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Abstract: By enhancing the thermal properties of cement-based building materials, energy consump-
tion and carbon dioxide (CO2) emissions related to space conditioning in buildings can be alleviated.
This study aims to present cement-based composites reinforced by textile fibers for application in
building and construction. Several lightweight coating mortars were produced by partially replacing
the sand in the mix with different percentages of textile waste. Mechanical and thermal characteriza-
tions of the reinforced cementitious composites were performed. The results showed that the thermal
conductivity of cementitious compounds decreased as the proportion of reinforcing material in the
mixture increased. In terms of mechanical properties, the textile slightly reduced the compressive
strength of cementitious mortar, while it improved the flexural strength. A numerical study was
then performed to derive the actual impact of these reinforced materials on the thermal behavior of
a building element using COMSOL Multiphysics. Numerous configurations of walls coated with
different mortar mixtures were studied. The results showed that coating both sides of a building
wall with 20 mm of textile-reinforced mortar reduced the internal temperature by 1.5 ◦C. Thus, the
application of these thermally improved mortars as coating mortars appears to be a relevant solution
to enhance the thermal performance of buildings.

Keywords: textile fiber waste; reinforced cementitious mortar; thermal insulation; heat transfer analysis

1. Introduction

Due to population growth and improving living standards in general, the consumption
of textiles has increased worldwide, which has led to an increase in textile production. The
textile industry presents a consumption of clothing and textiles of 7 kg per year per capita,
and more than 49 million tons of products are produced every year [1]. Meanwhile, the
textile industry is one of the most worrying supply chains, having catastrophic social and
environmental impacts worldwide [2]. In 2020, textile consumption in Europe had, on
average, the fourth-highest impact on the environment and climate change [3]. Moreover,
increases in textile global production result in the creation of a high amount of textile
waste. Accordingly, the implementation of a circular model in the textile sector, taking into
account the recycling of textile waste, is essential to ensure sustainability and mitigate the
environmental impacts of this sector. There are two types of textile waste: reusable waste
(production offcuts, reel offcuts, etc.) and recyclable waste (filament, etc.). The last category,
in turn, is divided into two main categories: one of high value and the other of low value.
It is estimated that 1/4 of textile waste consists of pure fibers: cotton, synthetics, and others.
In Tunisia, there were more than 3000 companies in the textile and clothing industry in
2019 [4]. The total textile waste in Tunisia was about 31.1 kilotons, divided into 6.3 kilotons
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of reusable waste and 24.8 kilotons of recyclable waste. The latter, in turn, is divided into
9.8 kilotons in high value and 15.0 kilotons of low value waste [3].

The textile industry is not the only one with disastrous social and environmental
impacts. The building sector has many drawbacks in terms of energy consumption and
carbon dioxide (CO2) emissions [5]. According to the International Energy Agency (IEA),
the residential and industrial building sectors represent more than a third of global final
energy consumption and nearly 40% of total direct and indirect carbon dioxide (CO2)
emissions [6]. Most residential and industrial buildings require high-energy consumption
to ensure acceptable thermal comfort for their occupants. Therefore, the implementation of
an energy-saving program in buildings by improving the thermal performance of construc-
tion elements has become a necessity, with the application of thermal insulation being a
promising way to reduce energy losses [7–9]. The commonly used technique to improve
the insulation capacity of walls is to embed the insulation layer in the erected foundation
wall, which increases the thickness of the wall and delays the construction time [10]. To
overcome these design disadvantages, several researchers are focusing on the integration
of insulators in building materials such as plaster [11], concrete [12,13], mortar [14–16], and
construction bricks [17–19]. Fibers are among the most widely studied insulators for use
in cementitious materials and have proven to be an excellent solution for mitigating heat
loss. In fact, several studies have been carried out in this field of research to study new
cement-based composites reinforced with fibers such as wool fiber [20], Acaï [21], palm
fiber [22,23], agricultural fiber wastes [24], coconut fiber [25], rice straw fibers [26], recycled
brass fibers [27], and basalt fiber [28].

The past decades have witnessed a growing interest in textile-reinforced mortar (TRM),
and it has become one of the most important fiber-reinforced materials due to its promising
textile properties. Based on a review of the literature, the use of textile fiber as a reinforcing
material has only been explored in a limited number of applications. Generally, textiles
have mainly been incorporated into cement-based materials to improve their mechanical
strength, ductility, toughness, and durability [29–38]. Sadrolodabaee et al. [39] investigated
the mechanical and durability properties of cement composites reinforced with two types
of textile waste, either a fraction of short fibers or non-woven fabric. Flexural strength,
toughness, stiffness, and drying shrinkage developed composites were evaluated. A
composite reinforced with six layers of non-woven fabric showed optimal performance
with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2. Gulinelli et al. [40]
studied the performance of various wall configurations strengthened with textile-reinforced
mortar. The structural performance was evaluated experimentally and numerically by
conducting diagonal compression tests. The findings indicated that, compared to a simple
wall, the reinforcement systems lead to a substantial improvement in both load-bearing
capacity and rigidity. Abbas et al. [41] investigated the potential of using 16 different textile
fabrics for structural applications. A series of tests, including microscopic analysis, mass
per unit area, and tensile strength, were carried out on specimens made of textile-reinforced
mortar to determine the most suitable fabric. The results showed that the mass per unit
area of the tested fabrics varied between 117 and 1145 g/m2. It was noticed that the tensile
strength was greater in the warp direction compared to the weft direction, owing to the
increased number of yarns in the warp direction. Moreover, it was found that plain weave
fabrics had higher strength compared to twill weave fabrics. Plain weave was deemed
to be the most suitable among the 16 selected fabrics for use in textile-reinforced mortar
applications, due to its adequate spacing and alternating arrangement of yarns, leading to a
stronger bond with the matrix and higher tensile strength. Regarding thermal performance
studies, few authors have experimentally investigated the integration of textile fibers in
cementitious mortars to enhance building thermal insulation [42]. Oliveira et al. [1], for
example, experimentally investigated the effect of fabric shavings on the thermal and
mechanical properties of mortars. The results showed that the mechanical strength of
the fabric-yarns-reinforced mortar was lower than that of the reference mortar. Despite
this reduction, the minimum values set by the standards for compressive and flexural
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strengths were met. Furthermore, when the textile-reinforced mortar was thermally tested
at 60 ◦C, its internal surface temperature was about 12 ◦C lower than that of the reference.
This property is extremely important for questions of durability, as it protects structures
and walls from expansion and contraction movements. Briga et al. [43] also investigated
the potential of using textile fibers in building construction applications. The thermal
characterization of the developed composites was performed by analyzing the heat flows,
internal surface temperatures, heat transfer coefficients, and infrared thermal imaging. The
authors affirmed that increasing the proportion of textile fibers in the mix resulted in higher
thermal stability. Moreover, the developed composite showed promising results compared
to traditional building materials.

Only a few studies have focused on the incorporation of textile fibers as thermal
reinforcing in cementitious mortars. Since the results were promising, a more concise
understanding and exploration of the overall thermal performance of these composites is
required. Thus, this study aims to evaluate the potential of incorporating recycled industrial
textile waste into building components to enhance their thermal properties and reduce
energy consumption in buildings. Several lightweight coating mortars were produced
by partially replacing the sand in the mix with different percentages of textile waste as
reinforcement material. The mechanical and thermo-physical characterizations of these
composites were carried out. A numerical investigation was then performed to examine the
thermal efficiency of the developed materials using COMSOL Multiphysics 5.5 software.
Numerous configurations of walls coated with different coating mortar mixtures were
studied. The study suggests using textile-reinforced cement-based materials as coating
mortars to enhance the thermal performance of buildings and reduce energy consumption
and CO2 emissions.

2. Textile Reinforced Mortar: Preparing and Testing Methods
2.1. Samples Preparation

Fiber-reinforced mortars were prepared by replacing the sand of cement mortar with
volume fractions of 0% (PM), 10% (M10), 20% (M20), 30% (M30), and 40% (M40) of textile.
The cement used in this study was Portland cement in accordance with the terminology of
the European standard EN-197-1 [44] and was supplied by Cementos Molins Industrial
S.A. A natural sand AF-R-0/2-S was used as a fine aggregate. The textile fiber added
as a reinforcing material is a waste generated at the end of the textile spinning process.
Table 1 summarizes the thermal properties of the fibers used. Before mixing the mortar,
the fiber was dispersed by injecting compressed air. Mortar mixes were prepared using a
cement-to-sand volume ratio of 1:4 and the mix design is shown in Table 2 and Figure 1.
The mortar mixing procedure was carried out according to the European standard EN
1015-2 [45]. Finally, the mixed slurry was poured into prismatic molds with dimensions of
40 × 40 × 160 mm (Figure 2). The blend was cast in two stages, each layer set being first
tapped with a steel bar and then vibrated until the fresh mortar was completely leveled.
Three samples of each mixture were made. The samples were left in the molds for 24 h at a
laboratory temperature of 20 ◦C. After demolding, some of the specimens were cured in
water for 7 days and others for 28 days.

Table 1. Thermal properties of textile-reinforced mortar components.

Material Thermal Conductivity
[W/m·K]

Thermal Diffusivity
[mm2/s]

Volumetric Heat Capacity
[MJ/m3 K]

Cement 0.140 0.201 0.694
Sand 0.335 0.278 0.278

Textile fibers 0.082 0.418 0.196
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Table 2. Mixture designs for tested mortar samples, mass for 1 m3.

Materials PM M10 M20 M30 M40

Cement 215 215 215 215 215
Sand 1540 1386 1232 1078 924

Textile 0 5.26 10.52 15.78 21.04
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2.2. Workability and Density Measurement

Both the flow behavior and the bulk density were tested in the fresh state. The
fluidity of the cementitious mortar, which is expressed by the workability, was evaluated
immediately after the mixing process using a flow table test (Figure 3a) in accordance
with the standard EN 1015-3 [46]. The fresh bulk density was quantified by the European
standard EN 1015-6 [47]. In the hardened state, the dry bulk density of the reinforced
mortars was studied in accordance with the EN 1015-10 standard [48].
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2.3. Mechanical Characterization

For the mechanical characterization of the hardened cementitious composites, flexural
and compressive strength tests were carried out according to the EN 1015-11 standard [49].
A COINSA Controls Industrial servo-controlled testing machine with two different heads,
one for flexure testing and the other for compression testing, as shown in Figure 4, was used
to test the reinforced cementitious mortars. To assess the bending strength, a three-point
flexion test was carried out with a load rate of 50 ± 10 N/s. The compressive strength tests
were carried out following the flexion tests using one of the two resulting fragments with
a loading rate of 2400 ± 200 N/s. The two tests were carried out until the fracture of the
prismatic specimen and the breaking load were recorded.
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2.4. Thermal Characterization
2.4.1. Analytical Prediction of Composite Thermal Conductivity

As a bulk property, the thermal conductivity of composite material can be predicted
by several theoretical models. Starting with Maxwell [50], numerous analytical inves-
tigations [51–53] have been performed to solve the problem of thermal conduction in
heterogeneous materials. The suggested models are mathematical expressions that de-
termine the effective thermal conductivity of a composite material based on the thermal
conductivities of its components as well as the shape and proportion of the reinforcing
material. The suitability of a particular model is established by the underlying assumptions
made during its development. Thus far, various analytical solutions are available to predict
thermal conductivity for the most common composite structures, including dispersion
compounds. In this work, several theoretical models were presented, which assume that
the reinforcing material consists of randomly dispersed spherical units within the matrix,
for comparison with the experimental results. In all of the models, we considered a com-
posite material with thermal conductivity Kc, consisting of spherical units with thermal
conductivity Krf embedded in a continuous matrix with thermal conductivity Kmx at a
volume fraction ϕ.

• Series and Parallel models: Figure 5 shows the two plain theoretical methodologies that
have been followed to predict the effect of adding a reinforcing material on the thermal
conductivity of a matrix. The first approach focuses on individually considering the
contribution of each component to model the thermal conductivity of the composite
through the application of the percolation theory [54]. Based on the electrical analogy,
this model is called a series model. In this case, the effective thermal conductivity of
the composite material is given by [55–57]:
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Kc = (1 − ϕ) Kmx + ϕ Krf (1)

The second approach assumes that the composite reacts as a homogeneous material.
This model follows the arrangement of parallel electric circuits, which is represented by the
following expression:

Kc = 1/(((1 − ϕ))/Kmx + ϕ/Krf) (2)

The aforementioned models present upper (interactive model) and lower bounds (non-
interactive model) of the effective thermal conductivity that the data encompass [55–57].

• Maxwell model: This model was developed to define the electrical conductivity of
a heterogeneous medium composed of dispersed spheres. The development of this
model provides an accurate solution for the effective thermal conductivity of arbitrarily
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distributed homogeneous spherical particles without interaction in a homogeneous
matrix [56]:

Kc = Kmx (2 Kmx + Krf − 2 (Kmx − Krf) ϕ)/(2 Kmx + Krf + (Kmx − Krf) ϕ) (3)

The main limitation of this model is its limited applicability to only low concentrations
of reinforcing particles. However, it has served as a base for creating new, advanced models
that account for additional parameters related to the various components involved [57].

• Rayleigh model: This model was adapted to predict the effect of cylindrical reinforce-
ment materials on the thermal conductivity of a matrix. The equation below allows
for the effective thermal conductivity to be calculated [58]:

Kc = Kmx (Kmx + Krf − (Kmx − Krf) ϕ)/(Kmx + Krf + (Kmx − Krf) ϕ) (4)

• Hashin and Shtrikman model: Following the approach of Maxwell and using the
perturbation hypothesis, Hashin and Shtrikman developed a model to predict the
thermal conductivity of randomly scattered units in a continuous matrix. This model
provides upper and lower limits of the effective thermal conductivity rather than
deriving an equation for it. Moreover, it is shown that, in the case of composite
material, these limits are the most restrictive that one can obtain in terms of volume
fractions of charge and conductivity [59]. Equations (5) and (6) indicate the lower and
upper limits of the conductivity [55]:

Kc_min = Kmx (1 + (p − 1) D ϕ)/(1 − D ϕ) (5)

Kc_max = Kmx (Krf (1+ (p − 1) (1 − ϕ) d)/(Kmx (1 − (1 − ϕ) d) (6)

where
D = (Krf − Kmx)/(Krf + (p − 1) Kmx) (7)

d = (Kmx − Krf)/(Kmx + (p − 1) Krf) (8)

and p is a parameter involving the morphology of the particles, in the case of a spherical
dispersion p = 3 and for a cylindrical dispersion p = 2.

• Hatta and Taya model: Hatta and Taya developed a model to predict the thermal
conductivity of a composite consisting of short fibers with different orientations [60,61]
based on the analogy of Eshelby [62]. This approach is based on predicting the steady-
state equivalent thermal conductivity of the composite by considering the shape and
interactions between the additions with different orientations. The equation they
arrived at is [55]:

Kc = Kmx + (ϕ Kmx)/(S (1 − ϕ) + Kmx ⁄ ((Krf − Kmx))) (9)

where S = 1/3 for spherical particles.

• Nielsen and Lewis model: Nielsen and Lewis derived a semi-theoretical model for
predicting thermal conductivity [63,64], based on the Halpin-Tsai equation [65]. They
adjusted the model to handle non-spherical additives using a coefficient, which de-
pends on the shape and orientation of the particles. Moreover, Nielsen and Lewis’s
model considers the effect of the maximum fraction of the additive, ϕmax. The
semi-empirical model developed is as follows [66]:

Kc = Kmx (1+ C E ϕ)/(1 − β E ϕ) (10)

where:

E = (Krf ⁄ Kmx − 1)/(Krf/Kmx + C) (11)

β = 1+ ((1 − ϕmax) ϕ)/(ϕmax)2 (12)

For spherical additive randomly dispersed in the matrix, C = 1.5 andϕmax = 0.637 [57].



Buildings 2023, 13, 535 8 of 22

2.4.2. Experimental Characterization

To study the thermal properties of reinforced mortars, The TEMPOS thermal properties
analyzer was used on the remaining fragment from the flexion test. As shown in Figure 6,
the samples must be drilled first with a rotary hammer and then cleaned with compressed
air. Before inserting the sensor needle, the hole must be filled with thermal grease. Good
thermal contact between the sensor and the sample is critical for accurate measurements;
therefore, it is important to ensure that the sensor fits tightly into the hole. Finally, the
thermal conductivity and thermal resistance were measured in the climatic chamber at a
temperature of around 20 ◦C.
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2.4.3. Numerical Characterization

A numerical study was performed to investigate the thermal properties of the textile-
reinforced mortars using COMSOL Multiphysics software. The first crucial step for a
successful simulation is to generate an appropriate geometry for the problem. In this case,
a three-dimensional model featuring a rectangular block defining the mortar matrix and
spherical units representing the reinforcement material was used to conduct the thermal
analysis on the composite materials with varying additive concentrations. In this steady-
state heat conduction problem, the heat flux was only considered along the x-direction. The
faces that were perpendicular to the direction of the heat flow were considered isothermal.
One surface was set at 15 ◦C and the other at 40 ◦C. The other faces that were parallel to the
x-direction were all considered adiabatic. The thermal conductivities that were predicted
by this model were compared and validated with the experimental results. After validation
of the model, it was be used to predict the thermal diffusivity and the volumetric heat
capacity of the textile-reinforced mortars.

3. Evaluation of Characterization Results

In order to assess the influence of textile fibers on cement-based mortars, several tests
were carried out on the fresh and hardened states of the mixtures. Each measurement was
repeated three times to guarantee repeatability, and the mean value was reported.

3.1. Workability Testing

The amount of water added to the dry mix was adjusted differently for each percentage
of textile waste added to achieve acceptable workability. The details of the modified
cementitious mortar mix proportions are summarized in Figure 1. The Water to Cement
(W/C) ratio values with different fiber percentages are illustrated in Figure 7. The measured
flow diameter of the control mixture without fibers was 145 mm. In this test program, the
flow rate for all of the mortar mixtures was kept at a specified value of 140 ± 5 mm, in
order to obtain a fluid and workable consistency. As can be seen, fiber-reinforced mortars
showed a higher water requirement in order to achieve similar workability to plain mortar.
This was due to the high water absorption of the fibers.
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Figure 7. W/C ratio values with different textile fiber percentages.

3.2. Bulk Density Testing

Figure 8 shows the variation in apparent density of the samples in both fresh and
dry states versus the reinforcing material percentage. The fiber-free cement mortar had
a fresh apparent density of 1900 kg/m3. After adding varying amounts of textile fibers,
the fresh state apparent density dropped to a value of 1585 kg/m3, exhibiting a difference
of around 315 kg/m3. For the M40 sample, in the hardened state, the density diminished
to 1538 kg/m3. with a difference of around 302 kg/m3 compared to the plain mortar PM.
Thus, it can be deduced that the incorporation of the fibers into the cementitious mortar is
accompanied by a loss of density. This lightness is due to the low fiber density.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 23 
 

 

Figure 7. W/C ratio values with different textile fiber percentages. 

3.2. Bulk Density Testing 

Figure 8 shows the variation in apparent density of the samples in both fresh and dry 

states versus the reinforcing material percentage. The fiber-free cement mortar had a fresh 

apparent density of 1900 kg/m3. After adding varying amounts of textile fibers, the fresh 

state apparent density dropped to a value of 1585 kg/m3, exhibiting a difference of around 

315 kg/m3. For the M40 sample, in the hardened state, the density diminished to 1538 

kg/m3. with a difference of around 302 kg/m3 compared to the plain mortar PM. Thus, it 

can be deduced that the incorporation of the fibers into the cementitious mortar is accom-

panied by a loss of density. This lightness is due to the low fiber density. 

 

Figure 8. Dry and fresh bulk densities of the textile fiber reinforced mortars. 

3.3. Mechanical Characterization 

Coating mortars must have a sufficient mechanical strength to withstand the multi-

ple impacts to which they may be subjected during their lifetime. Accordingly, the me-

chanical performance of the textile waste-reinforced mortars was investigated at 7 and 28 

PM M10 M20 M30 M40

1.0

1.2

1.4

1.6

1.8

W
/C

 r
a
ti
o

Reinforced cementitious mortars

 W/C ratio  Workability

L
e
n
g
th

 (
c
m

)

0 10 20 30 40

13.5

14.0

14.5

 

Fiber percentage (%)

0 10 20 30 40

1200

1400

1600

1800

2000

2200

A
p
p
a
re

n
t 
d
e
n
s
it
y
 (

k
g
/m

3
)

Fiber percentage (%)

 Fresh state density

 Dry state density

0 10 20 30 40

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

 Max/Min bound

 Mean

Figure 8. Dry and fresh bulk densities of the textile fiber reinforced mortars.
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3.3. Mechanical Characterization

Coating mortars must have a sufficient mechanical strength to withstand the multiple
impacts to which they may be subjected during their lifetime. Accordingly, the mechanical
performance of the textile waste-reinforced mortars was investigated at 7 and 28 days of
curing. Figure 9 illustrates the failure modes of the textil-ized mortars during the mechani-
cal tests after 7 and 28 days, respectively. The visual inspection of the defective samples
(Figure 9a) confirmed that the mortars containing more textile fibers showed more severe
damage under the applied load. This predicts that increasing fiber content will cause a
dramatic drop in sample stiffness and a subsequent reduction in compressive strength.
Figures 10 and 11 show the average compressive and flexural strength results, respectively.
Based on the graphs, increasing the curing period significantly enhances mechanical per-
formance. For the compressive strength testing, the increasing percentage between the 7th
day and the 28th day was approximately 35% for the M40 sample. Compared to the 7-day
flexural strength, the increase in the 28-day strength was 34% for the PM sample and 22%
for the M40 sample. It is worth noting that, as the amount of textile increased, the flexural
strength gained over the curing period was affected. As can be seen, the plain mortar
PM had the highest compressive and flexural strength regardless of the curing period. In
adding the textile fibers, a decrease in the compressive strength of mortars occurs. Figure 10
shows that the seven-day compressive strength for the M40 sample decreased by approxi-
mately 33% compared to ordinary mortar PM. However, the compression resistance of the
samples after 28 days of curing slightly decreased until reaching a difference of 15 % for
the M40 mix compared to the PM sample. This diminution in mechanical strength for the
textile-reinforced mortars could be attributed to the low strength and high compressibility
of the textile fibers. Despite the reduction in compressive strength, all of the reinforced
mortars met the requirement for use as a coating mortar in building construction according
to EN 998-1 [67]. Concerning Figure 11, regardless of the curing period, the flexural strength
of the mortars increased as the percentage of reinforcing material increased. The increase
in the seven-day flexural strength was about 11%, 25%, 33%, and 34% for the M10, M20,
M30, and M40 samples, respectively, compared to the control sample. The 28-day flexural
strength increased to 3.7 MPa, which corresponds to an increase of approximately 22%
compared to the textile-free mortar.

3.4. Thermal Characterization

Figure 12 illustrates the variation in thermal conductivity and thermal resistance of
the reinforced mortars under climatic chamber conditions. As can be seen, the thermal
conductivity shows a clear downward trend with an increasing proportion of reinforce-
ment material. With 10% fibers incorporated, the thermal conductivity decreased by 15%
compared to the plain mortar. By increasing the amount of textile, the thermal conductivity
was further decreased until a value of about 0.87 W/m·K was reached, which is about
42% lower than the PM sample. Accordingly, the addition of textile fibers increased the
thermal resistance of the cement mortar to approximately 1.27 m·K/W. This improvement
in the thermal properties of mortars is attributed to the low thermal conductivity of the
textile fiber.

Figure 13 shows a comparison between the experimentally measured thermal conduc-
tivities of the reinforced mortars and those predicted using the models mentioned above.
Both the experimental data and theoretical data show a similar trend. An increase in the
proportion of the reinforcing material corresponds to a decrease in the thermal conductivity
of cementitious mortar. The results showed that the experimental outcomes fall within the
bounds of the series and parallel models and Hashin–Strikman model. The other analytical
models had similar results with minor variations. Since the reinforcing materials are as-
sumed to be spherical particles dispersed in the cementitious matrix, the Hata and Taya
model coincides with the Maxwell model. Although the experimental thermal conductivity
was close to the results of these two models, a slight discrepancy can be observed. This
difference is due to the fact that the model only considers the thermal conductivity of the
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constituent materials of the composite. The Rayleigh model exhibited the best agreement
with the experimental data, especially for the samples with high percentages of reinforcing
materials. These results demonstrate that the textile fibers were well-dispersed in the
matrix, resulting in homogeneous composites.
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Figure 10. Compressive strength of textile waste-reinforced mortars after 7 and 28 days of
water curing.
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Figure 11. Flexural strength of textile waste-reinforced mortars after 7 and 28 days of water curing.
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Figure 12. Thermal conductivity and thermal resistance of the textile waste-reinforced mortars.

Figure 14 shows a comparison of the numerical and experimental results of the thermal
conductivity of textile-reinforced mortars. Both results show the same tendency, with an
error interval marked by the orange area. For the samples with a higher textile content,
the margin of error between the predicted and experimental results increased slightly. The
experimental values of thermal conductivity are lower than those predicted. This can
be explained by the uncontrolled phenomena, which can occur during the preparation
and which are not taken into account by the model, such as the porosity and the contact
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resistance between components. In general, the results indicate the effectiveness of the
computational model.
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and series, (b) Hashin and stickman, (c) Maxwel, (d) Rayleigh, (e) Nielson and Lewis, and (f) Hatta
and Taya models compared to experimental results.

Thermal diffusivity quantifies the speed at which heat is transferred through materials
from a hot to a cold end. It is calculated by dividing the thermal conductivity of the
material by its density and specific heat capacity at a constant pressure. The mathematical
expression of thermal diffusivity is as follows:

α = K/ρCp (13)

where K is the thermal conductivity; Cp is the specific heat capacity; ρ is the density.
Moreover, ρCp is the volumetric heat capacity.

Figure 15 shows the numerically predicted thermal diffusivity and volumetric heat
capacity of the mortars reinforced with textile waste. The addition of fibers to the cementi-
tious mortar reduced both thermal diffusivity and volumetric heat capacity. With a low
content of textile fibers, the thermal diffusivity and the volumetric heat capacity of textilized
mortars marginally diminished until 1.13 mm2/s and 1.12 MJ/m3·K, respectively. As well,
by increasing the proportion of textile fibers to 40 %, the thermal diffusivity and volumetric
heat capacity were decreased to 0.97 mm2/s and 0.91 MJ/m3·K, respectively. The addition
of the textile fiber waste into the cementitious mortar reduced the thermal diffusivity and
the volumetric heat capacity in correlation with the drop in thermal conductivity. Com-
pared to the PM sample, a 40% decrease in thermal conductivity for the M40 sample caused
drops of 21% and 23% in thermal diffusivity and volumetric heat capacity, respectively.

4. Case Study: Numerical Investigation of a Hollow Brick Wall Coated with
Textile-Reinforced Mortar

As the textile-reinforced mortars showed better thermal potential than an ordinary
cementitious mortar with acceptable mechanical behavior, the application of these compos-
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ites as a coating mortar appears to be a relevant solution to reducing energy consumption
and carbon dioxide (CO2) emissions. Thus, a transient heat transfer analysis was conducted
using the COMSOL Multiphysics software to predict the effect of adding textile fibers on
the thermal performance of buildings.
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Figure 14. Numerical and experimental validation of the thermal conductivity of textile-
reinforced mortars.
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Figure 15. Numerically predicted thermal diffusivity and volumetric heat capacity of textile-
reinforced mortars.

4.1. Numerical Model and Validation

The developed numerical model is intended to investigate the thermal response
of a building wall after the application of thermal excitation on the outer surface. The
investigated wall consisted of hollow bricks measuring 15 × 20 × 30 cm and contained 12
cavities. The bricks were joined horizontally and vertically with ordinary mortar (PM) with
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a thickness of 10 mm. Moreover, the wall was coated on both sides with a 20 mm-thick
layer of cement mortar in three different scenarios, as shown in Figure 16. The impact of
changing the type of coating mortar was analyzed numerically based on the temperature
change on the inner surface of each wall configuration after imposing a temperature of
40 ◦C on the outer surface. To solve this heat transfer problem, the heat conduction in
solids and heat convection in air cavities were considered, while the radiative heat transfer
through air cavities was excluded. Before starting the simulation, the model was meshed
using tetrahedral elements, resulting in a mesh with 492,357 elements. The validation of
the aforementioned model involved comparing its predictions with the analytical solution
of a transient heat transfer problem. The analytical solution was obtained by transforming
the partial differential equation into an ordinary differential equation (Equation (14)) using
the Gaussian error function [68].

T (x,t) = Tc − (Tc − Tin) (erf((x)/
√

((4kt))) (14)

where T is the temperature, Tc is the imposed heat temperature, Tin is the initial temperature,
x is the location of calculation, k is the thermal conductivity, and t is the time.
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To evaluate the performance of the proposed model, the Root Mean Squared Error
(RMSE) was calculated as follows:

RMSE =

√√√√ n

∑
j=1

(mj− pj)2/n (15)

where mj and pj are, respectively, the average of the measured and predicted parameters,
and n is the number of variables.

In order to validate the numerical model mentioned above, the result of case study
1, where the wall was coated with ordinary mortar on both sides, was compared with
the analytical results. Figure 17 shows a comparison of the numerically predicted and
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the analytically calculated change in the internal surface temperature as a function of the
wall thickness. As can be seen, the numerical and analytical thermal behaviors illustrate a
similar tendency, with a root mean square error (RMSE) of 0.59. This consistency of results
demonstrates the effectiveness of the numerical model in studying heat transfer through
the brick wall.
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4.2. Computational Assessment of a Textile Reinforced Wall

Figure 18 summarizes the numerical results of the spatial variation in temperature after
50 min of thermal excitation for the different wall configurations. Figure 18d shows the
temperature change along the wall thickness for both the first and second cases. As the
graph shows, the temperature propagation in the wall of case 2, coated with textile-reinforced
mortar on the outside and plain mortar on the inside, was slower than in the wall coated with
ordinary mortar on both sides. Comparing case 1 and case 3, the temperature propagation
along the first parts of the walls shows the same tendency since the outer coating layers consist
of the same material. However, the integration of the textile into the inner layer of the wall of
case 3 slowed down the spread of temperature, as shown in Figure 18e. The application of a
textile-reinforced mortar as an inner coating material leads to a greater decrease in temperature
than insulation applied to the external mortar layer. Figure 18f illustrates the effect of coating
a wall with fiber-reinforced mortar on both sides. The use of textile mortar as a coating mortar
on both sides showed the best results for reducing the temperature spread.

Figures 19 and 20 present the variation in heat fluxes and inner surface temperatures
versus time after the thermal excitation on the outer surface. As expected, the temperature
profile of a wall depends on the thermal conductivity and, consequently, the thermal resistance
of its components. As shown in Figure 19, the integration of the textile into the coating mortar
reduced the temperature spread in the wall. In fact, the insulation of the outer surface caused
a slight decrease in temperature, while the integration of the textile in the inner surface of
the wall improved the thermal performance by almost 4% compared to case 1. However, the
optimal values were obtained by the fourth case, where the wall was coated on both sides with
textile-reinforced mortar. The temperature of the inner surface may decrease by approximately
1.5 ◦C using the textilized composite. The variation in heat flux, as shown in Figure 20b,
also corroborates the results presented for the variation in inner surface temperature. Lower
transmitted heat flux values were achieved when the reinforced mortar was incorporated into
the investigated wall.
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Figure 20. Variation in (a) the inner surface temperatures and (b) the heat fluxes versus time.

5. Conclusions and Perspective

The incorporation of recycled materials into building components is not only pro-
moted for ecological reasons, but can also improve certain properties of building materials.
Therefore, the objective of this study was to develop thermally enhanced cement-based
materials by incorporating textile fiber waste as a replacement for sand in varying ratios.
The results showed that textile fiber-reinforced mortars can be promising coating mortars
due to their improved thermal properties and acceptable mechanical strength. In fact,
replacing 40% of the sand with textile fibers caused drops in thermal conductivity, thermal
diffusivity, and volumetric heat capacity by about 40%, 21%, and 23%, respectively, com-
pared to ordinary cement mortar. Furthermore, the integration of textile fibers improved
the flexural strength of cementitious mortar. Although the reinforcement of the mortar
with textile fibers decreased the compressive strength, it still met the requirement for use
as a coating mortar. Since the textile-reinforced mortar has a high potential to be used as
a coating mortar, a numerical study was performed to study its impact on the thermal
behavior of a hollow brick wall. The examined wall was coated with the reinforced mortar
in different arrangements. The results showed that coating a wall with a 20 mm layer of
textile-reinforced mortar on both sides improved the overall thermal performance.

This work sheds light on the influence of incorporating textile fiber waste as a ther-
mal reinforcement material into cementitious mortar on both its thermal and mechanical
properties and, thus, on its impact on a building element. The results highlighted the
significant potential of using textile fibers in the development of more energy-efficient and
environmentally-friendly building materials and practices as a means to minimize energy
consumption and alleviate the environmental effects of widespread waste materials. Fur-
ther research can be carried out to investigate the impact of textile fibers on the durability
and long-term characteristics of cement mortars. Moreover, it would be beneficial to assess
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the influence of incorporating these materials on the thermal efficiency of entire buildings,
beyond simply analyzing their effect on a single wall.
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