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Abstract: Promoting carbon reduction in the construction sector is crucial to achieving China’s
‘double carbon’ target. However, due to the interaction of multiple factors, the carbon emission
efficiency of Chinese construction industry (CEECI) varies from province to province, and the path
to efficient CEECI is not uniform. This study aims to analyze the combined effects of multiple
factors on CEECI and to explore the underlying logic behind the formation of efficient CEECI in
the province, which measures the CEECI for 2018 and 2019 for 30 provinces, autonomous regions,
and municipalities directly under the Central Government of China using the super-slack-based
measure (Super-SBM), which includes non-desired outputs. From a group perspective, the qualitative
comparative analysis method is applied to analyze the common mechanism of the regional economic
development level, energy consumption structure, business management level, market openness,
science, and technology innovation level on CEECI. The results show that the regional construction
industry has three equivalent low-carbon development paths: “low energy management”, “scale
management”, and “scale market opening”. Finally, according to the differences in regional resource
endowments, differentiated paths suitable for the low-carbon development of the construction
industry in different regions are proposed.

Keywords: construction; CEECI; influencing factors; fuzzy set qualitative comparative analysis;
upgrade path

1. Introduction

Global warming caused by greenhouse gas emissions has become a severe threat to
human survival and development, and carbon emissions have become an essential issue for
significant countries worldwide. Since the 21st century, with rapid economic development,
energy consumption and carbon dioxide emissions have surged [1], and China has become
the world’s leading energy consumer and the largest emitter of carbon dioxide. According
to the World Energy Statistics Review, China’s energy consumption accounted for 24.3%
of the global total in 2019. Total CO2 emissions exceeded 10 billion tons, accounting for
30.21% of global emissions. Buildings, transportation, and industry are the three main
sources of CO2 emissions that account for the highest share in China. With the number
of new buildings being built each year increasing, CO2 emissions from the construction
sector are also increasing. The construction sector has become one of the high carbon
emitting sectors in China, accounting for 30–40% of China’s total carbon emissions [2] and
30% of China’s total energy consumption [3]. It consumes more than half of the world’s
construction cement and steel, and the production and transportation of building materials
also indirectly causes significant carbon emissions [4]. For this reason, China had set a
clear goal of reaching peak carbon by 2030 and carbon neutrality by 2060 [5,6]. As a pillar
of China’s economic development, the construction industry faces the dual challenge of
reducing carbon emissions and ensuring sustainable economic growth.
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Improving the carbon emission efficiency of Chinese construction industry (CEECI)
is key to promoting regional low-carbon transformation under the new economic normal
and achieving China’s energy-saving and emission-reduction targets. CEECI was a key
indicator of regional low-carbon transition [7,8]. However, due to the large land area
covered, there were significant differences in resource endowments in different regions in
China, resulting in different CEECI [9,10]. An area with high CEECI does not necessarily
have to have good environmental conditions such as economy and innovation. Due to
regional differences, various influencing factors may affect CEECI to different degrees and
in different directions in other regions [11], and thus different regional approaches to CEECI
improvement need to be considered in the study. However, existing studies have mainly
focused on analyzing the effects of single factors on CEECI, such as (economic, innovation,
energy mix) and other factors [12–14], lacking the analysis of the combined effects between
factors and ignoring the combined effects of other factors, leading to the inability to explain
real cases of inefficient CEECI in areas with high innovation or high levels of economic
development, contradicting the results of the study. In addition, Xie et al. [15] found that
the interaction between technological progress and energy intensity also affects CEECI,
but most of the existing studies use statistical regression methods to analyze the net effect
of individual factors on CEECI without analyzing the combined effect of more factors,
ignoring the fact that CEECI is the result of the intertwined and synergistic effects of
multiple factors, and lack a systematic perspective. This is also inconsistent with reality. In
order to address this issue, and with the expectation of analyzing the impact of multi-factor
combination effects on CEECI from a systemic perspective, it is possible to obtain realistic
pathways for low carbon development in the construction industry in regions with different
resource endowments. The qualitative comparative analysis (QCA) method developed
by Ragin can be used to identify the pathway to an outcome, given the interaction of
antecedent and dependent variables [16]. The fuzzy set theory had wide application and
strong validity in practice [17,18]. The qualitative comparative analysis method of fuzzy
sets based on fuzzy set theory has advantages in analyzing the configuration conditions of
regional CEECI, effectively bridging the disconnect between theory and practice.

To explore different ways to improve CEECI in regions with varying endowments
of resource, this study selected provincial construction industry data for the past two
years. It used the SBM super-efficiency model to measure CEECI in each area. Then,
through theoretical and literature analysis, key influencing factors are derived. From a
configuration perspective, the fsQCA method is applied to analyze the CEECI from 2018
to 2019 of 30 provinces, regions, municipalities directly under the central government in
mainland China in five dimensions: the level of business management in the construction
industry, the degree of market openness, the structure of energy consumption, scientific
and technological innovation, and the economic environment, to investigate the complex
causal factors leading to efficient regional CEECI, and to explore the multiple driving paths
to promote the improvement of CEECI in regions with different resource endowments.

2. Literature Review
2.1. Measurement of CEECI

As the world’s climate and environmental problems become increasingly severe, schol-
ars at home and abroad focus on carbon emissions, with an increasing number of studies
focusing on carbon efficiency (CEE). CEE describes the proportional relationship between
carbon emissions, economic growth, and energy consumption [19]. Yamaji et al. [20] pro-
posed using single-element indicators to estimate CEE and thus assess carbon productivity.
Since then, some scholars have used various single-factor evaluation indicators to measure
CEE. These indicators usually include the ratio of gross national product (GNP) to total
carbon emissions and carbon emissions per unit of energy consumed per unit of the gross
domestic product (GDP) [21,22]. However, the single factor indicator only considers the
impact of carbon emissions on economic output, ignoring the intrinsic linkages with non-
energy resources and other production inputs. Cheng et al. [9] selected inputs including
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capital, labor, energy consumption, and desired operating income and carbon emissions of
the industry as outputs to construct a total factor index.

Research on CEECI in China and abroad have focused on the measurement and
influencing factors of CEECI. The question of how to accurately measure the CEECI of a
region or industry is the focus of attention in current research. In input–output efficiency
analysis, some scholars have used stochastic frontier analysis (SFA) to quantify differences
in the efficiency of decision-making units (DMUs). These are based on economic theory,
and more accurate results are obtained by applying the methodological models [23–25].
Du Q et al. [26] used the SFA model to measure CEECI, carbon abatement potential, and
abatement costs for different regions of China. However, the SFA model needs to be set up
in a function-specific format, and the assumptions required are stringent. When the model
is not set up accurately, the measured results will likely have significant deviations. The
DEA method calculates efficiency by using linear programming to construct production
boundaries and assesses efficiency in terms of inputs and outputs without the need to set
patterns of production for input and output factors [15]. Furthermore, it can objectively
calculate the weight of each indicator based on the input and output data, thus avoiding
estimation bias due to incorrectly set or subjective parameter models. This approach is
recognized by most scholars and is widely used in energy efficiency [27,28], corporate
performance [29,30], and CEE in the thermal power industry [31]. Zhang et al. [32] used a
three-stage DEA model to reflect the CEECI in China (2006–2017) from the perspective of
non-management factors.

Compared to other DEA-based approaches, the super-efficient SBM model has the
advantage of treating carbon emissions as undesired outputs and radial and non-radial in
the production process, thus providing more comprehensive and realistic efficiency assess-
ment results [33]. Du et al. [34] used the (Super-SBM) method and data from 2005–2016
to estimate CEECI for 30 provinces and explored the spatial distribution characteristics
of CEECI.

2.2. CEECI Influencing Factors

Regarding awareness of the factors influencing CEECI, scholars generally agree that
CEECI is controlled by a variety of factors. Zhang et al. [32] used the Tobit model to analyze
the internal influencing factors of CEECI, and found that GDP, industrialization level,
degree of market openness, technological innovation, and energy mix had a significant
effect on CEECI. Niu et al. [35] explored the impact of external drivers such as level
of economic development, openness, level of science, and technological innovation on
emissions efficiency using stochastic frontier models. Zeng et al. [12] adopted the Tobit
model to analyze the factors influencing CEECI, and the study showed that industrial
structure, external economic development, and the level of science and technology showed
a positive correlation on the impact of CEECI. Still, the energy intensity would show a
negative correlation. Zhou et al. [13] used a GVAR model to study the internal drivers of
CEECI and found that technological progress and a rational energy mix had a positive
impact on CEECI improvement. Xie et al. [15] used country panel quantile regressions to
analyze the effects of technological progress on CEECI in different countries and showed
that technological progress could significantly increase CEECI, while technological progress
interacting with the energy intensity also affects CEECI. Ma et al. [36] used a spatial
econometric model to analyze the drivers of CEECI, indicating that economic growth and
energy mix have a significant driving effect on efficiency. In addition, some scholars have
also studied the impact of CEECI from a single factor, technological innovation. Wen
et al. [7], Li et al. [10] and Zhang [37], have shown that technological advancement and
technological innovation could increase CEECI. Feng et al. [38] used a spatial econometric
model to study the impact of green technology innovation on CEECI and found that green
technology innovation had a significant enhancing effect on CEECI. He et al. [14] used the
Tobit fixed-effect model and the panel threshold model to study the impact of renewable
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energy technology innovation on CEECI and found that renewable energy technology
innovation can increase CEECI.

Differences in the factors influencing CEECI between regions have also raised concerns
among some academics. Some scholars believe that research on the factors influencing
carbon emissions in individual areas is more relevant and that the research results can
contribute to reducing carbon emissions in each area. Shi and Bai [39] argued that the level
of technology, technical efficiency, and scale efficiency have an enhancing effect on CEECI
in Henan Province. Liu and Zhu, 2019 [40], suggested that economic development has led
to a steady increase in carbon emissions from the construction sector in Hunan Province
and a steady increase in CEECI. Wang and Ma [41] found that the structure of energy
consumption was the main driver of CEECI in Jiangsu Province. Due to the interaction
between neighboring areas, these influences can not only impact the CEECI in the area,
but they can also have a different impact on adjacent areas. Liu and Hu [42] studied the
factors influencing the CEECI of the Yangtze River Economic Zone and showed that the
scale of economic development and the level of science and technology innovation have a
positive impact on the region’s CEECI but negatively affect neighboring areas, while the
level of energy consumption increases the CEECI of the region as well as neighboring areas.
Through the analysis of the above literature, this study has sorted out that the influencing
factors of CEECI mainly include the level of regional economic development, energy con-
sumption structure, business management level, market openness, science and technology
innovation level, which provide reference for the selection of condition variables.

2.3. Literature Comment

This study answers the question of which combination of factors can improve the
regional CEECI, namely the combined effects of the construction industry’s business
management capabilities, market openness and energy consumption structure, and external
environmental conditions on the CEECI. We then identified three gaps in the existing
research that need to be addressed.

Firstly, efficiency is a significant issue of research in economics and management. The
improvement of socio-economic efficiency depends to a large extent on the growth of busi-
ness efficiency. Most of the current studies on the factors influencing CEECI have examined
the impact of external factors on CEECI, such as the level of economic development [35],
the degree of market openness [32], the level of science and technological innovation [15],
and less focus on the level of management of the firm’s operations. Therefore, the study of
CEECI should also focus on the role of business management capabilities of firms in the
construction industry.

Secondly, CEECI enhancement is a multi-factor interactive process with complex
driving mechanisms and multiple cointegrations between factors, often due to intercon-
nectedness, which makes it possible for the unique effects of individual variables to be
masked or substituted by related variables. At the same time, traditional regression meth-
ods only analyze meaningful interactions for up to three variables [43]. The results of an
efficient CEECI formation are an organic set of different business management capabilities,
market openness, energy consumption structures, and external environmental conditions.
Regression methods cannot deal with such causal complexity.

Thirdly, few existing studies have explored the reasons for the formation of efficient
CEECI. However, this has important practical implications for how governments and
construction companies allocate factors to pursue high environmental performance.

To sum up, this paper, based on the research related to histories, combined with the
analysis of the literature mentioned above review, chose the regional construction industry
management level, market openness, energy consumption structure, scientific and tech-
nological innovation, and economic environment as the condition variables, with efficient
CEECI as an outcome variable. The aim was to investigate the grouping effect of condi-
tion variables on CEECI and construct a research framework for the CEECI enhancement
pathway, as shown in Figure 1.
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3. Research Design
3.1. CEECI Measurement Model

The DEA method is a non-parametric efficiency evaluation method that uses a mathe-
matical planning model to calculate the efficiency scores of many decision-making units
(DMUs). It was first proposed by Charnes et al. [44], and can be defined as the distance from
each decision unit to the production frontier. In contrast, the combination of the optimal
performance of all decision units is the distance. When using this method, the calculation
tends to include undesirable outputs as inputs, which can result in the original economic
significance of the undesirable outcomes being missing. As a result, the DEA model is
inadequate in dealing with the problem of undesirable outcomes. To this shortcoming, a
slack-based efficiency measure (SBM) was first proposed by Tone [45]. At the same time,
the SBM model was modified by Tone [46] to avoid the influence of pollutant emissions
on the results, taking into account the large number of pollutants caused during the pro-
duction process. The SBM model was subsequently extended by Zhou et al. [47], who
argued that some decision units (DMUs) could be excluded by adding some undesirable
outputs to be processed through the model and allowing valid DMU values to be greater
than or equal to 1 for better comparison. Because the model excludes the decision unit
being evaluated from the set, the resultant efficiency value obtained will be greater than
1. The super-SBM model will be widely used later. In addition, the method avoids radial
and directional bias because it has non-radial and non-directional measurements. In this
paper, based on previous studies, the Super-SBM model was used to set variable scales
and non-directionality. Carbon emissions are used as non-desired outputs to measure the
CEECI for 30 provinces in Mainland China in 2018 and 2019 to obtain a more accurate
environmental impact index. The specific model can be expressed as Formulas (1) and (2).

ρ = min
1 + 1

n ∑n
i=1

s−i
xik

1− 1
q ∑

q
r=1

s+r
yrk

(1)

s.t.



m
∑

j=1,j 6=k
xijλj − s−i ≤ xik

m
∑

j=1,j 6=k
yrjλj + s+i ≤ yrk

λ, s−i , s+i ≥ 0
i = 1, 2, · · · , n; r = 1, 2, · · · , q; j = 1, 2, · · · , m(j 6= k)

(2)

In the Formulas (1) and (2): a production system with n decision-making units (DMUs)
was constructed and each of them includes four factors as inputs, desirable outputs, and
undesirable outputs. Input indicators include capital, labor, energy, and machines; desired
outputs include GDP; undesired outputs include carbon emissions. ρ indicates the CEECI
value to be calculated, n and q mean the total number of input and output indicators,
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respectively, i.e., n = 4 and q = 2. xik means input i of the kth decision unit. yrk means the
rth output of the kth decision unit. s−i , s+r means the amount of slack in inputs, and outputs,
respectively. λ means the weight vector.

If and only if ρ ≥ 1, the DMU is considered effective. Otherwise, the DMU is in an
inefficient state and needs to be further improved in terms of inputs, outputs, etc.

3.2. Qualitative Comparative Analysis

Qualitative Comparative Analysis (QCA), introduced by American sociologist Charles
C. Ragin in 1987 [16], combines the strengths of case studies and variables research to
conduct qualitative and quantitative cross-case studies aimed at solving causally complex
social problems. Compared to traditional statistical methods, such as regression analysis
and cluster analysis, the QCA approach is less susceptible to the negative effects of au-
tocorrelation and multicollinearity and examines ‘group effects’ rather than ‘net effects’,
revealing complex and multiple causal factors. Considering that our regional CEECI results
in a combination of conditional variables, i.e., there is a so-called “different path”, QCA is
more suitable for solving such path problems. There are three QCA methods: (CsQCA),
(FsQCA), and (MvQCA). Fuzzy set qualitative comparative analysis is suitable for dealing
with problems where the research variables are continuous and can take values between 0
and 1 when the variables are set, which is more in line with the actual situation of this study.
Therefore, this paper adopts the fsQCA approach to study the complex causal factors of
efficient CEECI in each province from a histological perspective and explore the driving
paths of efficient CEECI that are suitable for different regional characteristics.

The QCA comprises three basic ingredients: the outcome(s), conditions, and configura-
tions. The outcome is the focus of a study. Exploring how the outcome would arise is what
QCA aims to address. In this study, the outcome is the CEECI. Conditions are identical
to factors, which are potential reasons that may lead to a certain result (outcome). A con-
figuration is a specific combination of factors (conditions) that produces a given outcome
of interest. To enable the systematic comparative analysis of complex cases, these cases
must be transformed into configurations. Boolean algebra is used in QCA. An uppercase
letter represents the (1) value for a binary variable, while a lowercase letter represents the
(0) value for a binary variable. A dash symbol (–) represents the do not care value for a
given binary variable. Logical AND is represented by an asterisk (*). An arrow symbol (→)
is used to express the (usually causal) link between a set of conditions on the one hand and
the outcome the authors are trying to explain on the other hand [48].

Based on Boolean algebra, this paper introduces a detailed research process. First, the
collected data should be dichotomized through the threshold to obtain the dichotomous
data table, which uses 0 and 1 to represent the data. According to this table, QCA software is
used to obtain the truth table of each result variable. A truth table is a table of configurations
(There are three normal configuration types: configuration with result (1) and configuration
with result (0). In addition, there are two configuration types: configuration with result
[–] or logical remainder). Then, contradictory configurations (the same combination of
conditions with different outcomes) may emerge and should be resolved. Once they are
solved, a Boolean minimization procedure is next. This procedure is a reduction of a long,
complex expression into a shorter, more parsimonious expression. For instance, by Boolean
minimization, the expression Q * B * I + Q * B * i → O can be shortened to Q * B → O.
The simpler the Boolean expression is, the more configurations it contains and the more
information it describes. The Boolean minimization procedure is also performed by QCA.
Finally, the unobserved logical remainder generated because the number of cases is less
than the configured number (the second power of the number of conditions) is included
to help generate a formula for a given result (called the minimization formula), which
indicates the attribute of the combination of conditions to the result. For each result, QCA
can generate a minimum formula to help later analysis. Figure 2 shows a concise program.
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3.3. Variable Selection

This study is based on the construction industry in 30 provinces (excluding Tibet,
Hong Kong, Macau, and Taiwan) across China in 2018 and 2019. Data are obtained from
China Statistical Yearbook, China Construction Statistical Yearbook, China Energy Statistical
Yearbook, and China Science and Technology Statistical Yearbook.

The explanatory variable is CEECI; Yu and Zhang [19] suggested that the CEECI
describes the proportional relationship between carbon emissions, economic growth, and
energy consumption. Based on the input–output perspective and based on previous
scholars’ research related to CEECI, CEECI should take complete account of economic
benefits and environmental damages under the requirements of human-centered, green,
and efficient high-quality development. This paper argues that CEECI, in the context of
high-quality product, is the proportional relationship between the inputs in the production
process of the construction industry and the outputs of economic benefits and environmen-
tal damages. Referring to the CEECI evaluation indicator adopted by Du et al. [34], the
indicator includes both energy input and carbon emissions, where carbon emissions from
the construction sector are measured using carbon emissions from building material con-
sumption plus carbon emissions from energy consumption. The input–output indicators
are described in Table 1.
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Table 1. The input–output index of the CEECI.

Type Index Meaning

Input

Capital Fixed assets of construction enterprises
Labor Number of employees in the construction industry

Energy Standard coal equivalent of energy consumption in the
construction industry

Machines Total power of mechanical equipment

Output GDP Construction industry GDP
Carbon emission Construction industry carbon emissions

The conditional variables are the main factors affecting CEECI. In this paper, based on
the above research framework and drawing on relevant literature, the dependent variables
are explained, and the following indicators of measurement are selected:

Management level. To achieve long-term development, modern enterprises must break
through the traditional management concepts and methods [49], and constantly innovate
management methods and means for enterprise management, thus improving their market
competitiveness. For the construction industry, a higher control level inevitably contributes to
a higher CEECI. This paper draws on the research of existing scholars to measure the level of
control in the construction industry using profit per capita in the construction industry.

Degree of market openness. The higher the degree of market openness, the faster
the pace of the “importation” of the construction industry. Private enterprises play an
exemplary role by relying on their advanced management concepts and models, as well as
their highly skilled personnel, thus improving CEECI. However, the increased openness of
the market may also intensify unhealthy competition in the market, forcing the construction
market to be constantly segmented, raising costs and reducing efficiency. Zhang et al. [32]
and Niu et al. [35] found that the degree of market openness can significantly affect CEECI.
This paper uses the ratio of the total output value of non-state construction enterprises in a
region to the total output value of the construction industry in that region, as constructed
by Yong-an, D to measure the degree of market openness [50].

Energy consumption structure. The high proportion of conventional energy used
in the construction sector is mainly reflected in the demand for fossil fuels such as oil,
which brings about large carbon emissions and thus reduces its efficiency in reducing
emissions, thus affecting the quality of the regional construction industry. Zhang et al. [32],
Zhou et al. [13], Xie et al. [15], Ma et al. [36], and other scholars found that the energy
consumption structure has a significant impact on CEECI, and this paper adopts the share
of electrical energy in the energy consumption of the construction industry constructed by
Zeng et al. [12] and other scholars to measure the structure of energy consumption.

Science and technology innovation. Quality, efficiency, and dynamic change are the in-
evitable path to achieving high-quality development. For the construction industry, science
and technological innovation are the fundamental driving force behind its high-quality
development and an essential means of enhancing its productivity and the competitiveness
of its corporate products. Wen et al. [7], Li et al. [10], Zhang [37], and other scholars have
demonstrated that science and technology innovation has a substantial impact on CEECI,
and this paper chooses R&D expenditure intensity to measure the strength of science and
technology innovation.

Economic environment. The higher the level of economic development, the higher the
level of urbanization, and therefore the more robust the market demand for the construction
industry tends to be, with demand escalating and thus driving the development of the
construction industry. In addition, an increase in economic growth can provide good
financial support for carbon emission reduction in the construction industry, such as
upgrading the investment in construction facilities and technology upgrades to promote
CEECI. Zeng et al. [12], Zhang et al. [32], Niu et al. [35], Ma et al. [36], and other scholars
have shown that the regional economic environment has an impact on the productivity of
the construction industry, which is represented by GDP per capita in this paper.
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For the 30 samples in this paper, the choice of five condition variables is more in line
with the QCA method to avoid the problem of limited diversity due to too many variables
resulting in more groupings than the number of observed cases. The condition variables
are described in Table 2.

Table 2. Model variables and their descriptions.

Condition Variable Describe

(ML) Management level Profit per capital in the construction industry
(DM) Degree of market openness The proportion of output value of non-state/state-owned construction enterprises
(ECS) Energy consumption structure The proportion of electric energy in energy consumption of the construction industry
(TIL) Technological Innovation level R&D input intensity
(EDL) Economic Development Level GDP per capital

4. Results
4.1. Conditional Variable Results

The regional construction data were collated and calculated in accordance with the
conditional variable calculation requirements to produce the conditional variable data
required for this study for 2018–2019, as shown in Table 3.

Table 3. Conditions variables by province (municipality, autonomous region).

DMU ML DM ECS TI EL
Year 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018

East
Beijing 38,612 24,627 0.75 0.76 0.259 0.242 6.31 6.17 6580 6202
Tianjin 10,169 8918 0.81 0.79 0.076 0.067 3.28 2.62 3516 3355
Hebei 14,838 12,531 0.82 0.83 0.051 0.052 1.61 1.39 12,458 11,665

Guangdong 16,321 17,835 0.81 0.81 0.183 0.134 2.88 2.78 21,801 20,528
Hainan 19,327 20,378 0.82 0.80 0.340 0.299 0.56 0.56 1177 1112

Shanghai 19,179 18,445 0.70 0.71 0.326 0.320 4.00 4.16 9649 9103
Jiangsu 13,490 13,125 0.95 0.96 0.246 0.228 2.79 2.70 21,618 20,375

Zhejiang 7462 7379 0.98 0.99 0.298 0.249 2.68 2.57 14,997 14,042
Fujian 7942 9275 0.93 0.93 0.195 0.187 1.78 1.80 8918 8288

Shandong 11,953 12,238 0.86 0.86 0.115 0.101 2.10 2.15 21,283 20,174
Central

Shaanxi 8859 8814 0.86 0.86 0.211 0.205 1.12 1.05 4600 4331
Anhui 11,690 12,164 0.85 0.83 0.224 0.211 2.03 2.16 6980 6493
Jiangxi 11,418 12,611 0.90 0.90 0.342 0.315 1.55 1.41 5155 4773
Henan 18,739 18,803 0.90 0.89 0.152 0.179 1.46 1.40 11,976 11,193
Hubei 26,762 32,754 0.79 0.79 0.131 0.128 2.09 2.09 10,582 9844
Hunan 11,016 12,114 0.81 0.80 0.107 0.098 1.98 1.81 8452 7855

Northeast
Liaoning 9336 10,782 0.87 0.86 0.115 0.115 2.04 1.82 8001 7584

Jilin 18,998 18,500 0.92 0.92 0.032 0.028 1.27 0.76 4206 4083
Heilongjiang 11,199 5707 0.78 0.74 0.240 0.254 1.08 0.83 5154 4946

West
Inner

Mongolia 12,051 13,137 0.82 0.86 0.031 0.030 0.86 0.75 2808 2669

Guangxi 7190 7323 0.70 0.69 0.357 0.478 0.79 0.71 5151 4860
Chongqing 12,838 14,166 0.91 0.91 0.265 0.254 1.99 2.01 3467 3261

Sichuan 9604 11,327 0.89 0.85 0.125 0.114 1.87 1.81 9718 9040
Guizhou 11,623 13,499 0.74 0.71 0.326 0.329 0.86 0.82 3093 2856
Yunnan 14,043 15,646 0.87 0.86 0.334 0.290 0.95 1.05 4860 4495
Shaanxi 10,971 13,724 0.80 0.79 0.245 0.224 2.27 2.18 4998 4715
Gansu 13,094 10,212 0.70 0.70 0.189 0.170 1.26 1.18 1972 1857

Qinghai 6801 10,908 0.52 0.49 0.136 0.127 0.69 0.60 686 645
Ningxia 7425 7475 0.73 0.71 0.082 0.076 1.45 1.23 825 775
Xinjiang 7262 8025 0.88 0.87 0.155 0.146 0.47 0.53 3195 3009
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4.2. Regional CEECI Calculations

The MAXDEA software was used to set up non-desired outputs as carbon emissions
by setting up super-efficiency, non-direction, and variable return to scale. MaxDEA is a
professional data envelope analysis software. There is no limit to the number of data cells,
as it can run very large DEA models and can quickly and accurately apply the built-in
super-SBM model to calculate CEECI. The CEECI for the 30 provinces, municipalities, and
autonomous regions for 2018 and 2019 was calculated year-by-year, with specific data for
each section shown in Table 4. As can be seen from Table 4, the overall average CEECI of the
participating areas is 0.66, with a low intermediate CEECI and more room for development.
By region, the CEECI is higher in the East and Central areas, with an average CEECI above
1.07. In comparison, the CEECI is lower in the Northeast and West regions, with an average
CEECI below 0.47. In recent years, the east and central areas had higher economic, market,
and technological advantages, with CEECI being significantly higher than the national
average. However, the vast majority of provinces in the west and northeast regions are
unable to provide good support for the development of the construction industry due to
their insufficient level of economic growth and scientific and technological innovation, and
the low level of market openness and business management in the construction industry, as
well as rather traditional energy consumption, resulting in the overall construction industry
in the west and northeast regions being in a rough development stage and showing a
relatively sluggish development situation.

Table 4. The CEECI from 2018 to 2019.

Provinces 2019 2018 Provinces 2019 2018

East Hunan 0.36 0.37
Beijing 1.42 1.42 Northeast
Tianjin 0.36 0.37 Liaoning 0.28 0.27
Hebei 0.22 0.21 Jilin 0.26 0.25
Guangdong 1.01 0.51 Heilongjiang 0.31 0.33
Hainan 3.21 3.05 West

Shanghai 1.20 1.11 Inner
Mongolia 0.23 0.20

Jiangsu 1.28 1.26 Guangxi 1.15 1.14
Zhejiang 1.05 1.05 Chongqing 1.03 1.00
Fujian 1.03 1.00 Sichuan 1.00 0.49
Shandong 0.37 0.31 Guizhou 0.52 0.41

Central Yunnan 0.42 0.35
Shaanxi 0.35 0.31 Shaanxi 0.36 0.34
Anhui 0.36 0.36 Gansu 0.27 0.27
Jiangxi 0.53 0.50 Qinghai 0.34 0.33
Henan 0.34 0.29 Ningxia 0.35 0.36
Hubei 1.00 0.59 Xinjiang 0.30 0.35

The intra-regional comparison reveals that there are also significant differences in
provincial CEECI levels within each region. For example, the mean value of Beijing in the
eastern area (1.42) is significantly higher than the mean values of Hebei and Tianjin (0.22,
0.37), the mean value of Hubei in the central area (0.8) is considerably higher than the mean
value of Shanxi (0.33), the mean value of Guangxi in the western area (1.14) is quiet higher
than the mean value of Qinghai (0.33), while the mean values of the three provinces in
the northeast region were not considerably different. It can be seen that areas with similar
economic development within an area can have vastly different CEECI, thus showing that a
single factor, such as the level of economic growth, is not the only condition that determines
CEECI. Most of the provinces with lower efficiency have a lower level of economic growth
and a lower capacity for technological innovation. Still, there are exceptions, such as Hubei,
which relies on the advantages of a clean construction energy consumption structure to form
a green production model and combine a higher level of business management and market
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openness, which can promote technological integration and innovation in the regional
construction industry. On the other hand, an open market environment is conducive
to injecting high-quality capital and technology, thus accelerating the enhancement of
CEECI and ultimately driving high-quality development in the construction industry.
Conversely, the provinces with high efficiency do not have good economic, innovation,
and other environmental conditions, and there are also provinces with a better regional
development base but low efficiency. For example, Shandong province has a high level
of economic development and scientific and technological innovation, and a high level of
business management in the construction industry, but its CEECI is not high. In terms of
condition variables, the construction industry in Shandong province has a more traditional
energy consumption structure and a higher degree of market openness, which on the
one hand ignores green production, and on the other hand the higher degree of market
may have caused vicious competition among construction enterprises, and Tianjin has a
high level of economic development and scientific and technological innovation, but the
construction industry has a low level of business management, which leads to waste of
resources in the production process and a high degree of market openness, resulting in
vicious competition among regional construction enterprises. The two regions are more
economically developed, but the quality development of the local construction industry
has been hindered by the unreasonable allocation of resources.

On the whole, regional economic development will bring a vast market to the con-
struction industry in each province. Scientific and technological innovation can promote
technological innovation and technological upgrading in the construction industry in each
area, prompting quality change, efficiency change, and power change in the construction
industry, enhancing the competitiveness of construction enterprises. The opening up of the
construction market will be able to bring good technology and talents to the construction
industry in each province, but if the regional construction industry cannot make reasonable
use of its conditions, make up for its shortcomings, and form a positive interaction between
resource conditions, it will result in redundant resources and fierce competition, which is
counterproductive. Therefore, regions must fully understand their needs, optimize the allo-
cation of resources, and find a suitable path for their development, which is the key to the
efficient development of the regional construction industry. To this end, the fsQCA method
was used to explore how multiple factors jointly influence CEECI and to explore differenti-
ated driving paths for efficient regional CEECI development, which is of high research and
practical value in promoting high-quality products in the construction industry.

4.3. Calibration of Variables in the fsQCA Method

The fsQCA method first requires the identification of fuzzy sets, where each antecedent
condition (i.e., the five conditional variables in this paper) and outcome (CEECI) is con-
sidered as a set, respectively. Each case is transformed into the corresponding fuzzy set
affiliation in the group, and the variable calibration is the assignment in the set affiliation to
each patient. Referring to Fiss [51] for a more calibrated approach, this study set the fully
affiliated, crossover, and fully unaffiliated anchor points for the explanatory variable CEECI
and the five conditional variables to the 95% quantile, 50% quantile, and 5% quantile of the
sample data, respectively, with the anchor points set as shown in Table 5, after which each
variable was then converted to a pooled affiliation between 0 and 1. The calibration rules
for non-high efficiency are the opposite of high efficiency, i.e., the calibration results in a
non-set of high efficiency. After the anchor points have been set, all variables are calibrated
using the calibration functions in the fsQCA 3.0 software.
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Table 5. Anchor setting reference points.

Year 2019 2018

Full affiliation point 22,715 0.95 0.32 3.54 20,285 1.30 23,416 0.94 0.34 3.68 21,467 1.31
Maximum blurring point 12,385 0.83 0.18 1.61 4903 0.66 11,657 0.82 0.19 1.70 5155 0.62
Completely unaffiliated points 7348 0.69 0.04 0.58 927 0.29 7222 0.70 0.04 0.62 984 0.27

4.4. Univariate Necessity Analysis before fsQCA Analysis

The values of each provincial CEECI and the five antecedent condition variables
obtained from the above calculations were combined and analyzed year-by-year using the
fsQCA method. The individual conditional variables were examined for necessity before
the group analysis, a consistency test was performed, and if the consistency score was above
0.9 [52], the conditional variable is considered necessary for the outcome variable. Using
the fsQCA 3.0 software, the results of CEECI were used to verify the necessity of individual
condition variables, and the results of the test are shown in Table 6, with “~” indicating a
non-set. The results show that the consistency level of all the condition variables is below
0.9 and does not constitute a necessary condition for the outcome variable. It is once again
confirmed that CEECI is not determined by a single factor but is the result of multiple
factors interacting and acting synergistically, with complex cause–effect relationships, and
further configuration analysis is needed to identify the differentiated driving paths of
regionally efficient CEECI.

Table 6. Necessary condition testing.

Conditional
Variable

2019 2018

Consistency Coverage Consistency Coverage

EDL 0.5809 0.8943 0.5676 0.8304
~EDL 0.6298 0.3666 0.6626 0.3826
ECS 0.8082 0.6624 0.8124 0.6687
~ECS 0.4049 0.3528 0.4557 0.3796
ML 0.5556 0.7090 0.5950 0.6843
~ML 0.6606 0.4170 0.6804 0.4401
DM 0.6361 0.4991 0.6691 0.5344
~DM 0.5627 0.5148 0.6361 0.5467
TIL 0.6156 0.7078 0.6063 0.7247
~TIL 0.6109 0.4078 0.6804 0.4309

4.5. Efficient CEECI Pathway Analysis

This section explores the multiple concurrent causalities of CEECI using fsQCA 3.0
software. The consistency threshold for configuration analysis was set at 0.8, and the fre-
quency threshold was set at 1 about the study by Fiss [51]. The data were then normalized
and analyzed to obtain complex, parsimonious, and intermediate solutions. The interme-
diate solution was considered to reflect the results of the study best, and the condition
variables that appeared in both the medium and parsimonious solutions were core condi-
tions. In contrast, those that appeared only in the middle solution were marginal conditions.
As can be seen from Table 7, four conditional configurations for six histories led to the
emergence of efficient CEECI expectation results in both 2018 and 2019. The consistency
of individual designs for all histories was more significant than the minimum criterion
of 0.75, indicating that the various histories can be considered as sufficient combinations
of conditions to achieve efficient CEECI and that the results of the histories analysis are
valid. The consistency of the broad configurations in 2018 and 2019 were 0.9167 and 0.9233,
with coverage of 0.6200 and 0.5510, respectively, and with high overall coverage explaining
approximately 62% and 55% of the reasons for increased efficiency, respectively.
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Table 7. High-efficiency configuration of regional CEECI.

Conditional
Variable

2019 Configuration 2018 Configuration
1 2 3 1 2 3

EDL ⊗   ⊗   
ECS  • •  • •
ML   ⊗   ⊗
DM ⊗ ⊗  ⊗ ⊗  
TIL ⊗ • • ⊗ • -
Consistency 0.8556 0.9792 0.9674 0.8756 0.9673 0.9294
Coverage 0.2478 0.3339 0.3283 0.3003 0.3333 0.3285
Unique
coverage 0.0663 0.135 0.1508 0.1176 0.1667 0.1457

Consistency 0.9233 0.9167
Solution
coverage 0.5510 0.6200

Note: “ ” indicates Core condition exist, “•” indicates Edge conditions exists, “⊗” indicates missing Edge
condition, “-” indicates that the presence or absence of this condition does not affect the results.

The highly efficient CEECI groupings for 2018 and 2019 show a very high degree of
consistency, demonstrating the robustness of the research results. Based on the conditional
variables and the differences between the 2018 and 2019 groupings, the efficient CEECI
drive paths can be summarized as “low energy management”, “scale management”, and
“scale market opening”, and the specific analysis is as follows.

Low energy consumption management type. 2018–2019 Histogram 1, “management
level x energy consumption structure” is the core condition, and the level of economic
development, market openness, and technological innovation are the missing marginal
conditions. This shows that good management and a clean energy consumption structure
are the core of efficient CEECI in the region, compensating for the lack of other states for
efficient CEECI. This path shows that a higher level of business management positively
contributes to the development of the construction industry along the lines of standardiza-
tion, modernization and scaling, and significantly improves the regional CEECI by raising
the level of business management of enterprises. At the same time, combining a higher
level of business management and a cleaner energy consumption structure can better play
a role in carbon emission reduction.

Scale management type. Grouping 2 for 2018–2019, with “level of economic devel-
opment x level of management” as a core condition, energy consumption structure and
level of technological innovation as marginal conditions, and degree of market openness
as a marginal missing condition, the cases that fit this grouping include Beijing, Shanghai,
and Guangdong. This path shows that sound business management skills can efficiently
translate into a giant construction market due to higher levels of economic development,
thus contributing to the efficient development of the construction industry and enhancing
CEECI. It is also necessary to strengthen investment in science and technology innovation
and optimize the energy consumption structure. The path suggests that on the basis of
good primary conditions in regions with a high economic environment and business man-
agement level, the construction industry development model should be fundamentally
changed by improving scientific and technological innovation capabilities, promoting qual-
ity, efficiency and dynamic changes in the construction industry, promoting innovation
spillover and innovation absorption by avoiding vicious competition among construction
enterprises in the area, making the region’s construction enterprises as a whole take a high
technology development route, preventing an imbalance between innovation inputs, and
this will enable the construction enterprises in the region to follow a high technology devel-
opment route as a whole, avoiding an imbalance between innovation input and output,
thus obtaining more innovation benefits and stimulating construction enterprises to inno-
vate continuously, ultimately promoting the high-quality development of the construction
industry in the region.
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Open market type at scale. For 2018–2019 Cluster 3, “level of economic development x
degree of market openness” is the core condition, and energy consumption structure and
level of technological innovation are the marginal conditions. The level of management is
the marginal missing condition, and cases that fit this cluster include Zhejiang Province,
Jiangsu Province, and Fujian Province. This path shows that in areas where the regional
economy is more developed and has a larger construction market, but where construction
enterprises themselves have insufficient management capacity, opening up the construction
market can increase competition among construction enterprises, allowing enterprises with
advanced management models, highly skilled personnel, and other advantages to develop
and play an moral role, which in turn generates technological spillover to construction
enterprises in the region through the human capital flow effect, the good effect, the com-
petitive effect, and the correlation effect. Following that, by matching the higher regional
science and technology innovation capacity, conversely, it can provide a constant supply of
innovative talents and advanced technologies for the region’s enterprises, fundamentally
changing the construction industry’s development model, promoting quality, efficiency,
and dynamic changes in the construction industry, and ultimately contributing to the
enhancement of CEECI in the region.

5. Discussion
5.1. Discussion

This study presents the following two conclusions by analyzing data on the construc-
tion industry in 30 provinces across China (excluding Tibet, Hong Kong, Macau, and
Taiwan) in 2018 and 2019. Firstly, the overall CEECI in China is low and there is more room
for development, and the situation is not the same in different regions. Secondly, it is also
found that there are three different paths to effectively motivate different regions in China
to improve CEECI, and that efficient CEECI is characterized by “different paths to the same
destination”.

This study has three points of contribution. Firstly, this study constructs a CEECI evalu-
ation index system based on the input–output perspective, evaluates CEECI in 30 provinces
across China, clarifies the CEECI situation in different regions, and finds that CEECI is
not the same in different resource endowment regions, which provides fundamental help
to improve China’s CEECI and facilitates the targeted low-carbon transformation of the
construction industry in different regions of China.

Secondly, by combing through a large amount of literature, this study finds that
the main internal and external factors affecting China’s regional CEECI are the level
of regional economic development [32,35,36], energy consumption structure [12,36,41],
business management level [39], degree of openness to the outside world [32,35], and
the level of science and technology innovation [7,10,37]. At the same time, considering
the influence of a combination of factors on CEECI, this study applies the group theory
to conduct a comprehensive analysis of the influencing factors of CEECI from a system
perspective.

Finally, this study introduces the fsQCA method into the study of CEECI enhancement
paths in China, providing a method to explain regional differences in CEECI, and then
analyses the realistic paths to enhance regional CEECI with the help of histories, clarifying
that efficient CEECI is the result of a combination of multiple factors, and finding that
three realistic paths can achieve efficient CEECI, which can provide concrete references for
the achievement of carbon reduction targets in the construction industry in regions with
different environmental conditions.

5.2. Managerial Implication

This paper brings a new understanding of efficient CEECI development models in
the provinces and, based on the above findings, can give two insights to promote quality
development in the regional construction industry.
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1. The high-quality development of the regional construction industry should focus on
a balanced development among the driving factors. Research has shown that efficient
CEECI comes from the synergistic linkage of multiple elements within and outside
the organization. When the external environment, such as economic development
conditions and the ability to innovate in science and technology, is insufficient, you
can take the initiative to improve the level of business management and open up
the construction market to obtain advanced management concepts and technology,
thus enhancing CEECI. When the external environment conditions are better, the
organization should internally improve the enterprise development mode, enhance
the enterprise management level, and scientific and technological innovation ability,
take the intelligent, informatization, and industrialization development road, avoid
low-level rough competition, and enhance the core competitiveness of the enterprise.

2. Each region should take into account local conditions and choose the best solution
according to the internal and external environmental conditions of the construction
industry in each area. The study found three linked paths to achieve differentiated
and efficient CEECI. This means that the government should choose the appropriate
development path in light of the province’s construction industry development and
external environmental conditions, rather than blindly imitating the development
paths of advanced regions. First of all, for areas with an average level of economic
growth, a small construction market, and insufficient management level of construc-
tion enterprises, such as Jilin, Ningxia, Qinghai, and Inner Mongolia, which can follow
the “low energy consumption management” path and reveal that the government
should strengthen the promotion of such regions to take the lead in optimizing the
energy consumption structure to reduce carbon emissions in the construction industry.
Enterprises should continue to learn advanced management concepts and technolo-
gies to drive the improvement of their management level in the construction industry.
Secondly, regions with substantial construction markets, but with average economic
development and inadequate management of their construction enterprises, such as
Hubei, Shandong, Anhui, Henan, Sichuan, Shaanxi, and other regions, can follow the
“open market on a large scale” path and build internal strength as soon as possible
in the next phase, relying on enterprise management to change to a highly efficient
and high-quality development approach, strengthening economic construction while
opening up the construction market, depending on the need to attract private enter-
prises to bring advanced management concepts and technologies, while enhancing
investment in science and technology innovation, thus promoting the region to im-
prove CEECI. Finally, for a high level of economic development, such as Tianjin,
Jiangsu Province, and Zhejiang Province, one should follow the “scale management”
path, and in the future, should strengthen their management capabilities, strengthen
investment in science and technological innovation, avoid the vicious competition
brought about by the high degree of market opening, take the route of synergistic
development of construction industrialization and intelligent construction, enhance
the competitiveness of enterprises by strengthening the endogenous power of effi-
cient CEECI development, and thus promote the high-quality development of the
construction industry.

6. Conclusions

In recent years, under the requirement of high-quality national development, a series
of low-carbon development policies for the construction industry has guided and promoted
the continuous low-carbon transformation of the national construction industry. Still, there
are significant differences in CEECI among provinces. This paper measures the CEECI using
the Super-SBM model with a sample of 30 provincial-level construction industries in China.
By sorting out and analyzing the main influencing factors affecting the regional CEECI, the
fsQCA method was applied to dissect the multiple concurrent causal relationships between
the level of business management, openness, energy consumption structure, technological



Buildings 2023, 13, 543 16 of 18

innovation, and economic environment as antecedent conditions affecting the CEECI. The
findings of the study are as follows.

1. China’s CEECI is low, and there is more room for development. By region, China’s
east and central regions are driven by high CEECI due to sound economic and inno-
vative environment conditions, high levels of construction business management, and
market openness, while the opposite is true for the northeast and western regions, but
a comparison of the provinces shows that Shandong and Tianjin have good economic
and innovation environment conditions but have not developed efficient CEECI,
while Guangxi has a lack of economy and innovation environment development
levels but has developed efficient CEECI, suggesting that driving CEECI is the result
of a combination of factors.

2. The results of the qualitative comparative analysis of fuzzy sets show that there are
three different paths to effectively motivate China’s regions to improve CEECI, namely
“low energy management”, “scale management”, and “scale market opening” as the
three differentiated driving paths for efficient CEECI. The different paths show that
efficient CEECI is characterized by “different paths”, suggesting that a multi-factor
approach is more suitable for driving efficient CEECI than the pursuit of single-factor
extremes. Therefore, the optimal development path should be chosen in light of the
development status of the regional construction industry and the state of internal and
external conditions.

This study also has shortcomings. Firstly, the provincial sample of the construction
industry selected for this study is currently small and lacks guiding recommendations
for construction enterprises. In the future, samples should be obtained from construction
enterprises for research to guide them in carbon reduction.

Secondly, forced by the availability of data, the measurement of the condition and
outcome variables in this study is rather one-sided. The measurement of CEECI as an
outcome variable, for which data relating to energy consumption are available in the
input–output indicators, lacks rigor, and future attention should be paid to the latest CEECI
measurement methods so that accurate measurements of CEECI can be made.

Thirdly, the selection of conditional variables lacks comprehensiveness. In this study,
the five factors selected as conditional variables, namely the level of regional economic de-
velopment, energy consumption structure, business management level, degree of openness
to the outside world, and level of scientific and technological innovation, are influencing
factors obtained by combing existing literature studies, without considering whether there
are other influencing factors involved in the group effect on CEECI. Future research should
be carried out in the construction industry to identify the main influencing factors and then
carry out research.

Finally, as the latest available official data were updated to 2019, the study was
conducted in 2019 for China’s provincial areas, resulting in slightly outdated findings,
which should be updated when the latest data are released so as to obtain the latest findings.
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