
Citation: Yue, A.; Yin, X. Measuring

Comprehensive Production

Efficiency of the Chinese

Construction Industry: A

Bootstrap-DEA-Malmquist

Approach. Buildings 2023, 13, 834.

https://doi.org/10.3390/

buildings13030834

Academic Editors: Nikolai Vatin,

Saurav Dixit and Mohammed

Hamza Momade

Received: 26 December 2022

Revised: 18 March 2023

Accepted: 20 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Measuring Comprehensive Production Efficiency of the Chinese
Construction Industry: A Bootstrap-DEA-Malmquist Approach
Aobo Yue 1 and Xupeng Yin 2,*

1 School of Management Science and Real Estate, Chongqing University, Chongqing 400044, China
2 School of Management, Henan University of Urban Construction, Pingdingshan 467036, China
* Correspondence: yin1007hncj@163.com; Tel.: +86-17347816969

Abstract: Production efficiency is a critical research topic in the field of construction economics and
management. It reflects the developmental potential and competitiveness of the economy or an
economic system. An objective and reasonable assessment framework of the production efficiency
in the construction industry is essential to promote the industry’s high-quality development. This
study aims to propose a scientific and holistic framework to examine the production efficiency in the
construction industry and to investigate evolution patterns from a macroeconomic perspective. Input
and output indicators were identified through the value-added and the fuzzy Delphi methods. In
addition, the production efficiency in the construction industry was examined via the bootstrap-DEA
and Malmquist exponential decomposition models. A case study in China was conducted at the
end of this research. The panel data of 31 provinces from 2010 to 2020 were applied in the case
study. The results reveal the following: (1) The bootstrap-DEA model results show that the trends
of production efficiency before and after rectification are similar, but the difference is largest at the
peak. Moreover, the production efficiency value after correction is evidently lower than that which is
obtained by the traditional DEA model. (2) The Malmquist index decomposition results show that
the change trend of technical efficiency in the construction industry is contrary to that of the scale
efficiency. In addition, the improvement of scale efficiency cannot bring a melioration of management
efficiency or the accumulation of production experience. (3) There is no direct correlation between
production efficiency and economic development. High-value areas and median areas are contiguous,
and they are mainly distributed in the central and eastern provinces. The findings accurately reflect
construction industry productivity, providing practical data for developing policy recommendations
for bridging regional construction development gaps.

Keywords: production efficiency; construction industry; bootstrap-DEA-Malmquist; comprehensive
evaluation; regional differences

1. Introduction

The construction industry has made considerable contributions to the development of
the world economy through its multiplier effects. These contributions include providing
housing and infrastructure, increasing employment, and boosting domestic consumption,
especially in countries experiencing rapid urbanization, such as China. China may have the
largest construction market in the world [1]. The construction industry in China is a pillar
industry. It not only improves the built environment, but also boosts the economy and
provides employment opportunities [2,3]. Therefore, investigating the productivity and
efficiency of China’s construction industry is crucial to attract potential foreign investors
and practitioners.

Productivity, which is a significant index of production performance, is to measure
the ability of a production unit, aiming at achieving maximum outputs by using the
available technologies [4,5]. Government policy is an essential factor that affects the
economy. Productivity analysis provides valuable information on the effectiveness of
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economic policies, which is a useful tool for policy design. Currently, China is undergoing
an economic transformation. In the current context, productivity is more important than
other efficiency indicators. Unfortunately, the productivity of the construction industry
has not received much attention for a long time, that is, until the publication of Professor
David Pearce’s report “The Social and Economic Value of the Construction Industry” [6],
which is when the efficiency of the construction industry began to attract the attention of
academics. However, compared with other industries, there is still less attention paid to
research regarding the construction industry.

China is a vast country with unbalanced economic development between regions,
and the development of the construction industry shows large differences. The long-term
existence and excessive expansion of such differences not only affect the overall efficiency
of the construction industry, but also influence the effective allocation of resources [7–9].
Therefore, narrowing the efficiency gap between regions and improving regional coor-
dination should become the focus of future research, and analyzing the differences and
convergence of the production efficiency of the regional construction industry is the key
issue that needs to be resolved in this field. A review of the literature on measuring produc-
tivity in the Chinese construction industry shows that most studies use data envelopment
analysis (DEA) to estimate productivity. DEA uses a nonparametric linear programming
model, which is important for use in real-world conditions to measure the performance of
decision-making units (DMUs). Behind the advantages of the original DEA model, there are
some disadvantages of the current research: (1) Conventional DEA with data envelopment
analysis suffers from incomplete selection of indicators as well as lack of rationality, which
will directly affect the reliability of the evaluation results; (2) conventional DEA models are
prone to statistical errors, omitted data variables, and other random shocks, which seem
to overestimate DMU evaluation efficiency and fail to reflect the true; (3) conventional
DEA models are mainly used for static evaluation, and research on dynamic evaluation is
only based on the static evaluation results, considering the simple comparison of different
time series cross sections, but rarely includes the analysis of the characteristics of the speed
of change within a certain time series interval, so it cannot fully reflect the overall speed
change development trend of the evaluation object. To solve this problem, scholars have
tried to provide hybrid methods to improve the capability of DEA under different condi-
tions. For example, to improve the rationality of indicator system construction, scholars
have tried to use DEA-OPA [10], DEA-AHP [11], DEA-Delphi [12], and other methods to
improve the rationality of indicator selection with the help of experts’ empirical knowl-
edge. However, the problem of a single assessment dimension is not yet overcome by
these methods. To overcome it, scholars have introduced the Malmquist-DEA model to
perform dynamic evaluation of evaluation objects. Some scholars have also combined static
DEA models with dynamic DEA models to conduct efficiency evaluations in the financial
sector. However, to the best of the authors’ knowledge, no article has been published on
the application of a combination of static and dynamic DEA methods to the evaluation
of productivity in the construction industry. In other words, in the area of productivity
assessment in the construction industry, the combination of static efficiency evaluation and
dynamic efficiency evaluation has not yet been effective, and the evaluation of the overall
construction industry production efficiency is not comprehensive enough, such that there is
a need to continuously improve the construction industry production efficiency assessment
methods. Based on this, the aim of this study is to define a comprehensive indicator for
assessing the productivity of the construction industry in the Chinese provinces, and the
method used can improve the scientific approach to measuring the productivity of the
construction industry. Therefore, the contributions of the current study are manifold and
can be expressed as follows: (1) A model combining the value-added method and the
fuzzy Delphi method is proposed. The model can strengthen the purpose of productivity
evaluation based on the measurement method and improve the coverage of the indicator
system by combining expert empirical knowledge to increase the rationality of the indicator
system. (2) A static DEA evaluation model based on the bootstrap technique is proposed.
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The bootstrap technique based on repeated self-sampling can eliminate the interference of
random factors and the errors caused by omitted variables, and achieve a more accurate
measurement of the estimated efficiency and its changes in the traditional DEA model.
(3) An evaluation idea of the comprehensive production efficiency of China’s construction
industry based on a bootstrap DEA and Malmquist index decomposition model is proposed.
This research idea achieves an integrated study on the selection of production efficiency
evaluation indicators and the establishment of evaluation system and model metrics, which
avoids the influence of subjective factors and error factors to the maximum extent, and
provides a scientific quantitative evaluation method for the construction of a production
efficiency evaluation index system.

The rest of this research is organized as follows: Section 2 highlights a literature
review on previous studies. The research methodology is presented in Section 3. The
research results and an in-depth discussion are presented in Sections 4 and 5, respectively,
whereas Section 6 details the research conclusion and provides guidance on future research
directions.

2. Literature Review
2.1. Productivity in the Construction Industry

There are many studies on productivity in the construction industry, especially related
to the factors and trends affecting the industry’s productivity [13–15]. These studies help
decision makers to determine the overall efficiency trends of production units. There are
two types of mainstream methods for conducting efficiency assessments in the current
study: parametric and nonparametric methods. The parametric method is represented
by stochastic frontier analysis (SFA), while the nonparametric method is represented by
data envelopment analysis (DEA). When focusing on the production efficiency of the
construction industry, from the perspective of research methods, there are three methods
used in production efficiency research by scholars: (1) The production efficiency of the
construction industry was evaluated by the C–D production function [16], the traditional
DEA model [9,17], and the multistage or extended DEA model [18,19]. Zhu et al. (2019)
used three-staged DEA models to analyze the impact of environmental regulations on
the regional construction industry’s productivity, based on panel data from 30 provinces
in China from 2011 to 2015 [16]. (2) The DEA-Malmquist exponential decomposition
model was used to dynamically evaluate the changes in production efficiency of the con-
struction industry. Xu et al. (2019) measured the change in energy productivity in the
construction industry from 2004 to 2009 using input-oriented models with data from
26 Chinese provinces [9]. Chen et al. (2019) aimed to measure the evolution of the de-
stocking performance of the Chinese real estate industry based on a DEA-Malmquist
approach [13]. Nazarko and Chodakowska (2015) used the DEA method to calculate labor
productivity. Further, the change in efficiency over the period of 2006–2012 was estimated
through the Malmquist index [20]. Tobit regression was also applied to explore the impact
of a country’s economic performance on its labor productivity in the construction industry.

In terms of the study population, the method has been widely used to assess input–output
efficiency in several sectors [21], such as electricity [22], agriculture [23], manufacturing [24],
and infrastructure [25]. In the construction sector, DEA has been conducted from both envi-
ronmental and economic perspectives. The methodology has been used to assess industrial
sustainability [26], energy efficiency [27], and carbon emissions [28] from the environmental
perspective. Several studies have measured the economic performance of construction
projects from an economic perspective [29,30], and the construction performance [31] from
an economic perspective.

2.2. Indicator Selection

Carrying out an evaluation study of productivity is systematic and long-term work.
Previous studies have shown that the selection of input–output indicators is the key factor
that affects the evaluation results. This study summarizes the input–output indicators in
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the construction industry based on an extensive literature review on the efficiency of the
construction industry, as shown in Table 1. Zhang et al. (2018) used a three-staged DEA
model to identify the efficiency input index (total wages of construction workers, number
of engaged persons, total assets, total power of machinery, and equipment owned) and
output index (engineering settlement profits, floor space of building, gross output value,
and total profits of China’s construction industry) from 2011 to 2015 [15]. Hu and Liu (2016)
constructed an evaluation system with the gross value added as input indicators and the
gross operating surplus and mixed income as the output indicators [32]. The productivity
of the Australian construction industry was evaluated based on a two-stage DEA model.
Wang et al. (2020) used the Solow residual approach to evaluate the efficiency of the
construction industry in China, wherein fixed assets and the number of employees served
as the input index, and the total value added was understood as the output index [5]. Based
on the super efficiency DEA model and the ANN model, Yuan et al. (2020) studied the
efficiency of China’s construction industry from 2000 to 2017, with the number of employed
persons, total assets, total capacity of machinery, and equipment owned as the input index
and the gross product of the construction industry and newly built floor area as the output
index [14].

2.3. Research Gaps

In summary, the existing research mainly has the following limitations: (1) DEA tech-
nology has been widely applied in the construction industry, but it has several drawbacks.
First, most studies were focused on holistic economic performance within the economic
system, while regional differences were ignored. There are imbalances in the distribution
of construction resources and economies across China, leading to regional differences in
productivity and technical efficiency. These regional differences have an indirect but impor-
tant impact on the local construction sector, which may lead to misconceptions about the
actual performance of these sectors. (2) The static evaluation method measurement results
can only be used as an efficiency value at a certain time, and the measurement, without
considering the time dimension, largely limits the fairness and objectivity of the efficiency
evaluation. Most particularly under the context of reform in the construction industry, the
efficiency evaluation without the time dimension can easily mislead decision makers. They
may abandon the long-term development of the industry for high performance at a certain
point in time. Although the dynamic evaluation method makes up for this defect, the
results obtained by the measurement are all indicators of the change rate, and it is difficult
to serve as a variable analyzed in the regression model directly. (3) There have been more
applications of DEA methods in the related literature, but the traditional DEA measurement
only gives point estimates without considering the influence of random factors, which has
obvious shortcomings: it is difficult to avoid the problems of sample sensitivity and the
influence of extreme values. The bootstrap method can enlarge the sample size by repeated
sampling, which brings the sample size closer to the overall, and reduces the statistical
errors brought about by small samples [21]. (4) It is clear that the DEA is the dominant
method for studying productivity in the Chinese construction sector, and that the main area
of inconsistency is in the choice of inputs and outputs. Therefore, the scientific selection of
input and output indicators will be a key step in the study. Similarly, previous studies have
mainly focused on a single perspective of static performance or dynamic change, which has
failed to fully reflect the level and potential of productivity development in the construction
industry and, to some extent, has hindered the comprehensive evaluation of productivity
development in the construction industry in different regions of China and the proposal
of corresponding optimization strategies. This study aims to propose a scientific and
holistic framework to study the productivity of the construction industry and to examine
the development patterns from a macroeconomic perspective. The value-added method
and the fuzzy Delphi method are used to determine the input and output indicators, and
the bootstrap DEA and Malmquist index decomposition models are used to examine the
productivity of the construction industry.
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Table 1. Input and output variables of the construction industry obtained from the literature review.

References Research Objects Input Indicators Output Indicators Methods

Zhang et al. (2018) [15] China’s construction industry

Total wages of construction workers,
number of engaged persons, total assets,
total power of machinery, and
equipment owned

Engineering settlement profits, floor space
of building, gross output value, and
total profits

3-stage DEA method

Hu and Liu (2016) [32] Australian construction industry Gross value added Gross operating surplus and mixed income 2-stage DEA method

Chancellor and Lu (2016) [33] China’s construction industry

Number of construction workers and
staff at year end, paid-up total capital,
total assets, total power of machinery,
and equipment owned

Total floor space of buildings completed
and total output value of construction DEA

Wang et al. (2020) [5] China’s construction industry Fixed assets and number of employees Total value added Solow residual approach

Yuan et al. (2020) [14] China’s construction industry
Number of employed persons, total
assets, total capacity of machinery, and
equipment owned

Gross product of the construction industry
and newly built floor area Super-efficiency-DEA

Yang et al. (2019) [26] China’s construction industry
Built-up area, total number of
employees, capital stock, energy
consumption, and total water usage

Industrial solid wastes produced, industrial
waste gas emissions, gross domestic
product, et al.

DEA and DDFs

Huo et al. (2018) [34] China’s construction industry
Labor force, total assets of construction
enterprises, total capacity of machinery,
equipment owned, and energy

Gross output value in the construction
industry and floor space of buildings under
construction

Luenberger productivity
index and DDFs

Li and Song (2012) [35] China’s construction industry Labor force and assets of
construction enterprises Value added and total solid waste Malmquist–Luenberger

Tong et al. (2022) [36] China’s construction industry Capital, labor, energy,
machinery, material

Total output value, total pretax profit, and
floor space of buildings, undesirable
environmental outputs

Windows-Super-SBM model

Li et al. (2021) [37] US construction industry Number of workers and managers per
year for each state GDP of the construction industry DEA-Malmquist

Chen et al. (2021) [38] China’s construction industry Capital, labor, energy, material
Gross output value of construction, total
profits, and completed floor area,
undesirable environmental outputs

3-stage SBM-DEA model
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3. Research Methodology
3.1. Research Framework

In this study, two research questions should be addressed: (1) how to reasonably build
the input–output index system to evaluate the production efficiency of the construction
industry, and (2) how to improve the traditional evaluation model in order to obtain the
objective value of the production efficiency of the construction industry. Therefore, in order
to achieve the objectives of this study, as shown in Figure 1, the research framework can
be divided into three different stages: index sorting and establishing an evaluation index
system, the rectification of static production efficiency, and a solution of the comprehensive
production efficiency.
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3.1.1. Evaluation Index System Establishment

Step 1 is to establish an evaluation index system. This paper sorts and summarizes the
common indicators via an extensive literature review. Then, it establishes a construction
industry productivity evaluation index system with the help of the value-added method
and Delphi method in order to increase the credibility and rationality of the evaluation
results [39]. Conducting research on the evaluation of production efficiency is systematic
and long-term work. Previous studies have shown that the choice of input–output indi-
cators is a key factor in the evaluation results. However, research on the evaluation of
production efficiency in the construction industry is directly based on experience. Liu et al.
(2013) combined factor analysis with correlation analysis to identify the factors, making the
selection of indicators more scientific [39]. However, there are still certain shortcomings in
this process; that is, the factor identification by factor loadings may filter out some indica-
tors with small weights but not large values. Furthermore, this phenomenon may cause bias
in the model calculation. The quantitative research method can be used to reduce the index,
but it is contrary to the DEA model principle. Therefore, it is not enough to rely solely on
complex measurement models for the construction of input–output evaluation indicators.
Empirical research should also be based on the connotation of an empirical basis, the use of
measurement methods to strengthen the purpose of evaluation, and relying on empirical
analysis to determine the evaluation. Accordingly, this study used the value-added method
to quantitatively identify the key indicators and then combined these with the fuzzy Delphi
method to further ensure the comprehensiveness of the evaluation system. The indicators
of the two models were used together to determine the final input–output indicator system.
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(1) Principle of indicator selection

The value-added method is an important research aspect of value management. It
is based on whether all inputs in the balance sheet generate value or destroy value as an
input or output. However, industrial research is different from research on enterprises. No
balance sheet can be referenced, and input–output indicators are not as clearly defined
as they are in the types of costs for enterprises. The input and output index systems
constructed by existing construction-related research are often intersected or repeated.
Therefore, this study only learns from such analytical ideas and uses factor analysis models
to screen the critical indicators. The fuzzy Delphi method combines fuzzy theory and
the Delphi method [40,41]. Thus, it evaluates objects or schemes with fuzzy numbers.
Combined with expert scoring, the triangle fuzzy numbers are constructed by using the
maximum, minimum, and geometric means. The median of each indicator expert’s scoring
geometric mean is selected as the threshold of the index, and the score is converted into
objective data [42]. In this way, the credibility and reasonableness of the evaluation results
are ensured.

(2) Input and output indicator selection

According to the literature review, Table 1 summarizes the existing input–output vari-
ables for the evaluation of the production efficiency of the construction industry. Among
them, the input indicators mainly include the number of employees, the number of con-
struction enterprises’ technical equipment rate, the power equipment rate, and the total
assets of the construction industry. Meanwhile, the output indicators mainly include the
construction area, the project completion area, the construction industry’s added value,
the engineering settlement profit, the total construction output value, and the total profit.
Due to the technical and power equipment rate, the interprovincial data were difficult to
obtain. In terms of the construction area, the total construction industry output value can
be replaced by the area of construction completion and total profit. In addition, the profit
of project settlement refers to the profit achieved by the settled projects, the level of which
is closely related to the schedule arrangement and resource allocation efficiency, and is
a more comprehensive and intuitive reflection of production efficiency. In summary, the
study selected six indicators as independent variables: number of enterprises (Enterprise),
number of employees (Employees), total assets of the construction industry (Assets), added
value of the construction industry (Added), area of completed projects (Completed), and
total profit of the construction industry (Profit). This study considered the profit of project
settlement as a dependent variable for regression analysis. Based on the absolute value
of the regression coefficient size, the key factors that affect the added value of the profit
of the construction industry were found. The model also investigated the influence of
each variable on the change in the added value of the profit of the construction industry
through its direction. As shown in the regression results in Table 2, the value added of the
construction industry, the number of construction industry enterprises, and the total assets
of the construction industry are the main factors affecting the value added of the profit of
construction settlements.

Table 2. Results of the regression analysis.

Variable Coefficient Variable Coefficient

Added 0.036 ** Completed 32.708
(0.017) (13.611)

Enterprise 208.545 *** Profit 0.215
(46.282) (1.582)

Employees −0.025 Constant −141,616.858
(0.129) (118,006.538)

Assets 0.017 *** Observations 248
(0.002) R-squared 0.900

*** p < 0.01, ** p < 0.05.
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In order to ensure the rationality of the constructed post–input–output index system,
this study also uses the Delphi method to conduct the secondary screening of input–output
indicators to the screening of indicators through the value-added method. The detailed
processing steps are as follows: (1) Based on the preliminary indicator system obtained
above (number of enterprises, number of employees, total assets of the construction indus-
try, value added of the construction industry, area of completed projects, total profit of the
construction industry, and profit of the project settlement), the questionnaire of the input–
output indicator structure of the productivity of the construction industry was prepared.
(2) The questionnaire for preliminary research was distributed. Then, the questionnaire
was revised and improved based on the research results, and the final questionnaire was
prepared. This was then distributed to relevant experts in order to obtain professional
and authoritative opinions and suggestions. In this study, the research was conducted via
email questionnaire, and the 12 experts included 6 master and doctoral students in the
field of construction economics and management, 3 engineers working in the construction
industry, and 3 professors in the construction economics and management area. A total
of 12 valid questionnaires were collected in the study. (3) Based on multiple rounds of
research, the index system of the input–output of productivity in the construction industry
was determined through statistical analysis. Due to space limitation, the calculation process
was omitted. The final Delphi method determined the input indicators as the number of
enterprises in the construction industry (Enterprise) and the total assets of the construction
industry (Assets) and the output indicators as the value added of the total output value
of the construction industry (Added) and the area of completed projects (Completed).
The results of the two models were combined, and the number of enterprises and assets
in the construction industry was used as input indicators, while the value added of the
total construction output value and completed area was used as output indicators. In
this paper, the panel data of 31 provinces and autonomous regions from 2010 to 2020
were used as the research sample, and the data were compiled from China Construction
Industry Yearbook and China Statistical Yearbook, and the missing values were completed
using the gray prediction model. For the comparative analysis of regional construction
industry productivity, the 31 provinces, municipalities, and autonomous regions were
divided into eastern, central, and western for analysis. Eastern includes Beijing, Tianjin,
Hebei, Shandong, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong, and Hainan;
central includes Henan, Hubei, Hunan, Anhui, Jiangxi, Shanxi, Jilin, and Heilongjiang;
and western includes Sichuan, Chongqing, Inner Mongolia, Guangxi, Yunnan, Ningxia,
Shaanxi, Guizhou, Gansu, Qinghai, Tibet, and Xinjiang.

3.1.2. Evaluation Model Establishment and Data Analysis

In order to measure the productivity of the construction industry more comprehen-
sively, this study examines the productivity of the construction industry from both static
and dynamic measurement approaches. First, we integrated the scale effect, limited re-
sources, and overall comparability parameters. Then, we chose the nonradial, nonoriented,
and variable returns to scale (VRS) bootstrap-DEA model. Compared with the traditional
static DEA measurement method, this model excludes the interference of the random
factors and errors that are caused by omitted variables, and it can more accurately estimate
the static evaluation results of the regional construction industry’s productivity covering
31 provinces, municipalities, and autonomous regions across China. Additionally, then, the
study was based on the Malmquist-DEA model, which is used to calculate the dynamic
production efficiency values of the construction industry. This idea can effectively reduce
the errors in the evaluation results, which are often from random shocks, such as statistical
errors and omitted data variables, and which decompose the construction productivity
from a dynamic perspective.

(1) DEA

Data envelopment analysis (DEA), the most typical nonparametric method, is widely
used to evaluate the efficiency of different systems. DEA uses mathematical planning



Buildings 2023, 13, 834 9 of 24

models to evaluate the relative effectiveness (called DEA validity) between “departments”
or “units” (called decision-making units, abbreviated as DMUs) with multiple inputs,
especially multiple outputs, and to determine whether a DMU is DEA valid based on
the data observed for each DMU. This method can effectively reduce the subjectivity
of uncertainty in the calculation process [43]. The conventional DEA model has certain
deficiencies. On the one hand, when the observed samples are limited, the DEA estimation
results are highly susceptible to random factors, and there are obvious sample sensitivities.
On the other hand, the conventional DEA model estimates ignore statistical inference
and random error problems; moreover, there are often small samples used. The biased
problem leads to a certain deviation in the evaluation value of production efficiency. The
bootstrap-DEA model proved to be effective in correcting this shortcoming [21]. Later, more
research gradually applied the bootstrap model to the DEA model [44,45] and proposed
a mathematical variant of the bootstrap method in order to correct the DEA method.
Bootstrap techniques based on repeated self-sampling can provide a more accurate measure
of the estimated efficiency of traditional DEA models and its variation.

(2) Bootstrap-DEA correction measure model

The bootstrap-DEA estimation model can eliminate the influence of extreme values,
random errors, and missing variables on the efficiency measurement results. Giving
a statistical estimate of the efficiency can make the efficiency evaluation and analysis results
more accurate. Thus, by considering that, this study designs a bootstrap-DEA model based
on a variable-scale, nonradial, and nonoriented approach in order to measure the static
production efficiency of a regional construction industry in China. In the evaluation result,
if the efficiency value is less than 1, the decision unit does not reach the optimal production
efficiency; if the efficiency value is equal to 1, it indicates that the evaluated decision unit is
strong and effective. The model implementation steps are as follows:

Step 1: Calculate the original efficiency of each decision unit DMUk (k = 1, 2, 3, . . . , n)
using the traditional DEA measurement model. Extract a simple sample of size n using the
repeated sampling bootstrap method. Further, b represents the number of iterations of the
bootstrap sample. The sample collection is as follows:

∧
θb =

{
∧
θb

k|k = 1, 2, . . . , n

}
(1)

Step 2: Use the kernel density estimation method to smooth the sample that is obtained
by the plain Bootstrap method. Then, obtain the sample according to the smoothing
bootstrap method to correct the original sample input index. This adjusted calculation is
as follows:

xb
k =

 ∧
θk

θk
b

xk(k = 1, . . . , n) (2)

According to the bootstrap-adjusted input data and the initial output data as a new
sample, the traditional DEA method is used to recalculate the efficiency value:

θ̃b =
{

θ̃k
b|k = 1, . . . , n

}
(3)

Step 3: Repeat steps 1 and 2 to obtain a series of efficiency values, and then calculate
the correction efficiency value deviation and correct DEA efficiency value of each decision
unit DMUk (k = 1, 2, 3, . . . , n). The expression is as follows:

Biask = E
(

θ̃k
b)− θ̃k =

1
B

B

∑
b=1

θ̃k
b −

∧
θk (4)
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θ̃k =
∧
θk − Bias = 2

∧
θk −

1
B

B

∑
b=1

θ̃k
b

(5)

In the above formula, Biask is the deviation of the correction efficiency value.

(3) Malmquist exponential decomposition method

The DEA-Malmquist index method effectively solves this problem and, as an extension
of the DEA model, it can be used not only to measure the change in total factor productivity
of DMUs over time but also to avoid the assumptions made in the calculation of Solow
residuals. It can also avoid the assumptions made in the calculation of Solow residuals
and can be decomposed into the product of efficiency improvements and technological
progress, resulting in a more scientific dynamic analysis. Based on the variable assumption
of factor size return, Banker et al. (2004) proposed a BCC model to further decompose
technical efficiency into pure technical efficiency and scale efficiency [46]. This method
has been widely used [47–49]. In the DEA-Malmquist index method, the change in TFP
between two adjacent data points is measured by estimating the ratio of the distance of
each data point to a common boundary of the production possibilities. The measured index
is called the Malmquist-TFP index [50], and the output-oriented Malmquist-TFP index of
the i-th DMU from base period s to period t can be defined:

m0
(
xs

0, ys
0, xt

0, yt
0
)
=

[
ds

0
(
xt

0, yt
0|C
)

ds
0
(
xs

0, ys
0|C
) × dt

0
(

xt
0, yt

0|C
)

dt
0
(

xs
0, ys

0|C
)] 1

2

(6)

In Equation (6), ds
0
(
xt

0, yt
0|C
)

and ds
0
(
xs

0, ys
0|C
)

are the distance functions at constant
payoffs to scale. ds

0
(

xt
0, yt

0|C
)

denotes the production point distance function for the i-th
DMU in period t, using the technology in period t as a reference, and ds

0
(
xs

0, ys
0|C
)

denotes
the production point distance function in period s. When m0

(
xs

0, ys
0, xt

0, yt
0
)

> 1, this indicates
that the TFP has a growth from base period s to period t; when m0

(
xs

0, ys
0, xt

0, yt
0
)

< 1, this
indicates that the TFP has a negative growth from base period s to period t.

The Malmquist index obtained from the above formula can be decomposed into two
categories: the efficiency change (EFF) and the technical change index (Techch), which are
expressed as follows:

m0
(
xs

0, ys
0, xt

0, yt
0
)
=

ds
0(xt

0,yt
0|C )

dt
0(xs

0,ys
0|C )

[
dt

0(xs
0,ys

0|C )
ds

0(xs
0,ys

0|C )
× dt

0(xt
0,yt

0|C )
ds

0(xt
0,yt

0|C )

] 1
2

= EFFch× TCHch
(7)

In the case of variable scale compensation, the technical efficiency change index (EFFch)
can be further broken down into the pure technical efficiency change (PTEch) and the scale
efficiency change (SEch), which can be expressed as follows:

Ech =
dt

0(xs
0,ys

0|C )
ds

0(xs
0,ys

0|C )
=

dt
0(xt

0,yt
0 |C )

dt
0(xt

0,yt
0 |V )

ds
0(xs

0,ys
0 |C )

ds
0(xt

0,yt
0 |V )

× dt
0(xt

0,yt
0|V )

ds
0(xs

0,ys
0|V )

=
SEt

0(xt
0,yt

0)
SEs

0(xs
0,ys

0)
× dt

0(xt
0,yt

0|V )
ds

0(xs
0,ys

0|V )
= SEch× PTEch

(8)

m0
(
xs

0, ys
0, xt

0, yt
0
)

= TFPch = TECHch× Ech
= TECHch× SEch× PTEch

(9)

Therefore, the TFP index can be expressed by the product of the technological progress
index, the scale efficiency index, and the pure technical efficiency index. Among them, the
changes in research and development and the introduction of new technology are reflected
by technological advances. The changes in the optimization, promotion, and application
of current technologies, and the rational allocation of production factors, are reflected by



Buildings 2023, 13, 834 11 of 24

pure technical efficiency, management methods, and production scale. Changes in the
aforementioned are reflected by scale efficiency. TFP is a comprehensive reflection of the
overall changes in these aspects [51].

3.1.3. Comprehensive Productivity Calculation and Visualization

According to the previous process, the static production efficiency and the corrected
dynamic production efficiency value can be obtained. Then, the two indicators are com-
bined, and different weights are assigned based on the existing research to calculate the
comprehensive production efficiency value of the construction industry. Finally, the com-
prehensive production efficiency results are visualized with the help of the eChart software,
and the comprehensive production efficiency results of the construction industry in differ-
ent regions are compared and analyzed.

3.2. Case Study

This study uses the panel data of 31 provinces and autonomous regions from 2010 to
2020 as the research samples. The data are compiled from the China Construction Industry
Yearbook and the China Statistical Yearbook. The missing values are complemented by the
gray prediction model. In order to compare and analyze the production efficiency of the
regional construction industry, 31 provinces, municipalities, and autonomous regions were
divided into eastern, central, and western regions for the purposes of analysis [9]. These
regions represent the different economic development levels. The western region includes
12 provinces: Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang, Guangxi, and Inner Mongolia. The midland region consists of Shanxi,
Anhui, Jiangxi, Henan, Hubei, Heilongjiang, Jilin, and Hunan. The eastern region refers
to the following 10 provinces: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Liaoning, Guangdong, and Hainan, which are located on the eastern coast of
China.

4. Empirical Results
4.1. Static Production Efficiency Comparison Analysis

In this study, with the help of the MaxDEA software, the bootstrap-based stochastic
DEA method is used to correct the production efficiency of China’s construction industry
to obtain the “true value” of the production efficiency. According to the ideology of
the bootstrap-DEA model, the DEA estimator is measured by repeated sampling and
experience distribution. In general, with the increase in the number of bootstrap iterations,
the accuracy of the calculation results will be more accurate. The number of iterations is
1000, 4000, and 5000, and the confidence level is 0.012, 0.015, and 0.001. The results are not
much different. The average efficiency value before and after the correction and the related
output results are shown in Table 3.

The comparison results show that although the efficiency rankings before and after
correction have not changed much, the average efficiency values after correction by each
decision unit are lower than the average efficiency values measured by the traditional DEA
model; further, all the average errors are greater than zero. Table 3 shows the confidence
intervals for the regional construction industry productivity based on the bootstrap-DEA
method. The average efficiency value calculated by the traditional DEA model was found
to be outside the confidence interval, and the calculated results after correction were within
the confidence interval. In general, the confidence interval can effectively reflect the actual
efficiency value. If the estimation result falls outside the confidence interval, then the
estimation result of the traditional DEA model can be biased [52]. The traditional DEA
method is highly dependent on the original data and cannot show the characteristics of
nonparametric statistics. The results of the bootstrap-DEA model are more reliable and real.
This study uses the corrected production efficiency value of the construction industry for
subsequent analysis.
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Table 3. Comparison results of the two models.

DMU Average
Efficiency

Precorrection
Ranking

Corrected
Average

Efficiency

Revised
Ranking Average Bias

Confidence
Interval

Lower Limit

Confidence
Interval

Upper Limit

Beijing 0.2359 28 0.2190 28 0.0169 0.1748 0.2954
Tianjin 0.2268 29 0.2079 29 0.0189 0.1546 0.2099
Hebei 0.4827 15 0.4543 14 0.0283 0.2386 0.3817
Shanxi 0.2032 31 0.1856 31 0.0176 0.1257 0.1668
Inner

Mongolia 0.4629 17 0.4427 15 0.0203 0.2026 0.2815

Liaoning 0.3724 23 0.3296 23 0.0428 0.1186 0.1622
Jilin 0.4296 19 0.4228 17 0.0068 0.1959 0.2688

Heilongjiang 0.3290 26 0.3228 25 0.0061 0.1572 0.2123
Shanghai 0.2464 27 0.2268 27 0.0196 0.1872 0.2844
Jiang Su 1.0000 1 0.6741 6 0.3259 0.3992 0.9531
Zhejiang 1.0000 1 0.6477 8 0.3523 0.4126 0.9425

Anhui 0.5932 10 0.5403 9 0.0528 0.2447 0.5007
Fujian 1.0000 1 0.9365 1 0.0598 0.6947 1.3249
Jiangxi 0.8204 6 0.7625 4 0.0401 0.3238 0.6434

Shandong 0.4476 18 0.3534 22 0.0941 0.1475 0.3765
Henan 0.5195 14 0.4410 16 0.0786 0.2070 0.4734
Hubei 0.6174 9 0.4885 13 0.1288 0.2936 0.6240
Hunan 0.7891 7 0.6949 5 0.0941 0.4516 0.7580

Guangdong 0.3602 24 0.2955 26 0.0646 0.1197 0.3420
Guangxi 0.6828 8 0.6561 7 0.0266 0.4665 0.7671
Hainan 1.0000 1 0.8005 2 0.1995 0.5478 2.0721

Chongqing 0.5715 11 0.5127 12 0.0587 0.3093 0.5700
Sichuan 0.4767 16 0.4184 18 0.0583 0.1656 0.4173
Guizhou 0.3979 22 0.3854 21 0.0124 0.3051 0.4324
Yunnan 0.3400 25 0.3273 24 0.0127 0.2074 0.3047

Tibet 0.9143 5 0.7720 3 0.0950 0.0723 0.5560
Shaanxi 0.5619 12 0.5361 10 0.0462 0.2129 0.3388
Gansu 0.4292 20 0.4184 18 0.0108 0.2284 0.3059

Qinghai 0.2191 30 0.1919 30 0.0272 0.1100 0.2266
Ningxia 0.4016 21 0.3980 20 0.0037 0.1583 0.2520
Xinjiang 0.5466 13 0.5267 11 0.0200 0.2964 0.4034

In order to more intuitively display the difference between the results obtained before
and after the correction, Figure 2 compares the average production efficiency values calcu-
lated by the two models. In addition, it shows that the variation trend of the production
efficiency value curves that are calculated by the two methods is the same. However, great
differences appear at the peak, and the production efficiency value after the correction by
the bootstrap-DEA model is significantly smaller than that obtained by the traditional DEA
model. It can be seen from the combination in Figure 2 that 4 of the 31 decision-making
units are valid for DEA, namely, Jiangsu, Zhejiang, Fujian, and Hainan, whereas the re-
maining 27 provinces and cities are invalid. The proportion of DEA effective provinces and
cities is only 13%. In addition, the average efficiency value of the construction industry in
the central and western regions is significantly larger than that in the eastern region. The
efficiency values before and after correction in Beijing, Tianjin, Shanghai, and Guangdong
are all below 0.5.
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Figure 2. Comparative analysis of average production efficiency in 2010–2020.

4.2. Static Production Efficiency Measurement

As can be seen from Table 4 and Figure 3, Hainan, Fujian, Jiangxi, Hunan, Guangxi,
Zhejiang, Jiangsu, Tibet, Shaanxi, Anhui, and other places are the top 10 regarding produc-
tion efficiency of the construction industry. Hainan, Jiangxi, Hunan, and Guangxi are the
less developed regions in the central and western regions. Additionally, the construction
industry there started late, and its scale was small at first. However, it has now attached
great importance to the efficiency of input and output, and it has taken a route that is in
line with its own characteristics, such that the production efficiency is satisfying. In the
developed eastern regions, such as Beijing, Shanghai, Tianjin, and Guangdong, produc-
tion efficiency is moving backwards. Additionally, according to the regional division, the
leading static production efficiency level of China’s construction industry is the central
region with 0.4693, followed by the western region with 0.4592 and the eastern region
(with the lowest static production efficiency value) with 0.4404. The study further confirms
the prominent contradiction between the expansion of the construction industry and the
improvement of the quality of development. The reason for this phenomenon may be the
existence of the redundancy of production factors. At present, the development of China’s
construction industry mainly relies on factor inputs, external demand, and scale expansion.
It has not yet fundamentally moved away from the quantitative growth model [18,19], and
the inefficient production management style does not match the scale of the construction
industry, thereby leading to the redundancy of production factors and uneconomic scale.

In this study, the production efficiency values of the construction industry in each
province from 2010 to 2020 are visualized to form a heat map of production efficiency values.
The production efficiency values are of provinces, such as Fujian, Zhejiang, Guangxi, and
Jiangsu. In the last decade, they have been stable and have maintained a high level, with
the average value greater than 0.6. Meanwhile, Beijing, Shanghai, Guangdong, and other
provinces’ production efficiency value in the last decade has been maintained at a low
level, with the average value less than 0.3. In addition, it is worth noting that Tibet, Shanxi,
Fujian, Jiangxi, Xinjiang, and other places’ production efficiency values in recent years have
shown a declining trend.
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Table 4. Production efficiency values of the construction industry after bootstrap-DEA correction in
31 provinces from 2010 to 2020.

DMU 2010 2011 2012 . . . 2018 2019 2020 AE Rank

Beijing 0.1749 0.1823 0.2119 . . . 0.2414 0.0356 0.1046 0.1940 30
Tianjin 0.2127 0.2139 0.1987 . . . 0.3542 0.4171 0.4515 0.2624 27
Hebei 0.5308 0.5688 0.4996 . . . 0.2846 0.4455 0.4832 0.4407 14
Shanxi 0.2249 0.1910 0.1980 . . . 0.1203 0.1211 0.2396 0.1787 31

Inner Mongolia 0.6596 0.6158 0.4674 . . . 0.2246 0.3120 0.4083 0.4078 17
Liaoning 0.4647 0.4763 0.3980 . . . 0.1048 0.1718 0.2785 0.2902 26

Jilin 0.6666 0.5908 0.4552 . . . 0.2600 0.3257 0.3893 0.3962 19
Heilongjiang 0.5316 0.4024 0.3495 . . . 0.1906 0.2210 0.2481 0.2948 25

Shanghai 0.2396 0.2238 0.2161 . . . 0.2358 0.2009 0.1499 0.2183 29
Jiangsu 0.7283 0.7286 0.6904 . . . 0.5494 0.4729 0.3786 0.6176 7

Zhejiang 0.6702 0.6754 0.6417 . . . 0.6063 0.6035 0.5929 0.6350 6
Anhui 0.6126 0.6203 0.5556 . . . 0.3954 0.3703 0.4761 0.5059 10
Fujian 1.000 0.9526 0.9146 . . . 0.8064 0.6360 0.5470 0.8620 2
Jiangxi 0.6601 1.000 1.000 . . . 0.5484 0.6831 0.7783 0.7372 3

Shandong 0.3956 0.3861 0.3628 . . . 0.3181 0.3639 0.5050 0.3650 21
Henan 0.5114 0.5019 0.4552 . . . 0.5586 0.6121 0.6952 0.4903 12
Hubei 0.4721 0.5206 0.4863 . . . 0.4394 0.4523 0.4632 0.4785 13
Hunan 0.7132 0.7058 0.6542 . . . 0.6053 0.6101 0.6292 0.6731 4

Guangdong 0.3004 0.3275 0.3184 . . . 0.2751 0.2968 0.3300 0.2969 24
Guangxi 0.6508 0.6521 0.5781 . . . 0.6616 0.6714 0.6864 0.6607 5
Hainan 0.7022 0.7447 0.7027 . . . 0.9970 1.0447 1.1144 0.8691 1

Chongqing 0.5530 0.5059 0.4936 . . . 0.4597 0.4382 0.4213 0.4928 11
Sichuan 0.4565 0.4348 0.4416 . . . 0.3202 0.3189 0.4499 0.4033 18
Guizhou 0.3743 0.4104 0.3743 . . . 0.3195 0.1846 0.1146 0.3366 23
Yunnan 0.3594 0.3371 0.3509 . . . 0.3168 0.3917 0.4862 0.3467 22

Tibet 1.000 0.8557 0.8324 . . . 0.2204 0.0829 0.1170 0.5997 8
Shaanxi 1.000 1.0000 0.4348 . . . 0.4379 0.5795 0.6836 0.5445 9
Gansu 0.5023 0.5485 0.4146 . . . 0.3477 0.4729 0.5592 0.4297 16

Qinghai 0.1989 0.2265 0.1833 . . . 0.2889 0.3939 0.4265 0.2404 28
Ningxia 0.4806 0.5906 0.4673 . . . 0.2482 0.3776 0.4863 0.3905 20
Xinjiang 0.5337 0.5673 0.5656 . . . 0.2305 0.1830 0.1238 0.4319 15
Eastern 0.4927 0.4982 0.4686 . . . 0.4339 0.4262 0.4487 0.4592 2
Central 0.5491 0.5666 0.5192 . . . 0.3898 0.4245 0.4899 0.4693 1
Western 0.5641 0.5621 0.4670 . . . 0.3397 0.3672 0.4136 0.4404 3
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4.3. Dynamic Production Efficiency Measures

In order to improve the evaluation effect and to consider the change in the growth rate
of the production factor input and technological progress in the construction industry, this
study combines the dynamic perspective DEA-Malmquist model to reveal the change in
the decomposition index of the production efficiency variation of the construction industry.
The calculation results are shown in Table 5 and Figure 4.

Table 5. The decomposition index of the DEA-Malmquist model in 2010–2020.

Year Technical
Efficiency Change

Technological
Progress Index

Pure Technical
Efficiency Change Scale Efficiency Index MI Index

2010–2011 1.0450 1.0570 1.0490 0.9960 1.1050
2011–2012 0.9640 1.1420 0.9630 1.0010 1.1000
2012–2013 1.0620 1.0690 1.0860 0.9780 1.1350
2013–2014 0.9330 1.0760 0.9580 0.9740 1.0040
2014–2015 0.9950 1.0030 0.9910 1.0040 0.9980
2015–2016 0.9880 1.0110 0.9880 1.0000 0.9990
2016–2017 0.9400 1.0180 0.9330 1.0070 0.9570
2017–2018 0.9320 1.0093 0.9251 0.9984 0.9489
2018–2019 0.9427 0.9647 0.9427 0.9542 0.9532
2019–2020 0.9305 0.9380 0.9267 0.9389 0.9333

Average value 0.9732 1.0288 0.9763 0.9852 1.0133
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The results show that, overall, the average value of the total factor productivity index
for China’s construction industry was 1.0133, indicating an average annual increase in
total factor productivity of 1.33%. The national average technical efficiency index was
0.9732, the technical progress index was 1.0288, and the scale efficiency index was 0.9852.
The gap between the technical efficiency level of each decision unit and the frontier area
widened, and the decline in the average technical efficiency was mainly determined by the
pure technical efficiency. Among them, the average pure technical efficiency index was
0.9763, indicating that the optimal allocation of technical inputs and outputs had not yet
been reached, and the efficiency of scientific and technological inputs had not yet been
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coordinated with the development level of the construction industry, which is consistent
with the findings of other scholars. The relative growth rate of technological progress
was 2.88%. This indicates that technological progress is the main driver of productivity
improvement in China’s construction industry. In terms of annual slices, the scale efficiency
index of China’s construction industry showed a fluctuating upward trend from 2010 to
2013, indicating to some extent that the scale efficiency of China’s construction industry
has gradually improved. However, it is worth noting that the technical efficiency and
scale efficiency indicators, which measure the resource allocation capacity and resource
utilization efficiency of the construction industry during this period, show an opposite trend
to scale efficiency. This indicates that as the scale efficiency of the construction industry
increases, the construction industry has not achieved intensive and efficient development at
this time. In 2013–2020, the scale efficiency, technical efficiency, and pure technical efficiency
of the construction industry all showed a fluctuating downward trend, with the lowest
level in 2019–2020. This indicates that China’s construction industry made good use of the
production factors invested in the early stage, and later, due to the impact of the reform
of the institutional mechanism of China’s construction industry, some production factors
were idle and used inefficiently. The increase in scale efficiency in the construction industry
did not lead to an increase in management efficiency and the accumulation of production
experience. Then, the average scale efficiency index during the study period is 0.9852, with
a scale efficiency less than 1. The scale efficiency index showed a fluctuating downward
trend during the study period. The highest value was in 2016–2017, when the scale
efficiency index was 1.007, and the lowest value was in 2019–2020, when the scale efficiency
index was 0.9389. Overall, the factor input of China’s construction industry is in a state of
diseconomies of scale, and the driving effect of purely increasing output on the productivity
of the construction industry is gradually weakening, relying on technological innovation to
promote the improvement of the total factor productivity level of the construction industry.
In 2017–2020, the scale efficiency decreased year by year, indicating that the factor inputs of
the construction industry are gradually saturated. The main reasons for this may be the
competition and fragmentation among different regions, the local excess of inputs in the
construction industry leads to overall diminishing returns to scale, and the scale economies
embedded in the input factors of production are not fully exploited.

To create a heat map of productivity levels, this study visualized the productivity
levels of the construction industry for each province from 2010 to 2020. Over the past
decade, Inner Mongolia, Liaoning, Jilin, Heilongjiang, and Shaanxi have been at a low
level, with dynamic efficiency values of less than 1, well below the average dynamic
efficiency value of 1.3572. The three cities with the highest average dynamic efficiency
values are Beijing, Jiangsu, and Guizhou, with dynamic efficiency values greater than 2.
In addition, it is worth noting that in terms of the development of dynamic productivity
values in construction, Beijing, Shanghai, Jiangsu, Zhejiang, Fujian, Hubei, Chongqing,
Guizhou, Tibet, and Xinjiang have the highest dynamic efficiency values. In addition,
it is worth noting that in terms of the development trend of the dynamic productivity
value of construction, Beijing, Shanghai, Jiangsu, Zhejiang, Fujian, Hubei, Chongqing,
Guizhou, Tibet, and Xinjiang show a gradual increase in the dynamic productivity value
of construction, and these cities are mainly eastern and central cities. On the other hand,
Hebei, Shandong, Sichuan, Qinghai, Ningxia, and Yunnan, which are mainly cities in
the western region, show a gradual decline in construction productivity. It can be seen
that the total factor productivity growth shows obvious fluctuation (stage) characteristics
and unbalanced growth among regions, mainly showing that the total factor productivity
growth of the construction industry in the eastern region is higher than that of the central
and western regions and the national average, and the total factor productivity growth
of China’s construction industry basically shows a decreasing trend in the order from the
eastern to the central region and then to the west.
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4.4. Comprehensive Production Efficiency Measurement

According to the static and dynamic production efficiency values of the construction
industry in each province, i.e., the city and autonomous regions obtained above, it can
be found that there are differences in the efficiency ranking of each decision-making unit.
In order to evaluate the comprehensive level and change of production efficiency in the
construction industries in various provinces, municipalities, and autonomous regions, this
study combines the static and dynamic efficiency values to estimate the comprehensive
value of the construction industry’s production efficiency more reasonably. The model
design is as follows:

CPE = Bootstrap−DEA× α+ MI index× β (10)

The bootstrap-DEA method mainly evaluates the efficiency of resource allocation in
the construction industry. The Malmquist index mainly evaluates the changes in production
efficiency. However, due to the different development levels of the base period, the growth
rates of the input and output of the various factors vary greatly among the provinces,
which may cause distortion in the efficiency evaluation results. According to the research
objectives of this study, based on the theory of objective and fuzzy decision making, the
bootstrap-DEA static preference coefficient α is set to 0.8, and the MI index dynamic
preference coefficient β is set to 0.2 [7]. This is performed in order to calculate these values
in the 31 provinces and municipalities in China from 2010 to 2020. China’s construction
industry’s comprehensive production efficiency value and its comprehensive estimated
efficiency value are thus sorted. The results are shown in Table 6 and Figure 5. Except for
the comprehensive production efficiency of certain years in Fujian, Jiangxi, Tibet, Hainan,
and Shaanxi, which is greater than or equal to 1, the overall production efficiency of
the construction industry in all provinces in 2010–2020 is less than 1, and the resource
allocation is not effective. Additionally, there are significant differences between the
decision-making units. Differences should strengthen the flow of regional factors and
coordinated development. In addition, different from the static and dynamic production
efficiency evaluation results above, the comprehensive production efficiency evaluation
value shows that the subregional production efficiency level is leading in the east, second
in the west, and the middle in the center. The estimated results do neutralize the static and
dynamic efficiency values, thus making the evaluation more reasonable.

Table 6. CPE of the construction industry in 31 provinces.

DMU 2010 2011 2012 . . . 2018 2019 2020 AE Rank

Beijing 0.3399 0.4036 0.4621 . . . 0.8244 0.9048 1.0932 0.6522 14
Tianjin 0.3702 0.4193 0.4302 . . . 0.5367 0.5278 0.5192 0.4956 24
Hebei 0.6246 0.6979 0.6554 . . . 0.4224 0.5440 0.5618 0.5725 21
Shanxi 0.3799 0.3410 0.3554 . . . 0.2971 0.3210 0.4279 0.3474 31

Inner Mongolia 0.7277 0.7084 0.5739 . . . 0.3110 0.3624 0.4124 0.4875 26
Liaoning 0.5718 0.5961 0.5540 . . . 0.1759 0.2237 0.2844 0.3946 29

Jilin 0.7333 0.6736 0.5252 . . . 0.2903 0.3274 0.3693 0.4412 27
Heilongjiang 0.6253 0.4587 0.4294 . . . 0.2493 0.2772 0.3081 0.3674 30

Shanghai 0.3917 0.4057 0.4129 . . . 0.5698 0.6065 0.6456 0.4916 25
Jiangsu 0.7827 0.8341 0.8590 . . . 0.9726 0.9826 0.9926 0.9201 2

Zhejiang 0.7361 0.7618 0.7605 . . . 0.7622 0.7512 0.7404 0.7689 7
Anhui 0.6901 0.7286 0.6943 . . . 0.5865 0.5488 0.6135 0.6726 12
Fujian 1.0000 0.9969 1.0188 . . . 1.0571 1.0547 1.0523 1.0473 1
Jiangxi 0.7281 1.0320 1.0649 . . . 0.6042 0.6375 0.6782 0.8145 5

Shandong 0.5165 0.5359 0.5547 . . . 0.5690 0.5525 0.6364 0.5893 18
Henan 0.6091 0.6119 0.5903 . . . 0.6441 0.6404 0.6867 0.6366 15
Hubei 0.5777 0.6911 0.7156 . . . 0.7146 0.6855 0.6576 0.7165 10
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Table 6. Cont.

DMU 2010 2011 2012 . . . 2018 2019 2020 AE Rank

Hunan 0.7706 0.7828 0.7699 . . . 0.7731 0.7360 0.7007 0.8139 6
Guangdong 0.4403 0.5002 0.5665 . . . 0.6378 0.6369 0.6359 0.5960 17

Guangxi 0.7206 0.7418 0.6983 . . . 0.8861 0.8685 0.8513 0.8362 4
Hainan 0.7618 0.7929 0.8389 . . . 0.9997 1.0212 1.0663 0.9083 3

Chongqing 0.6424 0.6241 0.6345 . . . 0.8142 0.8014 0.7888 0.7591 8
Sichuan 0.5652 0.5876 0.6406 . . . 0.4837 0.4300 0.4922 0.5829 19
Guizhou 0.4995 0.5879 0.5961 . . . 0.7379 0.7838 0.8325 0.6693 13
Yunnan 0.4875 0.4837 0.5529 . . . 0.5948 0.6039 0.6132 0.5772 20

Tibet 1.0000 0.8428 0.8101 . . . 0.4507 0.4566 0.5822 0.7083 11
Shaanxi 1.0000 0.9954 0.4989 . . . 0.5121 0.6312 0.7228 0.6099 16
Gansu 0.6018 0.6602 0.5635 . . . 0.4671 0.5182 0.5749 0.5576 22

Qinghai 0.3591 0.3930 0.4133 . . . 0.4291 0.4243 0.4196 0.4246 28
Ningxia 0.5845 0.7209 0.6329 . . . 0.3027 0.3547 0.4158 0.5012 23
Xinjiang 0.6269 0.7120 0.7636 . . . 0.5951 0.6544 0.7197 0.7269 9

Eastern 0.5941 0.6313 0.6466 . . . 0.6843 0.7096 0.7480 0.6760 1
Central 0.6393 0.6650 0.6431 . . . 0.5199 0.5217 0.5552 0.6013 3
Western 0.6513 0.6715 0.6149 . . . 0.5487 0.5741 0.6188 0.6201 2

Buildings 2023, 13, x FOR PEER REVIEW 19 of 26 
 

Heilongjiang 0.6253 0.4587 0.4294 ... 0.2493 0.2772 0.3081 0.3674 30 
Shanghai 0.3917 0.4057 0.4129 ... 0.5698 0.6065 0.6456 0.4916 25 
Jiangsu 0.7827 0.8341 0.8590 ... 0.9726 0.9826 0.9926 0.9201 2 

Zhejiang 0.7361 0.7618 0.7605 ... 0.7622 0.7512 0.7404 0.7689 7 
Anhui 0.6901 0.7286 0.6943 ... 0.5865 0.5488 0.6135 0.6726 12 
Fujian 1.0000 0.9969 1.0188 ... 1.0571 1.0547 1.0523 1.0473 1 
Jiangxi 0.7281 1.0320 1.0649 ... 0.6042 0.6375 0.6782 0.8145 5 

Shandong 0.5165 0.5359 0.5547 ... 0.5690 0.5525 0.6364 0.5893 18 
Henan 0.6091 0.6119 0.5903 ... 0.6441 0.6404 0.6867 0.6366 15 
Hubei 0.5777 0.6911 0.7156 ... 0.7146 0.6855 0.6576 0.7165 10 
Hunan 0.7706 0.7828 0.7699 ... 0.7731 0.7360 0.7007 0.8139 6 

Guangdong 0.4403 0.5002 0.5665 ... 0.6378 0.6369 0.6359 0.5960 17 
Guangxi 0.7206 0.7418 0.6983 ... 0.8861 0.8685 0.8513 0.8362 4 
Hainan 0.7618 0.7929 0.8389 ... 0.9997 1.0212 1.0663 0.9083 3 

Chongqing 0.6424 0.6241 0.6345 ... 0.8142 0.8014 0.7888 0.7591 8 
Sichuan 0.5652 0.5876 0.6406 ... 0.4837 0.4300 0.4922 0.5829 19 
Guizhou 0.4995 0.5879 0.5961 ... 0.7379 0.7838 0.8325 0.6693 13 
Yunnan 0.4875 0.4837 0.5529 ... 0.5948 0.6039 0.6132 0.5772 20 

Tibet 1.0000 0.8428 0.8101 ... 0.4507 0.4566 0.5822 0.7083 11 
Shaanxi 1.0000 0.9954 0.4989 ... 0.5121 0.6312 0.7228 0.6099 16 
Gansu 0.6018 0.6602 0.5635 ... 0.4671 0.5182 0.5749 0.5576 22 

Qinghai 0.3591 0.3930 0.4133 ... 0.4291 0.4243 0.4196 0.4246 28 
Ningxia 0.5845 0.7209 0.6329 ... 0.3027 0.3547 0.4158 0.5012 23 
Xinjiang 0.6269 0.7120 0.7636 ... 0.5951 0.6544 0.7197 0.7269 9 
Eastern 0.5941 0.6313 0.6466 ... 0.6843 0.7096 0.7480 0.6760 1 
Central 0.6393 0.6650 0.6431 ... 0.5199 0.5217 0.5552 0.6013 3 
Western 0.6513 0.6715 0.6149 ... 0.5487 0.5741 0.6188 0.6201 2 

 
Figure 5. Heat map of the comparative production efficiencies of the construction industry in 31 
provinces in China. 

Figure 5. Heat map of the comparative production efficiencies of the construction industry in
31 provinces in China.

In this study, the integrated productivity values of the construction industry in each
province from 2010 to 2020 are visualized to form a heat map. The productivity val-
ues of Jiangsu and Fujian have been stable at a high level in the last decade. Beijing,
Hainan, Guangxi, Shanghai, and other provinces show a year-on-year upward trend of
integrated production efficiency values. However, Hebei, Inner Mongolia, Jilin, Liaoning,
Heilongjiang, and Jiangxi show a gradually decreasing trend. In addition, Shanxi, Hei-
longjiang, Qinghai, and other central and western cities have lower overall productivity
values and no increasing trend.
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4.5. Comparison of Regional Construction Industry Productivity Index Differences

In order to visually compare the static production efficiency value, dynamic efficiency
value, and comprehensive production efficiency value of the three differences, a histogram
of the three production efficiency values was constructed and is shown in Figure 6.
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This study compares the different types of production efficiency values for the con-
struction industry in the central, eastern, and western regions. As can be seen from the static
production efficiency values, the three regions have alternately increased in production
efficiency. The central region went from leading to ranking behind, while the western
region has been stable in a more leading position. However, the overall view is that the
static production efficiency has been at a lower level and the difference between the three
regions’ production efficiency values is small, i.e., the highest value is less than 0.6. From
the dynamic production efficiency, it can be seen that the three regions of the construction
industry production efficiency fluctuations have significantly increased. However, the
opposite has been observed in regard to the static efficiency value measurement results and
the western region dynamic efficiency. In contrast to the static efficiency value measurement
results, the lowest dynamic efficiency value was found in the western region, which is
between 1.0 and 1.8, while the dynamic efficiency value in the central region was found to
be higher than those in the central region, and which shows a trend of growth and then
a fluctuation toward a decrease; its value is between 1.0 and 2.2. It has been shown that
the static bootstrap-DEA method mainly evaluates the resource allocation efficiency of
a decision-making unit DMU, while the dynamic Malmquist-DEA method mainly evaluates
the change in production efficiency. There are large differences in the input–output growth
rate of each province due to different development levels in the base period. Therefore,
relying only on the dynamic construction production efficiency values would overestimate
the estimation results. From the integrated production efficiency values, the integrated
evaluation results obtained by combining dynamic and static values can neutralize the
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static and dynamic efficiency values, making the evaluation results more reasonable. From
the graph, the central region and the western region are alternately leading year by year,
and the production efficiency level of the central region starts to lead from 2017, while the
eastern region lags behind the central and western regions from 2010 to 2013. However, the
eastern region’s value leads year by year from 2014, and its advantage thus increases year
by year.

Overall, from the spatial dimension, the current static production efficiency values of
China’s construction industry vary less among the eastern, central, and western regions,
ranging from 0.3 to 0.6. In addition, the eastern region does not show a production effi-
ciency level that matches its economic level or the scale of the construction industry. From
the dynamic production efficiency measurement results, the production efficiency of the
construction industry from east to west shows a gradual development trend, with the
highest in the eastern region, the second highest in the central region, and the lowest in the
western region, thereby indicating a positive correlation between the degree of regional
economic development and the dynamic production efficiency level of the construction
industry. From the time series—except for the static production efficiency value, which
fluctuates less—the dynamic production efficiency and comprehensive production effi-
ciency show a steady increase. Moreover, the gap between the three regions is becoming
bigger. The main reasons for this phenomenon may lie in the following four points: First,
the marketization process of China’s construction industry has been accelerating, and the
strengthening of competition awareness has prompted enterprises to continuously improve
their productivity. Second, the entry of numerous FDIs has brought advanced technology
and management concepts, which have been diffused to Chinese enterprises through vari-
ous ways and channels, thus providing a strong driving force for the improvement of the
production and innovation efficiency of enterprises. Third, the increasing investment in
science and technology innovation in the construction industry in recent years has greatly
contributed to the optimization and upgrading of the current structure of China’s construc-
tion industry. Fourth, China’s regional economic development is extremely unbalanced,
and the development of the construction industry shows large differences, leading to the
optimal allocation of production factors and resources in the eastern region with good basic
conditions, thereby showing the “Matthew effect” of production efficiency.

5. Discussion

Several interesting findings of this study must be highlighted. First, the selection and
design perspectives of the efficiency evaluation indicators in the research are reasonable.
The number of construction enterprises and the total assets of the construction industry
are selected as input indicators through the value-added method and the Delphi method
output indicators. This study provides a scientific and quantitative research method for
constructing the construction industry’s production efficiency evaluation index system.
Second, the evaluation results of the static DEA model are evidently different before and
after the correction, and the production efficiency level of the construction industry after
the correction is evidently low. This fully shows that the original value of conventional
DEA efficiency without bootstrap technology correction does overestimate the production
efficiency of the construction industry. At the same time, compared with the efficiency
value of the traditional DEA method, it is found that although the production efficiency
value of the bootstrap-DEA method has a similar trend to the traditional DEA method, the
bootstrap-DEA method is more robust than the traditional DEA method, and can more
accurately reflect the construction industry in relevant provinces’ productivity. Third, from
the perspective of the static production efficiency value, the central region has ranked from
leading to falling behind. Conversely, the western region has been stable in a relatively
leading position. However, in general, the static production efficiency of China’s construc-
tion industry has been at a low level, and the overall fluctuations are not large, but they
have not reached an effective state. After considering the factors of the growth rate of the
construction industry resource input and technological progress, the obtained dynamic pro-
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duction efficiency value of the construction industry clearly magnifies the variation range
of the construction industry production efficiency between the three regions. Additionally,
it presents the distribution pattern of “eastern > central > western”, and regional differences
show a “gradual expansion” trend, in which technological progress is the main driving
force for the improvement of production efficiency in China’s construction industry. Finally,
from the radar chart of the comprehensive production efficiency value, the comprehensive
evaluation result of the combination of dynamic and static approaches can offset the static
and dynamic efficiency values, thereby making the evaluation result more reasonable.
It can be seen from the figure that the central and western regions alternately lead year
by year, and the production efficiency level of the central region began to lead in 2017.
However, overall, the comprehensive production efficiency of the construction industry in
all regions is less than 1, which has not reached the effective state of resource allocation. In
addition, there are significant differences between provinces, cities, and regions, and the
coordinated development between regions should be strengthened.

6. Conclusions

The results of scientific and reasonable production efficiency evaluation are very rele-
vant for the development of industrial policies [52]. However, previous studies have mainly
used traditional DEA models to perform static efficiency or dynamic efficiency evaluation
separately, which can reduce the accuracy of DEA model evaluation. Few studies have
combined the two methods to examine the regional differences of construction production
efficiency. This study combines four techniques—value added, Delphi, bootstrap DEA, and
Malmquist index. To a certain extent, this research idea achieves an integrated study of the
selection of production efficiency evaluation indicators and the establishment of evaluation
systems and model metrics, which minimizes the influence of subjective factors and error
factors, and provides a scientific quantitative evaluation method for the construction of
a production efficiency evaluation index system. The main conclusions of this study are
shown in the following: (1) The results of the comparison before and after the correction are
obvious, and the production efficiency of the construction industry is significantly reduced
after the correction. The resource allocation in the Chinese construction industry has not
reached the optimal state, and obvious input redundancy exists in the enterprises. The
output of certain regions is insufficient, and the difference in the regional development
level is prominent; this can be seen in the static efficiency results all being less than 1.
(2) The results of the Malmquist exponential decomposition show that the current trends
of technical efficiency and scale efficiency in the construction industry are generally op-
posite to each other, indicating that the improvement of scale efficiency has not led to the
improvement of management efficiency and the accumulation of production experience,
which means that the construction industry’s model of relying solely on scale expansion is
no longer sustainable. More emphasis needs to be placed on technological innovation and
investment in research and development. (3) The integrated efficiency score neutralizes the
results of the static efficiency score and the dynamic efficiency score and can better reflect
the development of productivity in the construction industry. The results of the integrated
efficiency score show that the construction industry in the central and western regions has
similar productivity levels, with the eastern region leading the construction industry in
terms of productivity from 2014 onwards and with an increasing gap. It shows that the
regional development of China’s construction industry is uneven and needs to be adjusted
with attention at the policy level. (4) This study proposes a set of ideas for evaluating the
productivity of the construction industry, which covers the selection of indicators, model
optimization, static and dynamic two-dimensional analysis, and comprehensive evaluation,
and which can also be widely applied in other research areas.

This study has certain implications, which help provide references for policy makers.
The obvious characteristics of regional differences require the government to formulate
differentiated policies for different regions, pay more attention to regional integration
development, prevent problems such as manufacturing policy depression and local protec-
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tionism, and promote the coordinated development of the regional construction industry
to a higher level and higher quality. Compared with previous studies, this study makes
a number of theoretical and practical contributions. First, current research on assessing
productivity in the construction industry tends to select indicator systems directly based
on experience. In response to this weakness, this study completes the construction of
an input–output indicator system using a combination of the value-added method and
the Delphi method before conducting the evaluation of productivity in the construction
industry, further ensuring the comprehensiveness and scientificity of the evaluation system.
Second, previous studies have mainly focused on a single perspective of static performance
or dynamic changes, which does not fully reflect the level of productivity development
and potential of the construction industry, which has hindered the comprehensive evalua-
tion of the productivity of the construction industry in different regions of China and the
proposal of corresponding optimization strategies. The study uses the bootstrap-DEA and
Malmquist index decomposition models to evaluate the static and dynamic productivity of
the construction industry, respectively, and then arrives at the results of the comprehensive
productivity evaluation of the construction industry, which is of great significance for the
objective assessment of the current development situation of the construction industry.

This study also has certain limitations. First, the measurement of productivity indica-
tors in the construction industry requires the consideration of complex and multifaceted
factors. This study used a combination of subjective and objective methods to select indica-
tors, but did not take into account the uncertainty of data collection and the impact that the
type of data has on the combination of scores. How to avoid errors due to data uncertainty
through model optimization deserves a more in-depth study. Second, this study provides a
case study in a Chinese context to measure the combined productivity of the construction
industry. While this study can be extended to other countries, the implementation needs
to take into account the social and economic circumstances of other countries, and this
needs to be further explored. It should be noted that this is an empirical study using only
China as a case study, and that provincial-level data on China’s construction industry were
chosen due to limitations in data availability. In the future, we could try to conduct the
study at a more micro level for prefecture-level cities. This study could also be improved
by extending it to other countries or by using data from a longer period. In addition, this
study analyzes differences in the productivity of the construction industry at the provincial
level in China, but what factors contribute to these differences is also worthy of further
in-depth study.
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