consump-
tion. The top right shows the VAV box SAT sensor errors with fan energy consumption.
The bottom left shows the zone temperature sensor errors with fan energy consumption.
The bottom right shows the VAV box SAF sensor errors with fan energy consumption.
From the distributions, the sensor errors show normal distributions instead of a linear relationship.

The fan energy consumption was 50,501~53,900 kBtu/year based on the distribution
of sensor total errors. The change of total fan energy consumption was 3399 kBtu/year,
which is 6.7% of the baseline fan energy consumption (50,422 kBtu/year). The fan energy
impacts could go 0.15% lower or 6.9% higher, compared with baseline.



Buildings 2023, 13, 520 18 of 27
Buildings 2023, 13, x FOR PEER REVIEW 18 of 28 
 

 
Figure 15. Fan energy and sensor errors. 

5. Sensitivity Analysis 
5.1. Sensitivity Analysis Principle 

The sensitivity analysis identified which sensor errors have stronger impacts on en-
ergy consumption and thermal comfort. A ranking of sensor error impacts was obtained 
using sensitivity analysis index values. Sensitivity analysis can be performed in various 
ways, including through local and global approaches [28,29]. Different methods have cer-
tain strengths and drawbacks. As a preliminary exploration, this project applied the Sobol 
method [28] to calculate the sensitivity index. 

The principle is described as 

𝑌 = 𝑓 𝑓 (𝑋 ) 𝑓 𝑋 , 𝑋 ⋯ 𝑓 , ,…, (𝑋 , 𝑋 , … , 𝑋 ) (6) 

where 𝑌 is one of the interested model outputs, 𝑋  is the model input with uncertainty, 
d is the total number of model inputs with uncertainties, 𝑓  is the constant, 𝑓  is the func-
tion of 𝑋 , and 𝑓  is the function of 𝑋  and 𝑋 . 

The sensitivity index is given as 𝑆 = 𝑉  𝑉𝑎𝑟(𝑌) (7) 

where 𝑉  is the variance with respect to variable input 𝑋  and 𝑉𝑎𝑟(𝑌) is the total vari-
ance of the output variable 𝑌. 

The definitions of these variances are 𝑉 = 𝑉𝑎𝑟 (𝐸 ~ (𝑌|𝑋 )) (8) 

Figure 15. Fan energy and sensor errors.

5. Sensitivity Analysis
5.1. Sensitivity Analysis Principle

The sensitivity analysis identified which sensor errors have stronger impacts on energy
consumption and thermal comfort. A ranking of sensor error impacts was obtained using
sensitivity analysis index values. Sensitivity analysis can be performed in various ways,
including through local and global approaches [28,29]. Different methods have certain
strengths and drawbacks. As a preliminary exploration, this project applied the Sobol
method [28] to calculate the sensitivity index.

The principle is described as

Y = f0 +
d

∑
i=1

fi(Xi) +
d

∑
i<j

fij
(
Xi, Xj

)
+ · · ·+ f1,2,...,d(X1, X2, . . . , Xd) (6)

where Y is one of the interested model outputs, Xi is the model input with uncertainty, d is
the total number of model inputs with uncertainties, f0 is the constant, fi is the function of
Xi, and fij is the function of Xi and Xj.

The sensitivity index is given as

Si =
Vi

Var(Y)
(7)

where Vi is the variance with respect to variable input Xi and Var(Y) is the total variance
of the output variable Y.
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The definitions of these variances are

Vi = VarXi (EX∼i (Y
∣∣Xi)) (8)

Var(Y) =
d

∑
i=1

Vi +
d

∑
i<j

Vij + . . . + V12...d (9)

where, ∼ i means all the input variables except Xi.
Note that

d

∑
i=1

Si +
d

∑
i<j

Sij + . . . + S12...d = 1 (10)

The workflow for the sensitivity analysis is shown in Figure 16.
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5.2. Sensitivity Analysis Results

Based on the simulation results, AHU- and zone-level sensitivity analyses were per-
formed. The results are presented in the following subsections. For zone-level analysis,
there are two floors and each floor has five zones. They have similar patterns in regard to
the sensitivity analysis. One zone from each floor (zone 102 and zone 204) was selected to
demonstrate the sensitivity analysis.

5.2.1. System SA Analysis

The AHU power consumption was studied. Figure 17 illustrates the sensitivity index
for cooling power. The cooling power is sensitive to the random errors of the SAT and
OAT sensors, total errors of the SAT and OAT sensors, and bias errors of the SAT and OAT
sensors. They have equal impacts on cooling power demands.
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Figure 18 illustrates the sensitivity index for fan power demands. The sensor impacts
are similar to the cooling power. Figure 19 illustrates the sensitivity index for main heating
coil heating rates. The SAT and OAT sensors are the most dominant sensors.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 28 
 

 
Figure 17. SA for RTU cooling power. 

Figure 18 illustrates the sensitivity index for fan power demands. The sensor impacts 
are similar to the cooling power. Figure 19 illustrates the sensitivity index for main heating 
coil heating rates. The SAT and OAT sensors are the most dominant sensors. 

 
Figure 18. SA for RTU fan power. Figure 18. SA for RTU fan power.



Buildings 2023, 13, 520 21 of 27Buildings 2023, 13, x FOR PEER REVIEW 21 of 28 
 

 
Figure 19. SA for RTU main heating coil heating rate. 

5.2.2. Zone 204 SA Analysis 
At the zone level, four energy consumption variables (zone temperature, zone sensi-

ble heating, zone sensible cooling, and reheat coil energy consumption) and one thermal 
comfort variable (zone-predicted percentage of dissatisfied occupants [PPD]) were se-
lected. Figure 20 shows the ranking of the sensitivity index for zone air temperature. Over-
all, the system- and zone-level sensors affected the zone temperature. The sensor with the 
highest sensitivity index was the zone air temperature sensor with random error. The ran-
dom errors were the most influential, followed by total errors and then bias errors. Figure 
21 shows the ranking of the sensitivity index for zone sensible heating. The zone air tem-
perature sensor with random error had the highest sensitivity index. Figure 22 shows the 
zone sensible cooling impacts from the sensors. Figure 23 shows the impacts on reheat 
coil energy. Figure 24 shows the sensitive index ranking for zone thermal comfort (PPD). 
Across zone 204 outputs, the random errors consistently had stronger impacts. 

 
Figure 20. SA for zone 204 air temperature. 

Figure 19. SA for RTU main heating coil heating rate.

5.2.2. Zone 204 SA Analysis

At the zone level, four energy consumption variables (zone temperature, zone sensi-
ble heating, zone sensible cooling, and reheat coil energy consumption) and one thermal
comfort variable (zone-predicted percentage of dissatisfied occupants [PPD]) were se-
lected. Figure 20 shows the ranking of the sensitivity index for zone air temperature.
Overall, the system- and zone-level sensors affected the zone temperature. The sensor
with the highest sensitivity index was the zone air temperature sensor with random error.
The random errors were the most influential, followed by total errors and then bias errors.
Figure 21 shows the ranking of the sensitivity index for zone sensible heating. The zone air
temperature sensor with random error had the highest sensitivity index. Figure 22 shows
the zone sensible cooling impacts from the sensors. Figure 23 shows the impacts on reheat
coil energy. Figure 24 shows the sensitive index ranking for zone thermal comfort (PPD).
Across zone 204 outputs, the random errors consistently had stronger impacts.
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5.2.3. Zone 102 SA Analysis

Sensitivity analysis for zone 102 was performed similarly to that of zone 204.
The impacts of sensor errors on four energy consumption variables (zone temperature,
zone sensible heating, zone sensible cooling, and reheat coil energy consumption) and one
thermal comfort variable (zone PPD) were demonstrated. Figure 25 shows the ranking of
the sensitivity index for zone 102 air temperature. The system-level sensors and zone-level
sensors affected the zone temperature. The zone air temperature sensor with random error
had the highest sensitivity index. Figure 26 shows the ranking of the sensitivity index for
zone sensible heating. The zone air temperature sensor with random error had the highest
sensitivity index. Figure 27 shows the zone sensible cooling impacts from the sensors.
Figure 28 shows the impacts on reheat coil energy. Figure 29 shows the sensitivity index
ranking for zone thermal comfort (PPD). Across zone 102 output variables, random errors
consistently had stronger impacts.
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6. Conclusions

This study investigated the incipient sensor impacts on the ASHRAE Guideline 36
control sequences through sensitivity and uncertainty analyses. The sensor errors had
two components: bias error and precision (random) error. The sensor samplings were
performed with normal distributions. Cloud simulations were conducted based on the
sensor samplings and 3600 simulation cases. The results were collected to train surrogate
models for sensitivity analysis.

The energy consumption was classified into system levels (power demands) and zone
levels (zone air temperature, zone sensible heating, zone sensible cooling, and zone reheat
coil energy). The thermal comfort (PPD) at the zone level was also investigated.

The uncertainty and sensitivity analyses were conducted with respect to sensor errors
and energy/thermal comfort variables. The uncertainty analysis showed that the sensor
errors and energy consumptions have a nonlinear relationship. The energy consumptions
have wide distributions compared with the baseline model with sensor error uncertainties:

• The site energy differences could go −3.3% lower or 18.1% higher, compared
with baseline;

• The heating energy differences could go −66.5% lower or 314.4% higher, compared
with baseline;

• The cooling energy differences could go −11.5% lower or 65.0% higher, compared
with baseline;

• The fan energy differences could go 0.15% lower or 6.9% higher, compared
with baseline.

The sensitivity analysis was performed at both system and zone levels. At the system
level, the random errors for SAT and OAT sensors had the most significant impacts. At the
zone level, the random errors were the most influential, followed by total errors and then
bias errors.

In the future, there are a few works worth exploring:

• Other sensitivity analysis methods will be used for comparative analysis;
• Other control strategies or HVAC systems will be used for more demonstrations.

This study clearly demonstrated the severe impacts of incipient sensor faults.
The implications for research, policy, and study are: (1) calibrating sensors as recommended
by the manufacturer. (2) if calibration is feasible, fault mitigations are recommended.
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