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Abstract: Most regional seismic damage assessment (RSDA) methods are based on the rigid-base
assumption to ensure evaluating efficiency, while these practices introduce factual errors due to
neglecting the soil–structure interaction (SSI). Predicting the influence of the SSI on seismic responses
of regionwide structure portfolios remains a challenging undertaking, as it requires developing
numerous high-fidelity, integrated models to capture the dynamic interplay and uncertainties in
structures, foundations, and supporting soils. This study develops a one-dimensional convolu-
tional neural network (1D-CNN) model to efficiently predict to what degree considering the SSI
would change the inter-story drifts and base shear forces of RC frame buildings. An experimen-
tally validated finite element model is developed to simulate the nonlinear seismic behavior of the
building-foundation–soil system. Subsequently, a database comprising input data (i.e., structural and
soil parameters, ground motions) and output predictors (i.e., changes in story drift and base shear) is
constructed by simulating 1380 pairs of fixed-base versus soil-supported structures under earthquake
loading. This large-scale dataset is used to train, test, and identify the optimal hyperparameters for
the 1D-CNN model to quantify the demand differences in inter-story drifts and base shears due to
the SSI. Results indicate the 1D-CNN model has a superior performance, and the absolute prediction
errors of the SSI influence coefficients for the maximum base shear and inter-story drift are within
9.3% and 11.7% for 80% of cases in the testing set. The deep learning model can be conveniently
applied to enhance the accuracy of the RSDA of RC buildings by updating their seismic responses
where no SSI is considered.

Keywords: soil–structure interaction; regional seismic damage assessment; RC frame; machine
learning; convolutional neural network

1. Introduction

Rapid regional seismic damage assessment (RSDA) of civil engineering structures
provides situational awareness toward efficient post-earthquake rescue, repair, and recon-
struction, which can reduce casualties, injuries, and economic losses. High-fidelity RSDA
can be achieved through nonlinear time-history analysis (NLTHA) to reliably predict the
seismic responses of structural systems. To save computational cost, previous studies
mainly relied on the rigid-base assumption to conduct NLTHAs for the RSDA of build-
ing structures [1,2]. The rigid-base assumption neglects the dynamic interaction between
the soil and structure; the same assumption has also been commonly considered in the
seismic design and retrofit of new and existing buildings [3–5]. However, neglecting the
soil–structure interaction (SSI) effect may introduce a significant error, particularly for tall
buildings built on soft soils [6,7].

The SSI effect remains a complex and challenging research topic because it couples
many uncertain parameters in the soil, foundation, superstructure, and seismic records.
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Early studies [8,9] generally agreed that considering the SSI is beneficial to the seismic per-
formance of building structures as the SSI can lengthen the natural period of the system [10]
and provide additional damping. However, recent studies have found that considering
the SSI could also significantly increase the seismic demands of building structures in
certain cases due to (1) the rocking of the foundation [11], (2) earthquake-induced soil
liquefaction [12], and (3) the resonance effect between the soil and superstructure [13],
etc. Two examples are further discussed here. First, Tomeo et al. [14] used a refined finite
element model to investigate the SSI effect on the seismic responses of reinforced concrete
(RC) frames with different subsoil properties and seismic design levels. They found that
the SSI could reduce the structure’s maximum story drift and base shear up to 50% and
20%, respectively. In contrast, Hokmabadi et al. [15] investigated the influence of soil–pile–
structure interaction on the seismic responses of mid-rise buildings by a series of shaking
table tests, finding that the SSI increases the lateral deflections and inter-story drifts of
soil-supported structures in comparison with the fixed-base structures and the increase is
up to 34%. In addition, they pointed out that ignoring the SSI effect may lead to erroneous
evaluations of structural seismic demands.

In view of the considerable impact of the SSI on structural seismic responses, some
approaches to consider the SSI have been proposed in recent years. Lu et al. [16] developed
a numerical coupling scheme to conduct an RSDA of building–soil systems, where the
spectral element program SPEED [17] was employed to simulate wave propagation in un-
derlying soil layers. Lu et al. [18] and Zhang et al. [19] also developed a three-dimensional
lumped parameter model (LPM) to account for the SSI effect in the seismic response predic-
tion of Wangjiang Campus buildings in Sichuan University, China. Forcellini [20] proposed
a framework to assess the SSI effects with an equivalent fixed-based model that considers
the SSI effects by applying the period of elongation and the damping increase. These
studies have considered the SSI effects to some extent. However, the neglect of the soil
embedment of structural foundations in these studies may introduce errors. For example,
El Hoseny et al. [21] investigated the SSI effects on the seismic responses of tall buildings
with variable embedded depths, pointing out that the embedded depth can significantly
affect the structural seismic response.

Moreover, the recent advances in data science have provided many opportunities to
leverage statistical and machine learning to solve challenging problems in structural and
earthquake engineering [22,23]. For example, Won et al. [24] developed an artificial neural
network to determine the seismic damage levels of regional buildings. Duarte et al. [25]
proposed a convolutional neural network (CNN) to delineate damaged regions and assess
building damage by remote sensing. Xu et al. [26] developed a long short-term memory
(LSTM) neural network to achieve a real-time RSDA. Likewise, rapid RSDA was proposed
by Lu et al. [27] through a CNN model that analyzes the time-frequency features of ground
motions. These studies have made valuable attempts to explore the promise of using
machine learning to enhance the accuracy and efficiency of RSDAs. However, no relevant
research has been conducted to predict the influence of the SSI on the seismic responses of
RC frame buildings.

To efficiently and accurately predict what degree considering the SSI would change the
inter-story drifts and base shear forces of RC frame buildings, an experimentally validated
finite element model is established to obtain the SSI effect on pile-supported RC frame
structures. Subsequently, a dataset of 1380 input (i.e., structural and soil parameters, ground
motions) and output parameters (i.e., changes in story drift and base shear) is established
through the finite element analyses of numerous fixed-base versus soil-supported structures
under earthquake loading. A one-dimensional convolutional neural network (1D-CNN)
is then developed to quantify the response differences in the inter-story drift and base
shear due to the SSI (i.e., between fixed-base and soil-supported structures). Furthermore,
a parametric study is conducted to pinpoint the optimal set of hyperparameters that
bear a proper balance between the model accuracy and efficiency. Results indicate that the
developed 1D-CNN model can well predict the influence of the SSI on the seismic responses
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of RC frame buildings. The absolute prediction errors of the SSI influence coefficients for
the maximum base shear and inter-story drift are within 9.3% and 11.7% for 80% of cases
in the testing set.

2. Numerical Model to Account for SSI Effects
2.1. Numerical Model

A two-dimensional SSI model is established based on the platform OpenSees, as
shown in Figure 1. The soil is simulated by assigning the constitutive model PressureIn-
dependMultiYield (PIMY) [28] to the four-node quad elements. The PIMY model is an
elastic–plastic material, which can reflect the nonlinear behavior of soil under fast loading
conditions. The displacement-based beam–column elements are employed to simulate
the beam, column, pile, and pile cap, where the constitutive models of the concrete and
reinforcement are Concrete02 [29] and Steel02 [30], respectively. The soil nodes and pile
nodes at the same positions are fully coupled according to Mercado et al. (2021) [31]. The
connection between the pile cap and soil is shown in the blue circle in Figure 1, where
the translational degrees of freedom (DOFs) of the pile cap node and soil node are tied
in the horizontal direction; the vertical translation DOFs of the pile cap node and soil
node are connected by using the Zerolength element, and the Elastic-No Tension (ENT)
material is assigned to the Zerolength element to simulate the opening and closing between
the pile cap and soil. The lateral boundaries of the soil are set as shear boundaries [32],
where the horizontal translation DOFs of the nodes at the same height on the two lateral
soil boundaries are tied to simulate the shear deformation of the soil under earthquake
loadings. The bottom of the soil is considered bedrock, and seismic excitations are imposed
by inputting the bedrock acceleration time histories to the bottom nodes of the soil.
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Figure 1. Schematic diagram for illustrating soil–structure interaction model.

2.2. Validation of the Numerical Model

Results from two shaking table tests (i.e., one is a free field test, and the other is an
SSI test [33]) are utilized to validate the effectiveness of the numerical model. For the SSI
test, the volumetric dimension (length × width × height), density, and shear wave velocity
of the hypothetical prototype soil are 58 m × 40 m × 25 m, 1.65 ton/m3, and 120 m/s,
respectively; the height and plane dimension of the hypothetical prototype single degree of
freedom (SDOF) structure are 12.1 m and 6.0 m × 6.0 m. According to the plane dimensions
of the prototype soil and superstructure, and the size and performance of the shaking table,
the similarity ratio of the length, density, and elastic modulus are set as 1:20, 1:1.5, and 1:6,
respectively. As such, the volumetric dimension, density, and shear wave velocity of the
tested soil are 2.9 m × 2.0 m × 1.25 m, 1.1 ton/m3, and 60 m/s, respectively. As shown
in Figure 2, the laminated shear soil box is employed to ensure that the soil deforms in
shear [34,35]; the soil is selected as the sawdust soil, and an SDOF structure is chosen to be
supported by a pile foundation. The pile length, pile diameter, structure height, and fixed-
base structural period of the tested SDOF structure (Figure 2c) are 0.4 m, 0.04 m, 0.605 m,
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and 0.05 s, respectively. Acceleration sensors are placed at the center of the surface soil and
the top of the SDOF structure in the free field and SSI tests, respectively. The time-history
accelerations for the free field test and SSI test are shown in Figure 3a,b, respectively.

Buildings 2023, 13, 564 4 of 14 
 

in Figure 2, the laminated shear soil box is employed to ensure that the soil deforms in 

shear [34,35]; the soil is selected as the sawdust soil, and an SDOF structure is chosen to 

be supported by a pile foundation. The pile length, pile diameter, structure height, and 

fixed-base structural period of the tested SDOF structure (Figure 2c) are 0.4 m, 0.04 m, 

0.605 m, and 0.05 s, respectively. Acceleration sensors are placed at the center of the sur-

face soil and the top of the SDOF structure in the free field and SSI tests, respectively. The 

time-history accelerations for the free field test and SSI test are shown in Figure 3a,b, re-

spectively. 

 

(a) Free filed test photo 
(b) Finite element model for the free field 

test 

 
(c) SSI test photo (d) Finite element model for the SSI test 

Figure 2. Field test photos and finite element models. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Acceleration record

 

 

A
cc

e
le

ra
tio

n
 (

m
/s

2
)

Time (s)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 Acceleration record

 

 

A
cc

e
le

ra
tio

n
 (

m
/s

2
)

Time (s)  

(a) Free field test (b) SSI test 

Figure 3. Seismic records used in the tests. 

The finite element models developed for the shaking table tests are illustrated in Fig-

ure 2b,d, where the mesh size of the soil is set as 0.05 m to ensure the influence of the mesh 

size is negligible. The reference low-strain shear modulus (Gr), reference bulk modulus 

(Br), cohesion (c), and peak shear strain (γmax) of the soil are, respectively, set as 3600 kPa, 

18,000 kPa, 14 kPa, and 0.1, and the other parameters are set as default values. By inputting 

the acceleration time histories at the bottom of the soil, time-history analyses are con-

ducted on the finite element models to obtain the acceleration responses at the center of 

the surface soil for the free field test, and the acceleration at the top of the SDOF structure 

for the SSI test. As shown in Figure 4a,b, the numerical outcomes and test results are in 

good agreement, indicating that the numerical model of the soil–SDOF structure system 

is reliable. The only difference between the soil–SDOF structure system and the soil–frame 

Acceleration time-history

2.9 m

Acceleration sensor

Laminated shear soil box

Sawdust soil

Simulate

2.9 m

Acceleration sensor

Laminated shear soil box

Mass block

Steel pipe

Steel pile

Steel pile cap

Acceleration time-history

Simulate

Masspoint

Figure 2. Field test photos and finite element models.

Buildings 2023, 13, 564 4 of 14 
 

in Figure 2, the laminated shear soil box is employed to ensure that the soil deforms in 

shear [34,35]; the soil is selected as the sawdust soil, and an SDOF structure is chosen to 

be supported by a pile foundation. The pile length, pile diameter, structure height, and 

fixed-base structural period of the tested SDOF structure (Figure 2c) are 0.4 m, 0.04 m, 

0.605 m, and 0.05 s, respectively. Acceleration sensors are placed at the center of the sur-

face soil and the top of the SDOF structure in the free field and SSI tests, respectively. The 

time-history accelerations for the free field test and SSI test are shown in Figure 3a,b, re-

spectively. 

 

(a) Free filed test photo 
(b) Finite element model for the free field 

test 

 
(c) SSI test photo (d) Finite element model for the SSI test 

Figure 2. Field test photos and finite element models. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Acceleration record

 

 

A
cc

e
le

ra
tio

n
 (

m
/s

2
)

Time (s)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 Acceleration record

 

 

A
cc

e
le

ra
tio

n
 (

m
/s

2
)

Time (s)  

(a) Free field test (b) SSI test 

Figure 3. Seismic records used in the tests. 

The finite element models developed for the shaking table tests are illustrated in Fig-

ure 2b,d, where the mesh size of the soil is set as 0.05 m to ensure the influence of the mesh 

size is negligible. The reference low-strain shear modulus (Gr), reference bulk modulus 

(Br), cohesion (c), and peak shear strain (γmax) of the soil are, respectively, set as 3600 kPa, 

18,000 kPa, 14 kPa, and 0.1, and the other parameters are set as default values. By inputting 

the acceleration time histories at the bottom of the soil, time-history analyses are con-

ducted on the finite element models to obtain the acceleration responses at the center of 

the surface soil for the free field test, and the acceleration at the top of the SDOF structure 

for the SSI test. As shown in Figure 4a,b, the numerical outcomes and test results are in 

good agreement, indicating that the numerical model of the soil–SDOF structure system 

is reliable. The only difference between the soil–SDOF structure system and the soil–frame 

Acceleration time-history

2.9 m

Acceleration sensor

Laminated shear soil box

Sawdust soil

Simulate

2.9 m

Acceleration sensor

Laminated shear soil box

Mass block

Steel pipe

Steel pile

Steel pile cap

Acceleration time-history

Simulate

Masspoint

Figure 3. Seismic records used in the tests.

The finite element models developed for the shaking table tests are illustrated in
Figure 2b,d, where the mesh size of the soil is set as 0.05 m to ensure the influence of
the mesh size is negligible. The reference low-strain shear modulus (Gr), reference bulk
modulus (Br), cohesion (c), and peak shear strain (γmax) of the soil are, respectively, set as
3600 kPa, 18,000 kPa, 14 kPa, and 0.1, and the other parameters are set as default values.
By inputting the acceleration time histories at the bottom of the soil, time-history analyses
are conducted on the finite element models to obtain the acceleration responses at the
center of the surface soil for the free field test, and the acceleration at the top of the SDOF
structure for the SSI test. As shown in Figure 4a,b, the numerical outcomes and test results
are in good agreement, indicating that the numerical model of the soil–SDOF structure
system is reliable. The only difference between the soil–SDOF structure system and the soil–
frame structure system is the superstructure. The modeling method of the frame structure
adopted in this paper has been widely used and validated [3,31]; thus, the presented
numerical model for the soil–frame structure system is reliable. Noting that simplifying
the real frame structure into an idealized SDOF structure will introduce errors [36], the
subsequent studies adopt soil–frame structure models.
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3. Database Construction

Two factors, esd and ebs, are defined in Equations (1) and (2) to quantify the influences
of the SSI effect on two significant seismic demand parameters, namely the maximum
inter-story drift and maximum base shear. In these two equations, SSSI and Sfb denote
the maximum story drifts of the structure with and without considering the SSI (i.e., a
fixed-base structure), whereas BSSI and Bfb denote the maximum base shear forces of the
structure with and without considering the SSI. In particular, Sfb and Bfb are obtained
by imposing the ground motion recorded at the soil surface to the base of the fixed-base
structure, while SSSI and BSSI are obtained by imposing the bedrock motion to the soil
bottom. To ensure the seismic excitations of the structures with and without considering
the SSI are consistent, the bedrock motions corresponding to the ground motion recorded
at the soil surface are obtained by performing deconvolutional analyses using SHAKE [37]
and used for the soil–structure system.

esd =
SSSI − S f b

S f b
(1)

ebs =
BSSI − B f b

B f b
(2)

Previous studies [38,39] revealed that the SSI effects are significantly influenced by
the seismic record, soil shear wave velocity, building’s natural frequency, bay number, and
pile diameter. Moreover, the maximum influence of the pile length on the SSI effects can
still be up to about 10% in some cases [40]. As such, 1380 pairs of finite element models
for fixed-base versus soil-supported RC frames are developed to investigate the SSI effects.
To adequately capture the influences and uncertainties of earthquake loading, 270 seismic
records with different spectral characteristics are selected from the PEER Ground Motion
Database [41], and they are randomly scaled to have peak ground accelerations (PGAs) stay
in the range of 0 to 4.0 m/s2. In particular, the seismic record for each fixed-base structure
is randomly selected from the 270 seismic records, and the bedrock motion (obtained using
SHAKE) corresponding to this seismic record is used for the soil-supported RC frame
corresponding to this fixed-base structure. Figure 5 presents the finite element models of
the fixed-base versus the soil-supported RC frames, where the story height and bay length
are 3.3 m and 6.0 m, the longitudinal reinforcement ratio of each side for column is 0.33%,
and the longitudinal reinforcement ratio of the beam top, beam bottom, and pile are 0.6%,
0.4%, and 0.8%, respectively. The cross-section dimensions of the beams and columns affect
the SSI effect mainly by changing the structural frequency. As such, two series of RC frames
(F1-1 to F15-1 and F1-2 to F15-2) with different cross-section dimensions of beams and
columns are designed to fully consider the variation in the structural frequency, as shown
in Table 1, where C45 concrete with the nominal cubic compressive strength of 45 MPa and
HRB335 steel with the nominal yield strength of 335 MPa are used [42]. In addition, the
height of the supporting soils is 20 m [43], and the soil lengths are 60 m, 60 m, 60 m, 78 m,
and 98 m when the bay number is increased from one to five, ensuring that the influence of
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the artificial soil boundary is negligible. The values of the other parameters for each pair of
fixed-base versus soil-supported structures are randomly selected from Table 2.
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Figure 5. Finite element models for RC frames with and without considering SSI.

Table 1. Detailed information of RC frames with different stories.

Story RC Frames

Beam Column
Period

(s) RC Frames

Beam Column
Period

(s)Dimension Dimension Dimension Dimension
(mm) (mm) (mm) (mm)

1 F1-1 300 × 600 500 × 500 0.127 F1-2 300 × 700 550 × 550 0.104

1 to 2 F2-1 300 × 600 500 × 500 0.252 F2-2 300 × 700 550 × 550 0.205

1 to 3 F3-1 300 × 600 500 × 500 0.384 F3-2 300 × 700 550 × 550 0.311

1 to 4 F4-1 300 × 600 550 × 550 0.484 F4-2 300 × 700 650 × 650 0.371

1 to 5 F5-1 300 × 600 550 × 550 0.616 F5-2 300 × 700 600 × 600 0.5

1 to 6 F6-1 300 × 600 600 × 600 0.713 F6-2 300 × 700 650 × 650 0.58

1 to 7 F7-1 300 × 600 600 × 600 0.846 F7-2 300 × 700 650 × 650 0.688

1 to 8 F8-1 300 × 600 650 × 650 0.943 F8-2 300 × 700 700 × 700 0.771

1 to 5
F9-1

300 × 600 650 × 650
1.091 F9-2

300 × 700 700 × 700
0.892

6 to 9 300 × 600 550 × 550 300 × 700 600 × 600

1 to 5
F10-1

300 × 600 700 × 700
1.189 F10-2

300 × 700 700 × 700
1.006

6 to 10 300 × 600 600 × 600 300 × 700 600 × 600

1 to 4

F11-1

300 × 600 700 × 700

1.344 F11-2

300 × 700 750 × 750

1.0955 to 8 300 × 600 600 × 600 300 × 700 650 × 650

9 to 11 300 × 600 500 × 500 300 × 700 550 × 550

1 to 4

F12-1

300 × 600 700 × 700

1.493 F12-2

300 × 700 750 × 750

1.2285 to 8 300 × 600 600 × 600 300 × 700 650 × 650

9 to 12 300 × 600 500 × 500 300 × 700 550 × 550

1 to 5

F13-1

300 × 600 750 × 750

1.578 F13-2

300 × 700 750 × 750

1.36 to 9 300 × 600 650 × 650 300 × 700 650 × 650

10 to 13 300 × 600 550 × 550 300 × 700 550 × 550

1 to 5

F14-1

300 × 600 750 × 750

1.723 F14-2

300 × 700 800 × 800

1.4086 to 10 300 × 600 650 × 650 300 × 700 700 × 700

11 to 14 300 × 600 550 × 550 300 × 700 600 × 600

1 to 5

F15-1

300 × 600 750 × 750

1.876 F15-2

300 × 700 800 × 800

1.5376 to 10 300 × 600 650 × 650 300 × 700 700 × 700

11 to 15 300 × 600 550 × 550 300 × 700 600 × 600



Buildings 2023, 13, 564 7 of 14

Table 2. Value ranges of parameters for fixed-base versus soil-supported structures.

Parameters Value Range

Soil shear wave velocity (m/s) 120, 135, 150, 160, 175, 185, 200, 210, 225, 235, 250, 275, 300, 325, 350, 375, 400, 425, 450, 500.

Story number 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.

Bay number 1, 2, 3, 4, 5.

Ratio of pile length to structure height 0.1, 0.2, 0.3, 0.4, 0.5

Pile diameter (m) 0.2, 0.25, 0.275, 0.3, 0.35, 0.4, 0.45, 0.475, 0.51, 0.55, 0.59, 0.62, 0.65, 0.7, 0.72, 0.75, 0.8, 0.85, 1.05, 1.2

The Fourier spectra can well reflect the frequency characteristics and peak acceleration
of the seismic record, and the main frequency components of most seismic records recorded
at the soil surface are within 16 Hz. As such, 328 Fourier amplitudes with a frequency
interval of 0.049 Hz are used to represent the seismic record. To this end, a dataset consisting
of 1380 groups of building-motion couples is established, where 270 ground motions are
randomly coupled with 1380 pairs of fixed-base versus soil-supported RC frames designed
with different structure, pile, and soil parameters. A schematic data inventory information
is shown in Figure 6, where the input parameters include 328 Fourier amplitudes of
the seismic record and 6 soil–structure parameters, namely the soil shear wave velocity,
building’s natural frequency, story number, bay number, and pile length and diameter, and
ebs and esd are the two predictors.
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4. 1D-CNN to Quantify the SSI Effect
4.1. Development of the 1D-CNN Model

Convolutional neural network (CNN) employs a convolutional computation algorithm
to extract the main features of input data. The mathematical expression of the algorithm
is presented in Equation (3), where M denotes the number of output feature maps for the
(l−1)th layer; xl−1

i denotes the ith output feature map of the (l−1)th layer; xl
j denotes the

jth output feature map of the lth layer; kl
ij denotes the jth convolution kernel (filter) of the

lth layer; bl
j denotes the jth bias of the lth layer; “*” denotes the convolutional computation;

and f (·) is the activation function.

xl
j = f (

M

∑
i

xl−1
i ∗ kl

ij + bl
j) (3)

The input of the one-dimensional convolutional neural network (1D-CNN) is one-
dimensional vectors instead of two-dimensional pictures. Therefore, the convolution
operation cost of the 1D-CNN is significantly reduced as compared with a typical CNN.
To speed up the convolution operation, a 1D-CNN, as shown in Figure 7, is established to
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predict ebs and esd using the dataset obtained through the nonlinear time-history analyses.
The 1D-CNN model is designed with an input layer, two convolutional pooling layers
named Conv1 and Conv2, a fully connected layer, and an output layer. In particular,
1380 groups of input and output parameters are randomly divided into 1130 groups for
training and 250 groups for testing. To reduce the magnitude difference in the data, the
mapminmax function shown in Equation (4) is utilized to normalize the original input data
before feeding them into the input layer. The 1D-CNN is designed with a relatively simple
architecture consisting of two convolution layers to avoid potential overfitting. The pooling
size and stride are set as 1 in each pooling layer to prevent information loss when describing
the soil–structure system. The widely used function, rectified linear unit (Relu), as shown in
Equation (5), is adopted as the activation function. The dropout function is applied after the
convolution layers to alleviate overfitting. The adaptive moment estimation (Adam) [44]
optimizer is adopted to train the CNN model, and the initial learning rate is determined
as 0.001. In addition, the mini-batch gradient descent method is used to improve the
generalization ability of the 1D-CNN model.

xk =
xk − xmin

xmax − xmin
(4)

f (x) = max (0, x) (5)
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4.2. Sensitivity Analyses of Hyperparameters for Training the 1D-CNN Model

The selection of hyperparameters is further investigated through sensitivity analyses
to improve the accuracy and efficiency of the 1D-CNN model. These include architecture
parameters, such as the strides, sizes, and the number of filters, and training parameters,
such as the batch size and epochs. In addition, the influence of the size of the training
set on the performance of the 1D-CNN model is also explored. Using the coefficient of
determinations (R2), mean absolute error (Eabs), and training time as the evaluation metrics,
sensitivity analyses are conducted to determine each parameter to have a proper balance
between the accuracy and efficiency. Table 3 lists the results for selecting the number of filter
strides using the benchmark 1D-CNN model designed with (3, 3) and (32, 64) as the sizes
and number of filters for the two convolution layers, as well as 128 and 500 as the batch
size and epochs. As shown in Table 3, 1 stride for both convolution layers will provide
the best performance in accuracy (largest R2 and smallest Eabs) yet requires a reasonable
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amount of training time. In all the following tables, the cases with best performances have
been highlighted by bold.

Table 3. Influence of filter stride on the performance of the 1D-CNN model.

Stride
Training Set Testing Set

Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

Conv1 Conv2 ebs esd ebs esd ebs esd ebs esd

1 1 0.944 0.938 5.074 7.566 0.923 0.926 6.484 8.628 490
1 2 0.942 0.938 5.423 7.607 0.914 0.929 6.811 8.433 275
2 2 0.932 0.925 5.717 8.248 0.907 0.919 7.056 9.180 162
1 3 0.939 0.939 5.398 7.631 0.913 0.924 6.781 8.601 226

Six 1D-CNN models are developed to have (1, 1), (3, 3), 128, and 500 as the filter
stride, filter size, batch size, and epochs; these models are designed to have different filter
numbers to investigate their influences on the model performance. As shown in Table 4,
training the 1D-CNN model requires more time when the filter number is increased. In
addition, the model performance does not always increase with the increase in the filter
numbers, and the best predicting accuracy (Eabs for ebs and esd in the testing set is smallest)
is observed when the filter numbers of the first and second convolution layers are 16 and
64, respectively.

Table 4. Influence of the number of filters on the performance of the 1D-CNN model.

Num Filters
Training Set Testing Set

Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

Conv1 Conv2 ebs esd ebs esd ebs esd ebs esd

16 16 0.934 0.937 5.549 7.688 0.908 0.926 6.818 8.585 193
16 32 0.944 0.940 5.098 7.579 0.921 0.924 6.571 8.609 277
32 32 0.944 0.939 5.091 7.593 0.921 0.922 6.610 8.682 328
16 64 0.942 0.937 5.210 7.781 0.922 0.925 6.447 8.568 423
32 64 0.944 0.938 5.074 7.566 0.923 0.926 6.484 8.628 490
64 64 0.944 0.937 5.222 7.936 0.920 0.923 6.646 9.019 609

Five different 1D-CNN models are developed to investigate the influence of the filter
size, where other hyperparameters such as the filter stride, filter number, batch size, and
epochs are determined as (1, 1), (16, 64), 128, and 500, respectively. As shown in Table 5, the
filter size does not greatly affect the accuracy and training time of the model. In particular,
R2 and Eabs for the training set indicate the best model performance when the filter sizes
are 3 and 3 for the first and second convolution layers, respectively.

Table 5. Influence of the sizes of filters on the performance of the 1D-CNN model.

Filter Size
Training Set Testing Set

Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

Conv1 Conv2 ebs esd ebs esd ebs esd ebs esd

3 3 0.942 0.937 5.210 7.781 0.922 0.925 6.447 8.568 423
5 5 0.939 0.939 5.232 7.580 0.912 0.924 6.696 8.445 450
5 3 0.940 0.940 5.210 7.452 0.915 0.921 6.653 8.694 417
7 3 0.937 0.936 5.344 7.716 0.912 0.918 6.815 8.975 418
7 5 0.942 0.939 5.094 7.563 0.917 0.921 6.608 8.882 435
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Four 1D-CNN models are established to investigate the influence of the size of the
training set on the performance of the 1D-CNN model, where the filter stride, filter size,
filter number, batch size, and maximum epochs number are (1, 1), (3, 3), (16, 64), 128, and
500, respectively. Table 6 shows that both the model accuracy and training time increase
when the size of the training set is increased from 750 to 1130.

Table 6. Influence of the size of training set on the performance of the 1D-CNN model.

Size of
Training Set

Training Set Testing Set
Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

ebs esd ebs esd ebs esd ebs esd

750 0.937 0.930 5.446 8.228 0.885 0.852 7.884 11.437 226
850 0.935 0.928 5.296 8.343 0.886 0.879 7.686 10.462 274
1050 0.943 0.932 5.086 8.287 0.909 0.909 7.028 9.879 310
1130 0.942 0.937 5.210 7.781 0.922 0.925 6.447 8.568 423

The maximum number of epochs would also affect the performance of the 1D-CNN
model. Using five 1D-CNN models that have the filter stride, filter size, filter number, and
batch size chosen as (1, 1), (3, 3), (16, 64), and 128, the results regarding the influences
of the epoch number are presented in Table 7. In general, R2 and the training time will
increase, while Eabs will decrease when the maximum number of epochs is increased from
250 to 1000.

Table 7. Influence of the number of maximum epochs on the performance of the 1D-CNN model.

Max Epochs

Training Set Testing Set
Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

ebs esd ebs esd ebs esd ebs esd

250 0.921 0.922 6.168 8.652 0.909 0.909 7.120 9.622 214
500 0.935 0.935 5.394 7.824 0.912 0.923 6.713 8.888 359
750 0.946 0.943 5.050 7.174 0.923 0.926 6.484 8.342 538
1000 0.953 0.951 4.579 6.841 0.926 0.928 6.249 8.334 727

Likewise, Table 8 explores the influence of the batch size on the performance of the 1D-
CNN model. Other hyperparameters of the model are determined through the sensitivity
analyses discussed above. Namely, the filter stride, filter size, filter number, and maximum
epochs number are (1, 1), (3, 3), (16, 64), and 1000, respectively. As listed in the Table,
the model performance does not always decrease when the batch size is increased from
16 to 128. The 1D-CNN model has the best performance when the batch size is 32.

Table 8. Influence of batch size on the performance of the 1D-CNN model.

Batch Size

Training Set Testing Set
Train
Time

(s)
R2 Eabs (%) R2 Eabs (%)

ebs esd ebs esd ebs esd ebs esd

16 0.963 0.958 4.272 6.522 0.930 0.932 6.292 8.33 1527
32 0.967 0.970 3.857 5.592 0.928 0.941 6.186 7.675 1076
64 0.965 0.968 3.996 5.893 0.922 0.928 6.395 8.386 868

128 0.953 0.951 4.579 6.841 0.926 0.928 6.249 8.334 727

4.3. Performance of the 1D-CNN Model

According to sensitive analyses, the strides, sizes, and numbers of filters for the 1D-
CNN model are finally selected as (1, 1), (3, 3), and (16, 64), respectively, whereas 32 batches
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and 1000 epochs are considered for the model. As a result, the training time of the model
turns out to be 1076 s. The comparisons between the predicted values and true values for
esd and ebs of the training set are shown in Figure 8a,b, and those for ebs and esd of the testing
set are shown in Figure 8c,d, respectively. It is found that the predicted values and true
values of most samples in both the training set and testing set are close.
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Figure 8. Comparisons between predicted values and true values of SSI influence coefficients.

To illustrate the performance of the 1D-CNN model in detail, Figure 9 presents the
predicted versus true values of ebs and esd together with the associated R2 values, and
Figure 10 shows the cumulative distribution function (CDF) curves of the absolute errors
between the predictions and ground truths. Figure 9 shows that R2 for ebs and esd in the
testing sets are up to 0.928 and 0.941, indicating highly correlated predictions against the
true values. In particular, R2 for the testing set is close to those for the training set, thereby
no overfitting being observed. In addition, it can also be found that the values of ebs range
from −80% to 40% and the values of esd range from −70% to 150%. Figure 10 shows that
the absolute errors of ebs and esd for the 80-percentile CDFs are within 6.4% and 8.7% for
the training set and are within 9.3% and 11.9% for the testing set. The above observations
indicate that the 1D-CNN model can well predict the influence of the SSI on the seismic
responses of RC frame buildings.
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5. Conclusions

This study develops a 1D-CNN model to quantify the influence of the SSI on the
seismic responses of regional RC frame buildings. Focusing on predicting what degree
considering the SSI would change the structural inter-story drifts and base shears, an
extensive set of finite element analyses are conducted to provide datasets for training
and testing the CNN model and identifying its optimal hyperparameters. The following
conclusions can be drawn from the current study.

(1) Compared with the fixed-base structure, the influence of the SSI on the structural
maximum base shear ranges from −80% to 40% and that on the structural maximum story
drift it ranges from −70% to 150%.

(2) The developed 1D-CNN model can well predict the influence of the SSI on the
seismic responses of RC frame buildings. The R2 values are higher than 0.96 for the training
set and higher than 0.92 for the testing set, and the absolute prediction errors of the SSI
influence coefficients for the maximum base shear and inter-story drift are within 9.3% and
11.7% for 80% of cases in the testing set.

(3) The filter size does not greatly affect the accuracy and training time of the 1D-CNN
model. In general, the performance of the 1D-CNN model increases sharply at first, then
becomes stable with the increase in the maximum number of epochs.

(4) The performance of the 1D-CNN model does not always increase with the increase
in the filter number and the decrease in the batch size. The training time gradually increases
with the increase in the filter number and maximum number of epochs, as well as the
decrease in the batch size.

In summary, the developed 1D-CNN model can be conveniently applied to enhance
the accuracy of regional seismic damage assessments of RC frame buildings by updating
their seismic responses where no SSI is considered. However, the cases considered in
this paper are still limited as compared with diverse cases in reality; many works such
as extending the dataset, predicting the SSI effects on building structures with different
structure forms and foundation forms, predicting the influence of the soil–structure group
interaction effect, etc., still need to be undertaken in the future.
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