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Abstract: Tree is an essential factor affecting airflow and pollutant diffusion in the urban street canyon.
The wind environment in the urban street canyon will be effectively improved by expounding the
mechanism and implementing greening measures. Moreover, it will help decrease the pollutant
concentration around the street canyon. This paper reviews the airflow and pollutant diffusion
numerical simulation in the street canyon under the tree influence. Firstly, the numerical mathematical
model used for pollutant diffusion and airflow in urban street canyons under the influence of trees is
summarized. The representation of trees’ numerical mathematical model in the simulation domain
is mainly proposed. Secondly, the wind environment and pollutant distribution factors influencing
urban street canyons are elaborated and analyzed, including tree characteristics, layout, street canyon
shape, and thermal. Furthermore, current research progress and deficiencies are discussed. Finally,
the future research direction of wind environment and pollutant distribution simulation in urban
streets under the influence of trees is pointed out.

Keywords: tree; street canyon; numerical simulation; pollutant

1. Introduction

A street canyon, the micro-unit of urban buildings, is one of the main areas of residents’
activities. The airflow above the buildings into the street canyon affects the indoor and
outdoor airflow characteristics and pollutant distribution on both sides of the streets. As
shown in Figure 1, one of the most relevant characteristics of the street canyon is the
presence of a large number of dense foliage tall trees [1]. Trees play an important role in
street temperature adjustment, air purification, and environmental beautification [2–5].
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The research on the wind environment and the convection–diffusion of pollutants in
the street canyon under the influence of trees helps analyze the mechanism of airflow and
the law of pollutant distribution in the street canyon, improve the living comfort of the
residents on both sides of the street, and especially clarify the ventilation mechanism in
the street canyon in order to elaborate the urban heat island effect indirectly. At present,
the research on the dynamic behaviors of the street canyon under the influence of trees
focuses on wind tunnel experiments [6–8], numerical simulation [5,9–13], and field mea-
surement [14–18]. The number of experimental instruments limits on-site observation and
measurement points, and few monitoring points are arranged. The interference of uncon-
trollable factors such as wind speed, wind direction, traffic flow, building thermal effect,
etc., cannot be eliminated. Therefore, it is difficult to accurately compare the differences in
air pollution characteristics in street canyons under different vegetation conditions [19]. In
the wind tunnel test, air pollutants are forced to pass through the plant model, resulting
in more interactions between pollutants and plants, which enlarges the plant sedimenta-
tion rate. In addition, when building physical plant models using fibers, foam, etc., the
unreality of plant characteristics will also increase the uncertainty of sedimentation rate
simulation. It is necessary to propose other plant-modeling methods suitable for the wind
tunnel study of building and environmental aerodynamics [19–21]. However, numerical
simulation technology makes up for the shortcomings of wind tunnel experiments and
field observation in spatial distribution. It has the advantages of less resource consumption,
more information acquisition, sensitivity tests can be set up, and quantitative research is
easy [5,9–13,22]. Many researchers generally believe that the influences of trees on the
airflow and pollutant dispersion in the street canyon are relatively complex dynamic be-
haviors. For a single tree, the dynamic behaviors include the damping effect of leaves
in the tree crown on the airflow and the shearing and blocking effects of tree branches
on the airflow, leading to the particularity of the pollutant dispersion in the urban street
canyon. In addition, the factors influenced by the genetic characteristics of trees, such as
leaf distribution non-uniformity and discontinuity, crown shape, etc., lead to the differences
in air flow and pollutant dispersion in the urban street canyon. Different methods have
been adopted for numerical simulation of the wind environment in two-dimensional and
three-dimensional street canyons under the influence of trees. All the studies revealed
the effects of tree layout [23–26], street canyon morphology [27], tree crown position [28],
and tree crown shape [11] on airflow and pollution distribution. They also have enriched
the numerical simulation research results of the tree-urban street canyon-wind-pollutant
coupling system. However, key problems, such as multi-factor coupling, an intricately
detailed description of tree features, etc., still need to be effectively solved.

This paper mainly summarizes the studies on air flow and pollutant dispersion in the
urban street canyon under the influence of trees. The effects of tree characteristics, tree
arrangement and layout, street canyon morphology, and temperature on the wind environ-
ment and pollutant dispersion in the street canyon were reviewed by a mathematical model
used in the numerical simulation, the present difficulties in the numerical simulation of
wind environment and pollutant dispersion in the urban street canyon under the influence
of trees were pointed out, and the future research by numerical simulation was given.

2. Characterization of the Trees in an Urban Street Canyon by a Mathematical Model

Table 1 lists the mathematical models used by some scholars in the research on ur-
ban street canyon wind environments and pollutant dispersion by numerical simulation
software, such as OpenFOAM [29], ANSYS Fluent [30], STAR-CCM+ [31], ENVI-met [32],
etc. In the mathematical models, the dynamic information of airflow is described by
Navier–Stokes Equations, including mass, momentum, and energy equations. The large-
eddy model (LES), Reynolds stress model (RSM), or Reynolds-averaged Navier–Stokes
(RANS) model was used to elaborate the turbulent flow of air. The LES is advantageous
in computational accuracy, while the RANS model is more prominent in computational
efficiency [1,33,34]. The transport of pollutants in the air is generally described under the La-
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grangian or Euler framework. Under the Euler framework, the convection–diffusion model
outlines the pollutant concentration distribution caused by air convection and turbulence
effects. This model ignores the gravity effect of pollutants and believes air and pollutants
form a miscible phase. Some scholars also used particles to characterize pollutants based on
the Lagrangian framework, but there are some defects, such as high numerical simulation
workload, few particles, etc. [28,35–38]. In short, the coupling of the above mathematical
models forms the basis of the numerical model for the simulation of airflow and pollutant
dispersion in the urban street canyon calculation domain.

In the study on the impact of trees on the wind environment and pollutant dispersion
in the urban street canyon, the trunks and branches block the airflow, so the crown forms
a damping effect on the airflow. Accurately describing the damping and blocking effects
of trees on the airflow is the basis and key to obtaining the aerodynamics information in
the urban street canyon. Different researchers adopt different mathematical or physical
models to describe trees. Gallagher et al. believed that it is unnecessary to consider tree
branches and trunks [39], while Wang and Su et al. believed that the branches and trunks
have an essential impact on local airflow and pollutant dispersion in the street [40,41].
When a tree crown is regarded as dense tree vegetation, it can be considered a circle solid in
mathematical simulations [34,39,42,43]. However, this method only applies to very dense
vegetation. Most researchers studied the influence of the tree crown (leaves) on the airflow
using the porous media model and vegetation resistance source model. The basic principle
is to achieve the effect of the tree crown on the airflow by adding the source term in the
momentum equation, but the expressions of the mathematical model are very different.

Table 1. Mathematical models adopted by different researchers.

References Energy Model Turbulence Model Leaf Model Pollutant
Framework Software

[9,44] Off RANS Source item Euler OpenFOAM
[45] Off LES Source item Euler

[34] Off RANS Solid Euler

ANSYS Fluent

[46] Off RANS and LES Source item Euler
[10,47–49] Off RSM Source item Euler

[6] Off RSM and RANS Source item Euler
[2,50–52] Off RANS Source item Euler

[53] On RANS Source item Euler
[54] Off LES Source item Euler
[42] Off RANS Solid Lagrange

[55] On RANS Source item Euler STAR-CCM+

[56,57] Off RANS Source item Euler PHOENICS

[58] Off RANS Source item Euler ENVI-met

[59] Off RANS Source item Euler Fluidyn-
PANACHE

2.1. Porous Media Model

Gromke et al. used plastics to represent the tree crown in the wind tunnel experiment.
They regarded the effect of plastics in the flow area as the distributing resistance attached
to the fluid in the simulation. From the mathematical model’s description, a source term
was essentially added to the momentum equation. The source term comprises a viscous
loss term (Darcy Formula) and an inertial loss term. Its mathematical model is described as
follows [7,60–63]:

λ =
∆P

((1/2)ρU2)l
(1)
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S = −λ

(
1
2

ρ|U|Ui

)
(2)

where λ is the pressure loss coefficient, ∆P is the difference in static pressure windward
and leeward of the porous sample in forced-convection conditions, U is the flow speed,
and l is the porous sample thickness in the streamwise direction.

Gromke et al. measured the pressure difference coefficient on both sides of the porous
media model in the wind tunnel experiment based on the above mathematical model.
Then, they characterized the resistance effect of trees in the urban street canyon [7,8,60,64].
However, the mathematical model fails to characterize the differences in tree characteristics
and consider the turbulence effect of leaves on airflow. The parameters are acquired mainly
by the experimental measurement results, limiting the mathematical model’s application
and promotion.

2.2. Vegetation Resistance Source Model

Different scholars have mathematically characterized the trees in urban street canyons
by introducing the vegetation resistance source term model into the numerical simula-
tion of the wind environment in urban street canyons. The model characterization is as
follows [5,27,59,65,66]:

Su = −ρCdLAD|U|Ui (3)

where Cd is the resistance coefficient of the vegetation layer, LAD is the leaf area density,
Ui is the velocity component in the ith direction, |U| is the velocity modulus, and Su is the
resistance source term.

Considering the influence of leaves on turbulent kinetic energy and turbulent energy
dissipation rate of airflow, the turbulent energy term and turbulent energy dissipation rate
source term are expressed below, respectively:

Sk = ρCdLAD
(

βp|U|3 − βd|U|k
)

(4)

Sε = ρCdLAD
(

Cε4βp
ε

k
|U|3 − Cε5βd|U|ε

)
(5)

where k is the turbulent kinetic energy, ε is the turbulent dissipation rate, Sk is the source
term caused by the turbulent kinetic energy, Sε is the source term caused by the turbulent
dissipation rate, βp is the fraction of the average kinetic energy converted into turbulent
kinetic energy caused by resistance, and Cε4, Cε5, and βd are dimensionless parameters.

The above vegetation resistance source model has been continuously optimized and
modified, and thus expanded, enriched, and widely used in the numerical simulation of
wind environment in the urban street canyon.

The parameters in the model, such as vegetation resistance coefficient, leaf area density,
etc., reflect the characteristics of natural trees and, thus, the differences of tree species to a
certain extent and consider the turbulence effect caused by leaves [67].

In addition, different scholars considered the deposition effect of pollutants on leaves
by adding a source term model to the convection–diffusion equation of pollutants [48,56,59].
The source model can be written as follows:

Sdeposition = VdCLAD (6)

where Sdeposition is the mass of particles deposited by vegetation per cubic meter, C is the
local concentration, and Vd is the particulate deposition velocity on the foliage.

Meanwhile, trees also affect particulate matter in the atmosphere by resuspending
particles captured on the plant surface [3,68]. Hong et al. [56] considered this phenomenon
using the following model:

Sresuspension = VrCsinkLAD (7)
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where Sresuspension is secondary pollutants from foliage per unit vegetation volume per unit
time, Vr is the particle resuspension velocity from plant foliage, and Csink is the particle
concentration deposited on plant foliage.

However, the accurate application of the above model depends on the experiment due
to the determination of the vegetation resistance coefficient and leaf area density. Mainly for
different tree species, the above parameters change at different external wind speeds [69],
impacting the accuracy of the numerical simulation results to a certain extent.

2.3. Model Validation

Moreover, the European Cooperation in Science and Technology (COST) Action 732 im-
proves and assures the quality of micro-scale meteorological models applied for predicting
flow and transport processes in urban or industrial environments [25,70–72]. At the same
time, mathematical and statistical methods are used to verify the correlation between
numerical simulation results and experimental results [1,40]. For example, the statisti-
cal model performance indicators of pollutant concentration were used in validating the
simulation result and experiment data [40].

3. Characteristic Factors of Trees

The impact of trees on airflow and pollutant diffusion in street canyons includes many
factors, such as leaf area density, tree planting layout, crown shape, tree trunk, and whether
the trees are continuous. Table 2 shows the investigated factors from some research. What
is more, researchers [23,41] believe that changes in local airflow and the distribution of
pollutants in the street cannot be ignored, which is different from most studies that believe
that the tree branch diameter is small and can be ignored in numerical simulation studies.
The shape of trees has an essential impact on the damping effect of wind fields. More
and more studies have refined the shape of tree crowns, changing them from the original
rectangular shape to other regular shapes (such as circular, triangle, and cone) until they
can roughly describe the irregular shape of trees [10,11,27,56]. Finally, the leaf area density
of trees is a crucial research factor. When describing trees more accurately, some scholars
have adopted a leaf area density curve considering the variation of leaf area density with
tree height. Given different leaf area densities to describe the density of leaves, it is often
possible to distinguish the impact of trees in different seasons [48,56,65].

Table 2. Studies on tree factors by different references.

References Tree Trunk Crown Shape Tree Layout 1 LAD (m2 m−3) Tree Continuous

[10] Off Abnormal Random 1.6, 1.06 Continuity/discontinuity
[11] Off Rectangle SW/DW - Continuity
[5] Off Rectangle DW 0.5, 1, 2 Continuity/discontinuity

[23,41] On - SW/DW - -
[25,26] Off Rectangle SW 1.0 Continuity/discontinuity

[27] Off Abnormal Random 0.85 Continuity/discontinuity
[65] Off Rectangle DW LAD profile Continuity

[56] Off Triangle, circular,
rectangle DW 0.5, 1.5, 2.5 Continuity

[73] Off
Cone, expanded

paraboloid,
spheroid

DW LAD profile Discontinuity

[48] Off Rectangle SW/DW 0.5, 1, 2 Continuity
1 SW: Single row; DW: Double row.

3.1. Tree Branches

The influence of seasonal factors and tree types often impacts the wind environment
and pollutant dispersion in the urban street canyon when only the tree branches without
leaves exist in winter.
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Sabatino et al. used lower leaf area index and leaf area density to characterize the
impact of tree branches without leaves on the airflow in the street canyon [49]. This
assumption is reasonable for thin branches. However, for the thick branches, it is necessary
to consider the shearing and blocking effects of the branches on the airflow. The wind
environment and pollutant dispersion in the urban street canyon affected by tree branches
are seldom studied due to the difficulties in the physical modeling of tree branches and
trunks and poor self-similarity and simple appearance of the physical models of branches
and trunks reconstructed by an algorithm. In the open area, Endalew et al. [74] and Bai
et al. [75] have proven with wind tunnel experiments that tree branches can change the gas
flow rate. That also means that in the street canyon with a more complex building shape,
the tree branches and trunks also affect the airflow, i.e., the shearing and blocking effects of
the (primary) branches on the airflow [23].

By numerical simulation, Su et al. studied the impact of different tree branches and
trunks on the wind environment in the urban street canyon. Their study found that the
presence of tree branches and trunks leads to the airflow rate step and discontinuity, and
tree trunks notably physically hinder airflow [40]. In addition, different tree branches and
trunks have different impacts on the average pollutant concentration in the street canyon.
Among them, the complete tree branches and trunks impact the pollutant concentration in
the street canyon. As shown in Figure 2, Wang et al. used a tree branch entity model for
numerical simulation of the wind environment in the urban street canyon. It is found that
the increase in external wind speed significantly affects the flow field shape in the urban
street canyon at the y = −0.7 m section [23]. The above studies initially reveal the influence
mechanism of tree branches on the wind environment and pollutant dispersion in the
urban street canyon. However, the numerical simulation of the influence of tree branches
on the wind environment and pollutant dispersion in the urban street canyon is still in the
initial exploration stage and faces the following technical difficulties: (1) actual tree branch
entity modeling; and (2) meshing of computational domains of tree branches in urban street
canyons. The former involves characterizing tree branches using the tree trunk modeling
with the existing commercial software (such as SpeedTree 7.0 software) according to the
specified parameters and tree trunk entity modeling according to the expected research idea.
The latter involves the consumption of computing resources by determining the spatial area
of the tree branches in the computational domain mesh of street canyon and reducing the
number of computational domains meshes by loading an effective resistance source term
in these spatial areas. Fortunately, Troldborg numerically predicted and experimentally
observed the resistance on the main branches of the three-dimensional model tree and the
wind field in its wake in combination with an immersed boundary model representation of
the tree, with the results in good agreement [76]. That also means that numerical simulation
research in the future can start from two aspects: precise characterization of tree branches
and reduction of the number of computational meshes.

3.2. Tree Crown

The tree crown (leaf) is the basis for tree growth and other functional structures. The
presence of the tree crown affects the pollutant concentration and airflow in the street [77].
Generally speaking, the crown shape of actual trees has prominent characteristics and
mainly depends on the genetic characteristics and environmental factors of trees [78]. After
being sheared above the buildings, the airflow enters the street canyon, where air flows at
a lower rate due to the damping effect of the leaves in the tree crown.
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Gromke et al. explored the impact of trees on the wind environment and pollutant dis-
tribution in the street canyon by experimental or numerical simulation
methods [7,8,60,64]. They experimentally used polyethylene plastics to make circular
or rectangular porous media to characterize the actual trees in the street canyon and study
the impact of canyon height-width ratio, crown porosity, tree distribution location on the
wind environment, and pollutant distribution in the street canyon. The study shows that
the numerical simulation results are consistent with the wind tunnel experiment results
when reasonable model parameters are used. Wang et al. considered the randomness of the
leaf distribution in the tree crown and studied the influence of tree crown characteristics,
including height, porosity, and uniform/random leaf distribution, on the airflow and
pollutant concentration field in urban street canyons [79]. Hong et al. [56] simulated the
wind environment and pollutant diffusion in the street canyon for triangular, circular, and
rectangular crowns. The results show that the crown shape directly affects its resistance
effect on airflow, and thus, the pollutant diffusion behaviors and the cylindrical crowns
have the best ability to reduce PM2.5. In the numerical simulation, different scholars often
ignore the actual characteristics of the tree crown, including the differences in the leaf
distribution and actual crown shape [4,7,8,60,64,67]. For example, affected by the growth
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of branches and trunks, different tree species (phoenix tree and maidenhair tree) have
non-uniform and discontinuous leaf distribution and very different crown widths, volumes,
and external crown shapes. Therefore, it is necessary to optimize the existing vegetation
resistance source model further to predict or evaluate the wind environment and pollutant
distribution in the street canyon under the influence of real trees. Fortunately, researchers
have numerically simulated the wind environment based on real trees, and their simulation
objects have developed from open areas to urban street canyons. Hofman et al. [80] mapped
the tree crown shape based on the Laser Radar scanning data and numerically simulated
the street canyon’s wind environment and pollutant concentration. They believed that the
change in the tree crown characteristics (shape, size, and leaf area density) affects the distri-
bution of air flow rate. In Figure 3, Qin et al. obtained the contour curve of trees by fitting
and further analyzed the impact of five common trees on atmospheric particle dispersion.
It is found that G. biloba and L. chineses effectively reduce the particle concentration at the
pedestrian height [73].

Suppose further studies can solve the difficulty in the research on the leaf distribution
difference in space. In that case, they will help to more accurately reveal the impact of the
difference between real trees on pollutant distribution and airflow. The possible idea is to
establish a mapping relationship with the urban street canyon meshes based on the three-
dimensional laser scanning data to describe tree differentiation characteristics accurately.

3.3. Tree Layout

The wind environment and pollutant dispersion in actual urban streets also depend
on the interaction of various aspects. One of the more apparent impacts is the tree layout
(tree density). Theoretically, the trees in urban streets are planted in very different layouts,
including the number of rows of trees, different spacing between trees, and different tree
species. These factors influence the accurate prediction of wind environment and pollutant
distribution in urban street canyons [2,5].

From Figure 4, Huang et al. [11] studied the influence of tree crowns on the airflow
in the street canyon at different heights. It is found that the tree crown higher than the
building can effectively improve the air exchange rate in the street canyon. So, the pollutant
concentration in the street canyon is low. Wang et al. studied (main) staggered tree branches
by numerical simulation. It is found that the (main) branches can significantly improve the
airflow in the street canyon [41]. Lin Ding et al. studied the spatial distribution of trees in
the typical deep street canyon by numerical simulation. It is found that the non-uniform
tree layout scheme without trees planted in the middle of the street canyon can effectively
reduce the area of the “tuyere effect” at both ends of the street and the “wind shadow effect”
in the middle of the street and improve the wind environment at the pedestrians’ breathing
level in the whole street canyon [81]. Cui et al. believed that the increasing number of
green belts in the street canyon could significantly reduce the ambient air temperature but
reduce the average air flow rate in the street canyon, resulting in an increase in pollutant
concentration [82]. Using numerical simulation, Wu et al. studied Busan, South Korea’s
streets. The changes in street width, direction, and canyon aspect ratio influence the
microclimate and thermal comfort index more significantly, and tree height influences the
street environment more significantly than other tree configuration factors [83]. Wang et al.
found from the numerical simulation that the spacing between vegetation and buildings
significantly influences the concentration distribution of PM2.5; uniformly distributed trees
have the slightest impact on the reduction of PM2.5 concentration [66]. Moayedi et al.
discussed the tree layout. It was found that the trees planted in the street center improved
the air quality more than those planted in 2 rows, especially the higher trees planted in
2 rows worsened the air quality by 10% [84]. Zhang et al. [85] gave the numerical simulation
results to confirm further the results reported by Moayedi. In addition, the layout of trees
affects the distribution of pollutant concentrations and the distribution of air temperature.
The more trees in the street, the more beneficial it is to reducing temperature [86].
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4. Street Canyon Morphology

As another aspect that affects the wind environment and pollutant distribution in
the street canyon, the street canyon morphology often macroscopically affects the airflow
behavior in the street canyon [87]. In general, the impact of building structure on the
airflow and pollutant dispersion in the street canyon mainly includes building layout and
street canyon shape, i.e., an aspect ratio of the street canyon, street canyon asymmetry, and
non-uniformity [88,89].

Zhang et al. [90] studied deep street canyons. It is found that the street canyons
have vortices in 2 directions at the height–width ratio of 5 and a much weaker wind
environment than that at the height–width ratio of 1 and 3. Gu et al. [91] used windward
and leeward buildings with different heights to study the influence of the street canyon
non-uniformity on the wind environment. It is found that the non-uniform street canyons
can effectively improve the wind environment of the street canyon and have lower pollutant
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concentration at the pedestrian height than uniform street canyons. What is more, the
street canyon’s non-uniformity can improve pollutant dispersion. Thus, only the street
canyon morphology can lead to more variable airflow effect and pollutant dispersion
behavior and combines with trees to provide more complex airflow in the canyon. The
existing experimental measurements have confirmed that fine particulate matter (PM)
concentration decreases the most in a narrow street canyon in the presence of trees. In
contrast, the concentration of coarse particulate matter (PM10) decreases the most in wide-
street canyons [92]. Wang et al. [28] used the large-eddy simulation coupled Lagrangian
stochastic model to discuss the impact of the height–width ratio of trees in the street canyon
on the airflow. It is found that the low trees in the wide-street canyon can strengthen the
airflow in the street canyon, while the trees in the narrow canyon have a much smaller
impact on the flow field. Due to the influence of isolated vortex, trees increase the pollutant
concentration in the street canyon at a specific height-to-width ratio. In Figure 5, Sun
and Zhang [34] studied the airflow under the influence of trees in the non-uniform street
canyon by numerical simulation. The results show that the morphologies of trees and
buildings jointly determine the flow field structure and air flow rate distribution. The
increase in the external flow rate does not significantly change the flow field morphology in
the street canyon. Jeanjean et al. [10] numerically simulated the aerodynamic effect under
the influence of trees in the urban area of London. It is found that the turbulence effect in
the street canyon is fragile at a low inflow rate, and the removal of air pollutants by trees
in different seasons is 7%. Vranckx et al. studied the actual street canyon by numerical
simulation. The presence of trees leads to an 8% increase in the average annual pollutant
concentration [44]. Moradpour and Hosseini studied the area near the street by numerical
simulation. The results show that the presence of trees reduces the average pollutant
concentration, especially PM10 concentration, by 9%, at the pedestrians’ breathing height in
the study area [59]. Buccolieri et al. found that in the case of the wind parallel to the street,
the presence of trees positively affects the removal of pollutants in the areas close to and far
from the trees, with the average pollutant concentration at pedestrian height decreased by
18%. In the case of the wind perpendicular to the street canyon, the presence of trees causes
additional pollutant concentration [93]. The above studies provide a reference for revealing
the mechanism of wind environment and the laws of pollutant convection–diffusion under
the influence of trees in the urban street canyon. Further research may focus on the influence
of multiple factors, including dynamic wind velocity [22,94], vehicle driving [95], ancillary
facilities in street canyons [96,97], etc.
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5. Meteorological Factors
5.1. Thermal Environment

The street canyon’s thermal environment affects the human body’s thermal feeling
and comfort. At the same time, trees can improve the street canyon’s thermal environment
and reduce the sidewalk’s wind velocity [98]. The available field measurements and studies
show that complex tree crowns can prevent solar radiation from reaching the ground and
thus reduce the heat storage effect of the ground. More importantly, the intercepted energy
increases the latent heat flux and reduces the air temperature, and different tree species
have different impacts on the air temperature gradient [99,100]. This shows that in addition
to trees’ damping and blocking effects on airflow, the existing thermal effect can change the
wind environment and pollutant distribution in the street canyon.

Gu et al. [65] coupled large-eddy simulation with vegetation resistance and heat source
models and proposed a thermal dynamic mathematical model for the wind field in the
urban shrubbery street canyon. The simulation results show that compared with the bare
street canyon, the introduction of vegetation weakens the intensity of the circulation wind
field in the street canyon and reduces the pollutant displacement rate at the top of the street
canyon, increasing the pollutant concentration near leeward and windward sides of the
green street canyon. Morakinyo et al. [101] studied different trees’ impacts on the street
canyon’s thermal environment. They believed that leaf area index, tree height, and trunk
height are the main control factors to improve or aggravate the thermal environment in the
street. Zhou et al. [102] studied the airflow characteristics in the presence of trees in the
street canyon. It is found that the wind velocity in the street canyon decreases to various
extents after trees are planted, and the unreasonable extreme wind velocity is improved to
some extent; plants are significant to reduce the wind velocity, stabilize the flow field, and
improve the comfort of the pedestrian area; planting trees can reduce the wind velocity
around the building, the convective heat transfer on the wall, and the energy consumption
of buildings. However, the morphological characteristics of different tree species have
different attenuation capabilities for solar radiation and, thus, different potentials for
regulating thermal comfort and improving pollutant concentration. In addition, the change
in building surface temperature caused by the shadow-casting effect of trees on buildings
can help reduce the radiation load of pedestrians and improve thermal comfort, even when
the wind environment is weakened, especially in high-density urban street canyons [98].
As shown in Figure 6, Hosseinzadeh et al. considered the influence of vegetation cooling
degree. When the vegetation cooling degree increases, the air temperature significantly
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decreases, and the air temperature at the pedestrian height of planting trees (such as birch)
near the buildings’ edges can reduce by 2–3 ◦C [55]. Li et al. found from a numerical
simulation that increasing leaf area index and tree density can improve thermal comfort,
especially the increasing tree density can reduce the equivalent temperature by 1.1 K.
However, a higher leaf area index or tree density leads to the accumulation of more
pollutants [53].
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5.2. Wind Speed and Direction

Wind tunnel experiments and field measurements have found that wind speed and
direction impact the diffusion of street pollutants. With the increase in wind speed, the
resistance of trees is reduced, and the diffusion of pollutants in the atmosphere is more
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intense [103]; on the contrary, the aerodynamic effects are more critical at lower wind
speeds, causing little turbulent dispersion [10]. The wind direction directly leads to a
significant change in the concentration of pollutants in the street, especially when the wind
is parallel, and the effect of trees dominated [3]. Unlike the treeless street canyon, the
concentration of pollutants in the street is higher when it is perpendicular to the wind
direction of the street. When there are trees, the wind direction parallel to the street is
conducive to the diffusion of pollutants, and the wind direction perpendicular to the street
is weak [4,44].

Hosseinzadeh et al. studied the urban area air quality considering the trees and
found that reducing the inlet wind speed can increase the concentration of pollutants [55].
Zhang et al. took roadside vegetation and street canyons as the research objects. They
assessed the impact of vegetation on pollutants based on the area-averaged normalized
PM concentration per investigated area. The result found that the perpendicular wind had
the best vegetation effects, while the oblique wind had the worst vegetation effects among
the three wind directions [85]. In asymmetric street canyons, when the wind direction is
perpendicular to the street, there will be up-and-down steps due to the difference in the
height of buildings on both sides. The presence of trees will disturb the airflow and increase
the peak value and distribution of pollutant concentration [34].

6. Conclusions and Prospect

The research on the wind environment and pollutant dispersion in urban street
canyons under the influence of trees by numerical simulation is relatively mature. The
existing mathematical models for tree description can depict some tree characteristics. Trees
in urban street canyons under different factors have been studied by numerical simulation
with many beneficial results. These are of great significance for evaluating the reduction
efficiency of street trees on street valley pollutants and the ventilation effect in the street
to find out the planting design strategy to reduce the exposure risk of air pollution and
improve the street ventilation.

Current studies still face many difficulties in guiding the planting of trees in urban
street canyons, mainly because (1) the failure to accurately describe the characteristics of
trees limits the ability to reflect the difference of tree species in the process of numerical
simulation; (2) it is complicated to provide the relevant parameters of the mathematical
model for tree characterization, especially resistance coefficient and leaf area density need
to be determined according to experiments or field measurements, and the empirical
parameters contained in the turbulence model still need to be continuously revised; (3) the
influence of multiple complex factors in the street canyon has not been sufficiently studied
yet, including the superimposed effects of heat, chemistry, biology, wind direction, tree
species, and other factors; and (4) the research on the influence of leaf surface microstructure
on pollutant reduction is seldom studied.

Future research should focus on (1) numerical simulation in real situations, including
natural street canyon morphology, natural meteorological conditions, differences of tree
species, etc., and (2) further consideration of the pollutant settlement, removal, and thermal
effect of trees in the mathematical model so that the numerical simulation can completely
describe the impact of trees on the pollutant distribution, dispersion, and absorption process
in the street canyon.
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