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Abstract: Occupant behavior (OB) has a significant impact on household air-conditioner (AC) energy
use. In recent years, bottom-up simulation coupled with stochastic OB modeling has been intensively
developed for estimating residential AC consumption. However, a comprehensive analysis of the
diverse behavioral preference patterns of occupants regarding AC use is hampered by the limited
availability of large-scale residential energy demand data. Therefore, this study aimed to develop a
prediction model for the residential household’s AC usage considering various OB-related diversity
patterns based on monitoring data of appliance-level electricity use in a residential community of
586 households in Osaka, Japan. First, individual operation schedules and thermal preferences were
identified and quantitatively extracted as the two main factors for the diverse behaviors across the
whole community. Then, a clustering analysis classified the target households, finding four typical
patterns for schedule preferences and three typical patterns for thermal preferences. These results
were used, with time and meteorological data in the summer seasons of 2013 and 2014, as inputs for
the proposed prediction model using Extreme Gradient Boosting (XGBoost). The optimized XGBoost
model showed a satisfactory prediction performance for the on/off state in the testing dataset, with
an F1 score of 0.80 and an Area under the Receiver Operating Characteristic (ROC) Curve (AUC)
of 0.845.

Keywords: residential air-conditioning usage; occupant’s behavior diversity; clustering analysis;
thermal preference; schedule preference; extreme gradient boosting method

1. Introduction
1.1. Background

Building-related carbon emissions have reportedly accounted for 28% of global energy-
related carbon emissions, reaching an all-time high of approximately 10 Gt in 2022 [1].
With this background, energy-saving, environmental protection, and carbon neutrality
have become crucial topics in the building sector [2]. Therefore, various approaches have
been applied in building envelopes, building facilities, and appliances to lessen energy
consumption and emissions from the building sector. In addition to these physical factors
of buildings, human-derived factors (i.e., occupant behavior) can significantly change the
energy demand of a building. Therefore, the influences of occupant behaviors on building
energy have attracted the attention of many researchers with the goal of zero emissions in
buildings. For example, Yousefi et al. [3] conducted an investigation in residential buildings
with various building envelopes in different Iranian climate zones to estimate the impact of
occupant lifestyle patterns on building energy efficiency. A significant interaction was found
between occupant behavior (OB) and various factors, such as the selection of envelope
materials and building sustainability. Blight et al. [4] also modeled the resultant influence
of OB on heating energy consumption for 100 domestic passive-design dwelling units in
the UK. Results indicated strong correlations between the household’s energy demand and
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multiple behavioral variables of the residents. Such studies have confirmed the crucial role
of OB in an interactive manner that greatly affects the household’s energy consumption.

Among various residential appliances, air-conditioning (AC) has been confirmed as
one major contributor to household energy use [5,6], as well as a critical factor in realizing
a comfortable indoor thermal environment. Therefore, substantial studies have focused
on OB characteristics related to AC use from the perspective of adaptive thermal comfort.
In fact, AC consumption can vary greatly among dwelling units with the same building
envelope due to the diverse AC system usage behavior of the residents. For example,
Murtyas et al. [7] investigated electricity consumption in a hotel in Indonesia. It was
confirmed that OB features in the usage of the heating, ventilating, and air-conditioning
(HVAC) system have a dominant influence on the total electricity consumption. Yun et al. [8]
studied the relationships between domestic cooling consumption and various parameters
for residential buildings in the USA. OB was found to exert a significant influence on daily
AC operation in both direct and indirect ways. The occupant behaviors reflected in AC use
are stochastic and complex, especially in the residential sector and for buildings equipped
with split AC units rather than central systems because their operation states are simply
decided by the occupants’ thermal preferences and occupancy schedules [9]. Lyu and
Hagishima investigated the occupant’s thermal preference diversity in AC usage from
a residential building in Japan based on an appliance-level energy monitoring database.
Daily cooling hours and occupants’ adaption to the change in outdoor air temperature
were identified as indicators of individual OB features in AC usage. Clustering analysis
was applied, and results showed four typical patterns of thermal preference [10]. Clevenger
and Haymaker [11] examined the impact of uncertainties in OB related to AC usage
on the modeling of building energy. It was concluded that different settings for OB-
related variables, such as the setpoint temperature, would result in an energy-consumption
discrepancy of up to 150% based on their numerical simulation. These studies suggest
that precise information on OB features are necessary for the modeling and prediction of
AC consumption.

So-called bottom-up approaches or white-box models have been developed to quanti-
tatively grasp the stochastic influence of OB on building energy demand, including the AC
load. Most of these studies included the modeling of stochastic occupancy schedules and
OB, which were mainly derived from a statistical analysis of AC usage observation data.
To model OB related to AC use, various factors have been adopted, including the ambient
temperature, indoor air temperature, time of day, and residents’ demographic information.
For instance, Ren et al. [12] established a stochastic model of the AC on/off state that
considered external environmental factors and OB-related factors based on measured data
from three dwellings in China. Tanimoto and Hagishima [13] employed an investigation in
five family dwellings and three single-occupant dwellings to derive the functions for the
state-transitional probability of the AC operation state. Yao [14] also developed a stochastic
occurrence model of how turning the AC on/off was affected by the indoor temperature
and time of day based on data from a typical apartment in China. Diao et al. [15] conducted
a clustering analysis to examine the diverse OB patterns to estimate the energy demand
better using a bottom-up approach.

In addition to stochastic OB modeling, machine learning has recently been utilized as a
method for identifying and/or predicting AC behavioral patterns. For example, clustering
analysis has been widely applied by different researchers to grasp typical AC usage patterns.
Xia et al. [16] conducted a field study of 102 bedrooms in south China and found three
representative patterns of occupancy and AC on/off states. The results also suggested that
AC units should be switched when AC running probabilities are higher than a threshold of
0.3, as determined by testing results for occupancy-weighted thermal comfort. Mun [17]
examined the linear regression (LR), support vector machine (SVM), and random forest
(RF) algorithms to model the AC on/off states in residential buildings in South Korea
using physical environmental variables for input features. Extreme gradient boosting
(XGBoost), which was first proposed by Chen et al. [18], has also been widely applied as
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a prediction algorithm for building energy performance or OB modeling. For example,
Wang et al. [19] developed 12 data-driven models to predict the thermal load of a university
campus building. The XGBoost model was found to provide the most accurate prediction.
The model was especially recommended for long-term prediction after being trained in the
presence of input uncertainty. Similarly, Kamel et al. [20] compared several data-driven
models using machine learning algorithms for residential energy use in cooling, heating,
hot water, and ventilation, with XGBoost providing the most accurate forecast for both
heating and cooling days. Lu et al. [21] also used the XGBoost model together with five
other machine learning models, such as SVM and RF, to predict the energy consumption of
a city intake tower in the USA. Results proved that the mean error of the XGBoost model
was much lower than that of the other benchmark models. An XGBoost model was also
applied by Yan and Liu [20] to predict the energy consumption values for air conditioners
in residential buildings based on monitoring data in a cloud platform. Eleven input features
were confirmed to have a great relationship with daily cooling consumption and applied in
the optimal model.

1.2. Research Gap

As previously mentioned, past studies on the observation and modeling of AC-related
OB have adopted various variables in addition to the indoor thermal conditions as sig-
nificant factors in residential AC usage schedules, including occupant-specific conditions
such as gender, age, habits, and thermal preference. Specifically, individual behavioral
preferences were found to strongly affect the frequency of AC use and AC energy con-
sumption [14,16]. Furthermore, occupancy schedules were supposed to have a significant
influence on AC operation schedules in residential buildings equipped with individual
AC units for each room, where the operating schedule for the AC is strongly influenced
by the time when people are in the room [16,21]. In fact, previous surveys of AC usage in
residential buildings in Malaysia [22] and Japan [23] reported different types of households
in terms of AC use frequency, which ranged from households that rarely used it to those
that were frequent users. However, the current research on the stochastic modeling of
occupants’ AC use has rarely considered the diversity of AC operation schedules among
different households or occupants.

Moreover, most of the previous statistical analyses and stochastic AC use models were
derived from measurements with a limited number of samples from several to dozens
of households. Thus, it was difficult to characterize the diverse OB patterns. Therefore,
the characteristics of the diverse OB and AC energy demand patterns of a community
consisting of diverse people were difficult to reproduce using the existing models. Table 1
gives a summary of previous studies of OB in residential AC usage.

1.3. Objectives

Therefore, the objective of this study was to establish a method for predicting the daily
varying AC operation schedules according to the various types of occupants with different
AC use frequencies. To conduct this, 2-year appliance-level electricity data measured in
482 dwelling units located in Osaka, Japan, were utilized. A statistical analysis of the
dataset for the summer seasons was first employed to identify the variability of cooling
usage behaviors among the measured dwellings. In particular, the effects of the occupancy
schedules, time of day, and temperature sensitivity on AC use were examined as significant
factors for the inter-occupant diversity related to AC usage. Based on this analysis, XGBoost
was applied to predict the AC use schedule. In addition, the accuracy of the model was
evaluated using the measured data of 482 households.
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Table 1. Summary of previous studies of OB in residential AC usage.

Author Investigation Target Method Objective Year

Ren et al. [12] 34 families in China Action-based quantitative
stochastic model

Air-conditioning usage
conditional probability 2014

Tanimoto and
Hagishima [13]

5 families and 3 single
dwellings in Japan Markov model AC operation state

transition probability 2010

Yao [14] 1 dwelling Statistical analysis Occupants’ stochastic
behavior in AC usage 2018

Diao et al. [15] 5 typical house units in
the USA

Clustering analysis
Neural network model

Distinctive behavior
patterns in AC usage 2017

Xia et al. [16] 102 bedrooms in China Statistical analysis
Clustering analysis

Representative patterns of
occupancy and AC

on/off states
2018

Mun et al. [17] 4 living rooms in
South Korea

Machine learning (LR,
SVM, RF models) AC on/off states prediction 2017

Yan and Liu [20] 1325 air conditioners
in China XGBoost model Prediction of AC energy

use in residential buildings 2020

Zaki et al. [22] 38 dwellings in Malaysia Statistical analysis Occupants’ stochastic
behavior in AC usage 2017

Fukami et al. [23] 20 dwellings in Japan Statistical analysis
Stochastic nature of
occupants’ behavior

toward AC usage
2022

2. Methodology
2.1. Database and Surveyed Community Description

The database used in this study was obtained from 586 dwellings in a 20-story resi-
dential building in Osaka, Japan. Tables 2 and 3 present summaries of the database and
target building, respectively. The database included the appliance-level electricity use for
18–26 appliance branches in each dwelling. The electricity load for each appliance branch
was measured in 1-min intervals within two years, from January 2013 to December 2014.
Each dwelling unit had two to four bedrooms, along with one large area for both living
and dining use connected to a kitchen. The thermal performance of the building envelope
was in accordance with the latest building energy-saving standard of this region. The
same AC unit was equipped in the living and dining room for each dwelling, with an
annual performance factor (APF) of 6.7. In contrast, the AC units in the bedrooms were
installed by each resident after construction. Private information, including gender, age,
and occupation, was not contained in this dataset.

Table 2. Outline of energy demand data.

Measurement items Total electricity and breakdown for
18–26 branches in 586 dwellings

Minimum measurement unit 0.017 W
Measurement period 1 January 2013 to 31 December 2014

Measurement interval 1 min

Data cleaning was first conducted because a portion of the original dataset included
measurement errors or dwellings with a long-term absence with no demand data. After
excluding invalid data with such problems, the total number of the investigated dwellings
in the original dataset was reduced from 586 to 482 households. Using this dataset, we
focused on the AC use behavior in the living and dining rooms because cooling in the
bedrooms primarily occurred during sleeping hours, when the OB was merely determined
by sleeping schedules rather than the ambient temperature or OB patterns. In addition,
information on the types and performance properties of the AC units in the bedrooms
was also unavailable. Therefore, the dataset used in the following work contained valid
data for the AC loads in the dining rooms from two consecutive cooling seasons (from
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June to September) in 2013 and 2014 for 482 households. Despite the unavailability of
observation data from the latest years, it should be noted that the mechanism of occupants’
climatic-responsive behaviors related to thermal comfort is supposed to be less affected
over the years. Considering the primary objective of this paper, namely to understand and
model the occupant’s responses (AC use behavior) during the season from early summer
to late summer, we believe the relatively old year of the observation has little influence on
the findings.

Table 3. Outline of target residential community.

Location Settu City, Osaka, Japan

Number of stories 20
Completion date January 2011

Structure Reinforced concrete structure

Building envelopes
External walls: internal insulation with air

layer, U-value 0.441 W/m2K1

Windows: low-E double-glazing

Number of dwellings

Total 586 dwellings
38 dwellings: 2 bedrooms + LDK * (55.1 m2)
391 dwellings: 3 bedrooms + LDK * (71.2 m2)
157 dwellings: 4 bedrooms + LDK * (83.6 m2)

* LDK refers to a unified space used for a living room, dining room, and kitchen.

2.2. Meteorological Conditions

The local dry bulb temperatures were measured and recorded by the Toyonaka weather
station of the Automated Meteorological Data Acquisition System, 10 km from the target
residential building. The variation of daily temperature in the target summer seasons in
2013 and 2014 is shown in Figure 1. A distinct seasonal variation can be observed, as the
daily average outdoor air temperature experienced a lower level at around 22 ◦C in early
and late summer and reached its peak in August at over 30 ◦C.

Buildings 2023, 13, x FOR PEER REVIEW 5 of 19 
 

Number of dwellings 

Total 586 dwellings 

38 dwellings: 2 bedrooms + LDK * (55.1 m2) 

391 dwellings: 3 bedrooms + LDK * (71.2 m2) 

157 dwellings: 4 bedrooms + LDK * (83.6 m2) 

* LDK refers to a unified space used for a living room, dining room, and kitchen. 

Data cleaning was first conducted because a portion of the original dataset included 

measurement errors or dwellings with a long-term absence with no demand data. After 

excluding invalid data with such problems, the total number of the investigated dwellings 

in the original dataset was reduced from 586 to 482 households. Using this dataset, we 

focused on the AC use behavior in the living and dining rooms because cooling in the 

bedrooms primarily occurred during sleeping hours, when the OB was merely deter-

mined by sleeping schedules rather than the ambient temperature or OB patterns. In ad-

dition, information on the types and performance properties of the AC units in the bed-

rooms was also unavailable. Therefore, the dataset used in the following work contained 

valid data for the AC loads in the dining rooms from two consecutive cooling seasons 

(from June to September) in 2013 and 2014 for 482 households. Despite the unavailability 

of observation data from the latest years, it should be noted that the mechanism of occu-

pants’ climatic-responsive behaviors related to thermal comfort is supposed to be less af-

fected over the years. Considering the primary objective of this paper, namely to under-

stand and model the occupant’s responses (AC use behavior) during the season from early 

summer to late summer, we believe the relatively old year of the observation has little 

influence on the findings. 

2.2. Meteorological Conditions 

The local dry bulb temperatures were measured and recorded by the Toyonaka 

weather station of the Automated Meteorological Data Acquisition System, 10 km from 

the target residential building. The variation of daily temperature in the target summer 

seasons in 2013 and 2014 is shown in Figure 1. A distinct seasonal variation can be ob-

served, as the daily average outdoor air temperature experienced a lower level at around 

22 °C in early and late summer and reached its peak in August at over 30 °C. 

 

Figure 1. Variation in the daily average outdoor air temperature from June to September in Osaka. 

2.3. Machine Learning Methods 

2.3.1. Clustering Analysis 

As mentioned in the literature review, past studies have revealed that occupants’ 

thermal and schedule preferences have a significant impact on a household’s daily AC 

usage pattern [14,16,21]. To introduce such inter-occupant diversity in AC usage behavior 

into the prediction model, clustering analysis is applied in our research. It is a multivariate 

data mining technique that groups a set of data objects into clusters by unsupervised clas-

sification. The k-means clustering method, first proposed by MacQueen [24,25], was 

adopted for clustering the diverse AC operating probabilities of the 482 dwellings. The K-

Figure 1. Variation in the daily average outdoor air temperature from June to September in Osaka.

2.3. Machine Learning Methods
2.3.1. Clustering Analysis

As mentioned in the literature review, past studies have revealed that occupants’
thermal and schedule preferences have a significant impact on a household’s daily AC
usage pattern [14,16,21]. To introduce such inter-occupant diversity in AC usage behavior
into the prediction model, clustering analysis is applied in our research. It is a multivariate
data mining technique that groups a set of data objects into clusters by unsupervised
classification. The k-means clustering method, first proposed by MacQueen [24,25], was
adopted for clustering the diverse AC operating probabilities of the 482 dwellings. The
K-means method is an unsupervised machine learning algorithm that partitions all the
points in the dataset into k non-overlapping clusters. Each data point would be assigned to
the cluster with the nearest mean, meaning the minimum sum of the measured distance
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between data points and the cluster’s centroid. For the clustering analysis in this work, the
Python package scikit-learn [26] was used.

2.3.2. XGBoost Model

The XGBoost model was selected to predict the stochastic AC on/off state, which was
affected not only by environmental conditions but also by the diverse characteristics of the
occupants. XGBoost implements machine learning algorithms under the gradient boosting
framework to provide parallel tree boosting for data analysis in a fast and accurate way.
It has been widely utilized for prediction tasks in various research areas, including civil
engineering [27] and building performance [28], as well as behavior modeling [19,20,29].
The python package for XGBoost was used in this work. Details of the inputs and parameter
settings are explained in the following part.

3. Inter-Occupant Diversity of AC Use Behavior
3.1. Detection of Occupancy and AC Operation State

Since the occupancy at each time step could not be directly observed, we estimated
the occupancy state using the electricity dataset based on the flow shown in Figure 2. First,
1-min interval load profiles of the lighting system and electrical devices were extracted from
the appliance-level monitoring database for each dwelling. The real-time on/off state was
identified for room lighting with a criterion load level of 1 W. For electrical device usage, a
daily baseline load Pbase (standby powers of television, laptop, etc.) was first calculated for
each dwelling with a criterion of plus 20 W for detection of possible additional energy use
activity. After aggregation of the above load profiles, the hourly operating duration of the
two load types could be obtained and used for occupancy detection. The target room was
assumed to be occupied by at least one resident when the operating duration of either the
lighting system or any additional electrical devices exceeded 10 min. Otherwise, the room
would be considered empty.
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Based on the appliance-level load data, all the sequences of the AC load profile were
similarly detected based on a threshold power value (10 W). The hourly on/off state of the
room AC unit was also calculated across the investigated period for each dwelling.

With the above detection process, Figure 3 illustrates an example of detected daily
occupancy and cooling usage patterns for one household. The vertical axis indicates the
electricity loads of lighting, devices, and AC units, respectively. The daily baseline level of
electrical devices was first calculated to be 52.7 W for the targeted dwelling. A criterion
of addition device usage, according to the above settings, was set to 72.7 W. The hourly
occupancy state and AC operating state were then detected, as shown in the bar charts
above. Based on the energy load, it was assumed that the target room is occupied by at
least one resident during the period of 13:00–24:00. The AC unit was detected to operate
from 15:00 to 1:00 for comparison.
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3.2. Daily AC Usage Rate

The scatter plot of daily AC cooling hours and electricity consumption in the target
period is shown in Figure 4. A great diversity in cooling duration and consumption can
be observed during the investigation of summer seasons, with the household’s average
cooling operation ranging from 0.4 to 19 h and the electricity consumed by a room AC unit
varying in the range of 10 kWh per day.
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To compare cooling operation preferences among dwellings with diverse daily occu-
pancy schedules, the AC usage range was defined in previous work as the daily cooling
hours normalized by the daily hours of occupancy in the target room [30]. Figure 5 gives
the density distribution of AC usage rate among the investigated 482 dwellings. Large
variability in households’ reliance on cooling use could be found. The results showed that
over 74% of the dwellings had an average AC usage rate of 0.3–0.7 per day. In addition,
extremely active users with intensive cooling operations also accounted for around 15% of
the community. Such households tended to have constant AC cooling operation during
their stay in the room, with a daily AC usage rate above 0.8.
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3.3. Clustering of AC Use Schedule
3.3.1. Hourly AC Operation Probability

The hourly AC operating probability for each dwelling was calculated using Equation (1):

(ACPRh,i) =
∑D

d=1 ACstateh,d,i

∑D
d=1 OCCstateh,d,i

(1)

where ACPRh,i denotes the probability of the AC operating during room-occupied hours.
ACstateh,d,i indicates the AC on/off state of the hth household on the dth day of the
investigation period at the ith hour, where the value is 1 if the AC was operating and 0 if
the AC was not operated during the target hour.

OCCstateh,d,i indicates the room occupancy state of the hth household on the dth day
of the investigation period at the ith hour. The value was 1 if the room was assumed to be
occupied by at least one resident and 0 if the room was empty during the target hour.

The estimated profiles for the hourly AC operating probabilities for all 482 dwellings
are shown in Figure 6. Great diversity in the daily usage schedule can be seen in the
target community.
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3.3.2. Clustering of Hourly AC Operating Probabilities

As mentioned above, the k-means clustering method was applied for clustering the
diverse patterns of AC operating schedules of the 482 dwellings in this work. Silhouette
score (SC) [31] was first selected as a metric index to determine the optimal cluster number.
SC values were calculated for multiple times of k-means clustering to select the best cluster
number to identify the occupant diversity. It has been confirmed that an excessively small
or large number of clusters would be inappropriate for producing typical and meaningful
patterns for the OBs [32]. As a result, three had the greatest SC value in this case, and it
was selected as the optimal cluster number for AC use schedules.

Figure 7 shows a boxplot of the AC operating probability at each hour of the day in
room-occupied periods for three clustered patterns. These three clusters can be regarded as
typical preferences for AC use and are called SPA, SPB, and SPC. The main characteristic of
each pattern is summarized as follows.
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SPA: the group of households preferring intensive AC use regardless of the time of
the day. The rate of AC operation was constantly high as long as the room was occupied
by residents.

SPB: the group of households with a clear daily variation of AC uses preference with
peak usage from the late afternoon to evening hours, with the AC rarely used after 1 AM
or in the morning even if the occupants were at home.

SPC: the group of households preferring infrequent use of AC throughout the day.
The rate of AC operation was below 0.5 within all room-occupied hours.

3.3.3. Thermal Sensitivity to AC Use Behavior for Each Household

The indoor air temperature has been widely considered a primary factor for the cooling
use behavior of occupants, particularly the action of switching on the AC for thermal
adaptation [33]. However, indoor air temperature is not commonly available for real-time
monitoring to obtain the optimum control of building facilities or for offline analysis of
building energy data such as the present study. In contrast, the outdoor air temperature is
often available from a local weather station and directly or indirectly dominates the indoor



Buildings 2023, 13, 521 10 of 17

thermal environment. Thus, it can also be regarded as an important variable affecting
the AC use behaviors of occupants. Furthermore, previous studies on adaptive thermal
comfort suggested that the outdoor air temperature has an influence on people’s thermal
tolerance or perception, as characterized by the thermal comfort temperature for naturally
ventilated buildings [34]. Therefore, we analyzed the relation between the outdoor air
temperature and AC operation usage, considering the inter-occupant diversity.

Figures 8 and 9 show the AC operating probability during the hours people were
at home under different outdoor temperature conditions. This probability was defined
as a 24-dimensions parameter that indicates the ratio of AC operating hours of all the
room-occupied hours within the investigated period [10]. It was first calculated for each
dwelling with a 2 ◦C resolution of outdoor air temperature, as shown in Figure 8, and
statistics for the 482 dwellings are illustrated in Figure 9 as a boxplot. It should be noted
that invalid probability data due to a limited sample number were already excluded.
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Figure 8 shows the diverse relationship between outdoor temperature and AC use
among the target community. Some households rarely used the AC when the outdoor
temperature exceeded 32 ◦C. In contrast, several households exhibited a high probability
of more than 0.9 for outdoor temperatures below 24 ◦C, suggesting that they continuously
used the AC regardless of the outdoor thermal condition. The boxplot for the households
in Figure 9 shows all the quartiles, including the median increase with an increase in
the outdoor temperature, as expected. The broad ranges between the 25th and 75th
percentiles under temperatures of 22–28 ◦C clearly illustrate the significant diversity within
the community in terms of the thermal sensitivity of AC use behavior.

Our previous research has proposed thermal sensitivity as an indicator to characterize
such inter-occupant diversity of thermal tolerance [10]. It was defined as the average
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change of AC operating probability of one dwelling with 1 ◦C variation of the outdoor air
temperature. The thermal sensitivity level for each household (hereafter TS) was calculated
based on Equation (2):

TSh =
Pmax,h − P0,h

Tpmax,h − T0,h
(2)

where TSh denotes the thermal sensitivity of the h-th household. Pmax,h is the maximum
value of AC operating probability for the h-th household, and P0,h represents the AC
operating probability in the lowest temperature range. Tpmax,h denotes the lower value
for the outdoor air temperature range when the AC operating probability reaches the
maximum level and T0,h is the lower limit for the outdoor air temperature (22 ◦C).

Figure 10 shows the density distribution of the household thermal sensitivity across
the 482 dwellings. The horizontal axis indicates the sensitivity of the occupants to the
external thermal environment change, which varied from 0 to 0.14 across the investigated
dwellings. In other words, a household increased their probability of using AC by up to
0.14 with a 1 ◦C increase in the outdoor temperature.
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3.3.4. Household Clustering Based on Thermal Preference

Based on the daily AC use rate shown in Figure 4 and household thermal sensitivity
shown in Figure 10, we applied k-means clustering to classify representative groups
of households as an influential factor underlying the diverse AC use schedules among
households. In this case, the optimal clustering number was determined to be four, which
was calculated with the greatest SC value for thermal preference. The clustering results
are illustrated in Figure 11. Four typical thermal preference patterns were found with a
different share of the dwellings in the community.

TPA: households that were sensitive to an outdoor temperature variation and had
intensive cooling use.

TPB: households that were sensitive to an outdoor temperature variation but had
inactive cooling use.

TPC: households with intensive cooling use regardless of the ambient thermal environment.
TPD: households that were insensitive to the outdoor temperature variation and had

rare cooling use.
Thermally sensitive users (TPA and TPB) were found to be the majority in the investi-

gated community. Both households assigned in the pattern of TPA (sensitive and active)
and TPB (sensitive but non-active) showed a tendency of adaptive behavior, meaning an
increase in AC use with a temperature rise. In contrast, households with intensive AC
cooling usage in various thermal conditions and showed no behavioral change also existed
(TPC) and accounted for 19% of the community. Such household-level labeling based
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on thermal preference was used as OB-related input information for the AC operation
prediction model in the following section.
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4. AC on/off State Modeling
4.1. XGBoost Model Establishment

Based on the clustering analysis results for the occupants’ operating schedule pref-
erences and thermal preferences shown in previous sections, such behavioral variables,
namely the schedule preference type and thermal sensitivity type, were used as the input
features for the XGBoost model to reproduce the inter-occupant diversity. In addition, the
real-time outdoor temperature and historical weighted temperature, Tweighted, were also
included as inputs for the prediction.

Tweighted was proposed by Lyu et al. [30] to consider the influence of the outdoor
temperature on previous days on AC use, as expressed by Equation (3):

Tweighted =
n

∑
i=0

(wi · Ti)/
n

∑
i=0

wi (3)

where i indicates the number of days elapsed from the target date of interest, n is the
maximum number of elapsed days to be involved as the influential period of past thermal
exposure, and wi denotes the weight factor of the ith-day, which exponentially decreases
with each day elapsed, meaning the decreasing significance of the past days as time
progresses. The inputs and outputs of the model are listed in Table 4. A binary variable
indicating the hourly AC on/off state throughout the target season, with a value of 1
indicating AC operation at the target hour and 0 indicating the opposite, was generated as
the output of this model.

Table 4. Inputs and outputs of the XGBoost model.

Variables Remarks

Input

Hour Categorical (0, 1, 2 . . . 23)
Outdoor air temperature Continuous
Thermal sensitivity type Categorical (TPA, TPB, TPC, TPD)
Schedule preference type Categorical (SPA, SPB, SPC)

Weighted mean temperature (10 days) Continuous
Output AC on/off state 1: ON; 0: OFF
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4.2. Hyperparameter Optimization

The dataset was first divided into two groups for training and testing data. The
training group contained 70% of the total samples and was used to learn and optimize the
parameters of the model. The other 30% was used for testing the prediction performance of
the model. K-fold cross-validation [35] was then applied, which splits training data into a
K number of folds to evaluate the model’s ability when given new data. In this work, a
five-fold cross-validation process was conducted.

The next step was to obtain the optimal hyperparameters, which denote certain values
or weights of the model used to control the learning process of its gradient-boosting algo-
rithm. Hyperparameters in the tree-based algorithm determine the detailed settings of the
structure, such as the maximum depth of the tree, the number of trees to grow, and feature
weights to prevent overfitting. Grid search [36], as a common tool for hyperparameter
tuning, was applied in this work to obtain the optimal model settings. It works as an
exhaustive search over every combination of specified parameter values. After specifying
several possible values for the main hyperparameters, the optimal parameters for the model
were determined by the optimizer, as listed in Table 5. The performance of the proposed
XGBoost model was evaluated, and the results are discussed in the following section.

Table 5. Setting of the parameters in the XGBoost model.

Parameters Range Description Settings

training group Data for parameter learning 70%
testing group Data for performance testing 30%
n_esitimators [50, 150, 300, 500] Number of gradient-boosted trees 150
leaning rate [0.01, 0.05, 0.1, 0.3] Feature weights to prevent overfitting 0.1
max_depth [4, 6, 8, 10] Maximum tree depth for base learners 6

min_child_weight [5, 6, 7, 8] Minimum sum of instance weight 5

gamma [0.2, 0.4, 0.6, 0.8] Minimum loss reduction required for a
further partition 0.6

4.3. Modeling Performance Evaluation

Considering the imbalanced distribution of AC on and off states, a confusion ma-
trix [37] was applied for model assessment. The binary results for the predicted AC
operation states for each hour were divided into positive and negative values, with four key
parameters: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). Multiple widely used indicators for model evaluation [29,38] were defined based on
the following equations. The accuracy gives the percentage of correct classifications of the
AC on/off state.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Recall =
TP
P

=
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

where TP denotes results that are actually positive and were predicted to be positive, and
TN denotes results that are actually negative and were predicted to be negative. FN denotes
results that are actually positive but were predicted to be negative. FP denotes results that
are actually negative but were predicted to be positive. P denotes results that are actually
positive (TP and FN), and N denotes results that are actually negative (TN and FP). The F1
score was also calculated as an indicator weighting the recall and precision, with a value
closer to one indicating that the prediction model was more accurate.

F1 score =
2 · precision · recall
precision + recall

(7)
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5. Results and Discussion
5.1. Results

Figure 12 shows the confusion matrix of the established XGBoost model for the
prediction of AC on/off states in both training and testing groups. The confusion matrix
is a table presenting the actual and predicted states of AC operation in each time step,
with the diagonal elements indicating the number of correctly predicted operation states.
Table 6 gives the Prediction performance of the model in both the training and testing
group. Recall here denotes the fraction of AC on states in all time steps that have been
correctly predicted by the model, and precision denotes the percentage of the correctly
predicted AC on the state in all the prediction results. It was found that the proposed model
shows satisfying performance with high precision, recall, and accuracy in identifying the
AC operation states. The F1 score of the XGBoost model was 0.79 and 0.80 for training and
testing data, respectively.
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Table 6. Prediction performance of the model in both the training and testing group.

Accuracy Recall Precision F1 Score

Training group 0.83 0.76 0.82 0.79
Testing group 0.82 0.73 0.85 0.80

Figure 13 shows a receiver operating characteristics (ROC) curve, which indicates
the performance of the AC state prediction. The vertical axis shows the TP rate, and the
horizontal axis shows the FP rate. The Area Under the ROC Curve (AUC) value represents
the entire two-dimensional area underneath the entire ROC curve, indicating in broad
terms the model’s ability to predict classes correctly. The AUC score ranges from 0 to 1,
where 1 is a perfect score and 0.5 means the model is as good as random. The results show
an AUC value of 0.845, indicating a high chance that the classifier will be able to distinguish
the positive class values from the negative class values.

Figure 14 gives the feature importance scores for the prediction model. The scores of
the input features were assigned based on their importance in predicting the output. A
higher score indicated that the feature was more responsible and influential in predicting
the AC on/off state. The results show that the schedule preference and thermal preference
patterns both had large effects on the prediction of the AC state, with feature importance
scores of occupants’ schedule preference and thermal preference in AC state prediction
found to be 0.384 and 0.263, respectively. In other words, these two factors could be recog-
nized as effectively representing the inter-occupant diversity in AC use behavior. Moreover,
the real-time ambient temperature and historical mean temperature, Tweighted, showed
similar feature importance values, proving that the impact of the outdoor temperature on
AC use conceivably changes over time within a certain time period.
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5.2. Applications and Limitations

In this study, a prediction model of residential AC usage considering diverse behav-
ioral patterns was established with satisfactory performance. The main contribution of
the proposed work is that informative and realistic references could be provided for re-
searchers focusing on the modeling and prediction of OB in AC usage. For example, the
identification process of a household’s thermal and schedule preference for cooling usage
could be considered for generalization to similar modeling of AC usage at the community
or regional level for other studies. Further, the representative patterns for occupancy and
AC operation schedules derived in this study could be helpful in similar large-scale case
studies. It would be a good reference for the stochastic and complex nature of occupants’
behavioral patterns rather than a basic and fixed standard.

As one of the limitations of this study, the prediction model included only the real-time
outdoor air temperature and weighted mean outdoor temperature in a historical period as
the input information of external conditions. The indoor temperature, another influencing
factor of AC operation, could not be involved due to the limitation of data availability.
As a result, the prediction of AC on/off state in this work could not be associated with
the variation of the indoor thermal environment. In addition, the energy dataset used in
this study was measured and collected in 2013 and 2014 in Osaka, Japan. Considering the
mechanism of occupants’ climatic-responsive behaviors, the unavailability of more recent
data has little effect on the current findings. Although the methodology of this work could
be derived towards wider generalization, the differences in occupants’ preferences and
climate conditions, as well as possible AC module advancements, should be considered for
our future studies in other regions.
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6. Conclusions

This work proposed a prediction method for the stochastic AC on/off state in a
residential building considering the inter-occupant diversity of AC use behavior based on
the appliance-level electricity demand data for 482 dwellings in a real community during
two consecutive cooling seasons. Statistical analysis was first conducted to identify the inter-
occupant diversity of OBs in the measured dwellings. In particular, individual preferences
regarding occupancy schedules, daily cooling schedules, and thermal sensitivity were
found to show great variability across the community. Clustering analysis was then applied
to classify the dwellings into different schedules and thermal preference patterns. The
XGBoost model was applied to predict the hourly AC on/off state and showed satisfactory
performance. The main conclusions are summarized as follows.

• Great diversity in the inter-occupant behavioral preferences related to AC usage was
found in the target community.

• Three and four types of households were identified for the occupants’ behaviors
related to their cooling schedule and thermal sensitivity patterns, respectively.

• The proposed model considering diverse OBs, showed satisfactory prediction perfor-
mance, with an AUC score of 0.845, indicating a high chance of accurate distinguish-
ment of AC operation states.

• Instead of the outdoor temperature, the behaviors of the occupants were found to
have a crucial impact on a household’s AC operation. Feature importance scores of
occupants’ schedule preference and thermal preference in AC state prediction were
found to be 0.384 and 0.263, respectively.
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