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Abstract: The global transition to a renewable-powered economy is gaining momentum as renewable
energy becomes more cost-effective and energy-efficient. Renewable-energy-integrated Virtual Power
Plants (VPPs) are capable of facilitating renewable transition, reducing distributed generator impacts,
and creating value for prosumers and communities by producing renewable energy, engaging in the
electricity market, and providing electricity network functions. In this paper, we conducted a case
study in the City of Greater Bendigo to evaluate the challenges and opportunities of the community-
focused renewable energy transition through establishing VPP with community-based renewable
generators and storage systems. A reinforcement learning algorithm was formulated to optimise the
energy supply, load shifting, and market trading in the VPP system. The proposed VPP system has
great potential to improve the economic value and carbon emission reduction performance of local
renewable resources: it can reduce 50–70% of the case study city’s carbon emissions in 10 years and
lower the electricity price from the current range of 0.15 AUD/kWh (off-peak) −0.30 AUD/kWh
(peak) as provided by Victorian Essential Services Committee to 0.05 AUD/kWh (off-peak) (peak).
Overall, this study proposed a comprehensive framework to investigate community-based VPP in a
complex urban environment and validated the capability of the VPP in supporting the renewable
transition for Australian communities.

Keywords: community-focused; case study; distributed renewable energy; reinforcement learning;
virtual power plant

1. Introduction

Cities and their inhabitants consume more than 75% of global energy production
and contribute 80% of glasshouse gas emissions [1]. According to the United Nations
Department of Economic and Social Affairs (UN DESA), the global population has increased
from 751 million in 1950 to 4.2 billion in 2018, with a projected increase to 7 billion by
2050 [2]. With rising population and energy consumption, it is critical to accelerate the
energy transition and urban sustainable development.

There are numerous options to improving urban sustainability, including active ap-
proaches, such as introducing renewable energy alternatives, and passive approaches, such
as demand shift, demand reduction, etc. Among these options, distributed renewable
energy (DRE) such as solar photovoltaic (PV) is garnering increasing interest in both re-
search and the market. DRE can (1) reduce carbon emissions, (2) increase energy fairness,
supply security, and independence, and (3) minimise dependency on large-scale energy
infrastructure investment [3].

However, there are many challenges faced by DRE in urban areas such as limited
physical space for installation, compliance with building safety requirements, reduced
access to natural resources due to urban density (i.e., reduced solar exposure caused by
shading and instable air flow in high-density built areas), the low conversion rate of
the DRE system, unstable output of the DRE, impacts to the public electricity grid, etc.
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Therefore, a formidable energy management system is essential amid the growth of DRE in
the urban environment.

As a novel energy management concept, virtual power plants (VPPs) are gaining
increasing research interest. A VPP is a network of distributed generators (DG) and energy
storage systems (ESS), in which these integrated elements are able to participate in the
energy market as a single entity and own the function similar to a conventional power
plant (CPP) by, for example, participating in the electricity wholesale market, providing
electricity network services such as ancillary frequency control and load control, or serve
as a backup generator in the circumstance of outage.

In contrast to a CPP, a VPP operates differently in several aspects:

(1) A VPP relies heavily on communication and control systems to adjust its dispatch
strategies [4,5];

(2) The primary sources of electricity generation in a VPP are distributed energy resources
(DERs) located at various locations [6–8];

(3) The participants in a VPP are often referred to as prosumers, as they not only consume
electricity but also produce and contribute to the grid [9,10];

(4) VPPs’ functionality in the public grid largely relies on energy storage systems which
transform the intermittent power flow of the DERs into stabilised and scheduled
outputs [11–13].

With the rapid growth of distributed renewable energy systems in the urban envi-
ronment, it is important to assess the challenges and opportunities of adopting VPPs for
effective regulation and management of the DGs. There are several review papers in this
field examining the different factors of VPP studies. In 2012, a review paper [14] provided
a general overview of VPPs, including their logical framework, control strategies, and
optimization. The authors of this paper investigated numerous studies and European VPPs
and identified the need for better prediction tools and optimization methods for real-world
VPP projects.

A more recent review paper, [15], provided a detailed review of uncertainties involved
in the VPP studies. This review identified and discussed three categories of uncertainty:
renewable energy generation, market prices, and electricity demand. The authors pointed
out that future studies should pay more attention to the structural uncertainties caused by
the connection status of DERs. Another review paper [16] summarised the architecture
and optimization techniques of VPPs and provided a summary of the best optimization
techniques based on operational strategies. Additionally, ref. [17] assessed the risk man-
agement strategies adopted in VPP studies and concluded that current VPP studies still
have a limited scope regarding risks, which are mostly related to renewable generation and
market dynamics.

These review papers highlighted the need for improved prediction tools that are
capable of capturing the increasing uncertainties in a broader operating environment
of VPPs, optimization methods that are robust under greater complexities of the VPPs’
operating strategies, and risk management approaches that provide thorough consideration
in a comprehensive spectrum of VPPs’ operation goals. Additionally, they suggest the
importance of considering uncertainties and the flexibility of VPPs in energy markets.
However, most of the previous papers investigated technical benefits and risks from the
standpoint of the VPP system itself.

As pointed out in [17], future VPP studies should consider factors beyond technologies
or algorithms. VPPs are sophisticated systems that interact with DERs, electricity infrastruc-
ture, urban environment, communities, and the end-users. Therefore, the impacts of VPPs
require further investigation from the community level with the consideration of the VPPs’
costs and benefits, carbon emission reduction capability, and the impacts to the local supply
network. VPPs may have the potential to support the constantly growing penetration of
DRE systems in cities and reshape the energy landscape of communities by providing
cleaner and cheaper energy. However, changes in urban environments can also have signif-
icant impacts on VPPs in many ways. Population density, urban planning, and community
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socioeconomic status play important roles in urban infrastructure [18,19] and may also
affect the development and operation of VPPs. Consequently, suitable problem-solving
approaches and effective research framework are required to cope with the uncertainties
and complexities of deploying VPPs in diverse communities.

Therefore, this study aims to evaluate the challenges and opportunities of community-
focused renewable energy transition through the establishment of VPPs with community-
based renewable generators and storage systems. A case study was performed for community-
based VPPs with a sample size of 235 communities. A detailed modelling and information
capturing was carried out using geospatial analyses and K-Means Clustering, to capture and
describe the renewable energy resources and supply and demand profiles. Reinforcement
learning was selected as the optimisation and control solution to tackle the uncertainties
and complexities of the case study communities’ diverse demand and supply conditions.
This paper is structured as follows: The rest of Section 1 presents a literature review
on the present studies of VPPs in terms of VPP operation strategies, modelling, and
problem-solving techniques. Section 2 covers the research design and the process of
implementing the VPP framework in the case study. The detailed research methods and
processes are presented in Section 3, followed by the findings and discussion in Section 4.
Finally, Section 5 discusses the conclusion of this study along with research limitations and
recommendations for future work.

1.1. Literature Review
1.1.1. VPPs’ Risks and Benefits for Prosumers and Communities

VPP development and operation is a multi-party process involving service providers,
consumers, prosumers, legislators, and local communities. However, the majority of the
previously stated profit-enhancing or risk-reduction measures are primarily applicable to
VPP systems or VPP operators [20]. Although it is critical to ensure that VPPs perform opti-
mally when participating in the electricity market, the success of VPPs is largely dependent
on the participation and interaction of all stakeholders, as an electricity supply system that
may involve substantial investment and significant impacts on urban development [21].

The previous studies in this domain mostly focus on investigating the economic
potential of VPPs by optimising their operation strategies in the energy market. For
example, [22,23] provided the optimisation of a VPP’s profitability of participating in the
energy market through frequency control ancillary services and energy trading. The authors
of [24–26] investigated the optimisation of the VPP system’s operation cost and penalty due
to system instability, while [27,28] evaluated the VPP’s cost and benefits through reducing
greenhouse gas emission.

Although the previous research has developed a comprehensive understanding of the
benefits of VPPs as an entity, there is a lack of consideration for the benefits and risks for
end-users and communities where the VPPs are based. The participation of prosumers
and the communities is one of the essential criteria in the implementation of VPPs [29],
for its reliance on the cooperation and aggregation of distributed prosumers. However,
in most previous research, the end-users in the VPP framework are considered as flexible
loads [13,30] or simply as the source of revenue for the VPP entities.

Distributed renewable energy systems face challenges in achieving commercial vi-
ability due to their low capacity and unstable output, as summarised in [31]. Without a
well-performing control and optimisation strategy, these distributed resources can also
have negative impacts on the public grid, which may require extra costs for balancing
supply and demand [32–34]. Furthermore, DRE systems heavily rely on energy storage
systems [3], which can significantly increase costs [32]. These economic uncertainties can
pose potential economic risks to the communities and end-users greatly, and hinder the
renewable transition.

VPPs can play a crucial role in reducing the economic risks of renewable energy
through effective management of DRE systems [17]. By integrating DRE systems into the
public grid, VPPs can also contribute to reducing overall electricity prices in the market,
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making renewable energy more affordable for all. In particular, communities with limited
purchasing power may benefit from access to cheaper and cleaner energy by participating
in VPP networks. Hence, it is essential to gain a deeper understanding of the potential role
that VPPs can play in powering communities with distributed renewable resources.

1.1.2. Modelling and Problem-Solving Techniques in VPP Studies

As an energy system interacting with various demand patterns, generation patterns
and energy market conditions, the modelling of VPP involves numerous uncertainties
such as weather forecasting, demand forecasting, market price forecasting, etc. [15]. The
two commonly adopted modelling methods are deterministic modelling, which create
sophisticated calculation models for renewable energy systems, the VPP control system,
user demand, and energy market [24,35], and stochastic modelling, which represents the
VPP components with probability models [22,36,37]. In addition, some studies also use
actual data records of generators’ output or user demand instead of modelling them [30].

In terms of problem-solving methods such as optimisation and control strategies,
the commonly used approaches can be categorised as heuristic approaches and mathe-
matical approaches. Mathematical approaches, such as linear or nonlinear programming,
usually adopt regression methods to seek the global or local optimality within the VPP’s
operation constraints [38,39]. Although these mathematical optimisation approaches are
well-developed methodologies, their application to VPP is under critique due to their
vulnerability when dealing with uncertainties and their insensitivity to the global optimal-
ity [13,15].

Heuristic approaches, such as particle swam optimization, agent-based optimisation,
machine-learning-based heuristic control, and optimisation, have more flexibility when
dealing with uncertainties and can identify the global optimal more easily [40]. However,
as pointed out in [13], these methods may be ineffective for achieving local optimal. This
is due to the fact that, given a small population size, the optimisation algorithm typically
treats significant contingency events, such as demand spikes and market price spikes, as
outliers, despite the fact that these contingencies may be essential for enhancing the energy
conservation and economic performance of the VPP.

In addition, with increasing renewable energy options, technique innovation, and a
complex operation environment, it was found in [13] that the modelling process for the VPP
system is increasing in complexity. Hence, a more robust and effective problem-solving and
modelling approach should be introduced to provide optimised decision-making for VPP
implementation. As a branch of machine learning, reinforcement learning (RL) is a potent
tool for assisting decision making in dynamic situations. RL approaches can provide robust
optimisation for different scenarios [41,42] in the application of energy network control
and optimisation.

1.1.3. Summary of Literature Review

To sum up the findings of the literature review, it is found that although previous stud-
ies in the domain of VPP made significant contributions in investigating the optimisation of
VPP operations with various mathematical or heuristic approaches, most of these studies
have a limited focus on the VPP’s benefits and profitability for the VPP system itself or the
operator of the VPP. The risks and benefits for end-users and local communities are rarely
discussed. Additionally, current problem-solving techniques for VPP research have met
their limitations in dealing with the growing uncertainties and complexities of implement-
ing VPP in urban environments. To address these research gaps and limitations through
this research, we conducted a case study in an Australian city with a novel RL-based VPP
framework. The case study evaluated VPP’s performance in carbon emission reduction,
profitability, and benefits for end-users.



Buildings 2023, 13, 844 5 of 21

1.2. Research Contributions

VPPs operate in complex and uncertain environments, where temporal and spatial
dynamics such as supply/demand conditions, demographic profiles, renewable energy
resources, urban growth, population growth, and corresponding demand growth can
significantly impact their performance. The implementation of VPPs also faces broader
challenges and uncertainties, such as long-term economic viability and socioeconomic val-
ues, which require in-depth analyses of VPP operations in urban environments. Therefore,
a comprehensive understanding of the operational complexities and potential impacts
of VPPs is crucial to ensure their effectiveness and sustainability in the long run. Hence,
this study aims to further explore the challenges and opportunities of using VPPs in an
Australian city’s context. The main research objectives of this study are:

(1) To implement a conceptual VPP framework in an Australian city;
(2) To model the VPP’s performance for urban communities across an Australian city;
(3) To optimise VPP performance for urban communities across an Australian city;
(4) To evaluate the technoeconomic impacts of VPP and provide discussion and sugges-

tions for future development and policy making

The significance of this study can be summarised into the following two aspects:
(1) This study focuses on the research gaps on community-oriented VPP operation and
addresses technoeconomic opportunities and challenges for communities and end-users.
(2) This study proposes a research framework in the context of community environment
and utilises a multi-disciplinary approach to address the uncertainties and complexities.

2. Case Study of Community-Based VPPs
2.1. VPP Implementation Case Study in an Australian City

To investigate the VPP’s efficacy in supporting the community-based renewable energy
transition, we conducted a case study in the urban area of the City of Greater Bendigo. The
City of Greater Bendigo is located near the geographical centre of Victoria, Australia [43],
and is the third largest city in Victoria. The urban and rural areas of Bendigo cover
nearly 3000 km2 [44] and are home to 111 thousand people [45]. The City of Greater
Bendigo has a strong commitment towards sustainable urban environment. According to
an environment strategy report by the City Council of Bendigo, the city encourages the
transition to sustainable urban development and has a target to achieve 100% renewable
energy in 20 years. However, it is unclear how the renewable systems can deliver the
expected effects in carbon reduction and economic viability. In addition, most of the
distributed PV and home battery systems have low visibility to the grid operator, which
poses a challenge to the grid’s stability and brings more uncertainties for future planning
on the electricity supply infrastructure.

In this research, we adopt statistical area level 1 (SA1) as the community unit for
modelling and data analysis. The statistical area hierarchy is introduced in Australian
Statistical Geography Standard (ASGS) [46] to reflect the social geographic location of
people and communities. Among the statistical area hierarchy, SA1 is designed to maximise
the geographic detail available for Census of Population and Housing data while maintain-
ing confidentiality. This study covers an area of 235 SA1s in the City of Greater Bendigo
(Figure 1). The study area is limited by the light detection and ranging data (LiDAR) cover-
age area in the City of Greater Bendigo. The LiDAR data collected on March 2020 by the
Department of Environment, Land, Water and Planning (DELWP) covers in total 235 SA1s
of the City of Greater Bendigo. The LiDAR data were used to identify and measure the
rooftop PV coverage, urban solar potential, building parameters, and shading impacts.
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2.2. Implementing a VPP Research Framework in Community Context

To conduct the case study, a research framework was designed to implement the VPP
network in the City of Greater Bendigo (Figure 2). To provide comprehensive analyses
of the VPP implementation with the local communities’ urban environment conditions,
supply–demand conditions, and socioeconomic and demographic profiles, this research
employed multiple methods including geospatial information system (GIS) processing and
analysis, system modelling, demand data mining, and reinforcement learning.
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The research process involved four main steps. Firstly, VPP components were mod-
elled and the supply and demand conditions of multiple communities were characterised
using geospatial mapping, demand data mining, and system modelling. Secondly, a rein-
forcement learning control system was established and trained using random populated
sample supply/demand, PV output, and market data to adopt the optimal distributed
resources management policy. Thirdly, the trained RL models were deployed to the com-
munities. The VPP simulations were carried out within each of the 235 communities under
multiple scenarios of renewable resources and battery capacity. The VPP operation consid-
ered the interaction of communities’ load, storage capacity, PV generation, and electricity
market at an hourly interval. Finally, technoeconomic analyses were conducted to evaluate
the VPP’s performance in terms of carbon emissions, economic impact, and grid impacts.
The detailed process of steps 1–3 is covered in Section 3 and the data analyses results and
discussion are presented in Section 4.

3. Data Processing, Modelling, Optimisation, and Simulation for Community-Based VPPs
3.1. Geospatial Mapping and Processing

GIS is a powerful tool which facilitates a better understanding of urban environment
dynamics and local resource distribution. In this part of the study, GIS data on the City
of Greater Bendigo were collected, and GIS platforms (QGIS and ArcGIS) and processing
tools were adopted to analyse the geographic data and map the urban environment and PV
resources. In this study, the GIS data were collected from the Department of Environment,
Land, Water and Planning (DELWP) of the Victoria State Government. The dataset includes
the LiDAR data of digital surface model (DSM), high resolution aerial image, building
height model (BHM), and property footprint. The DSM data were used to create the case
study city’s roof angular profile including azimuth (Figure 3) and tilt angle (Figure 4).
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BHM was used as an input raster to determine the azimuth angles of building rooftops.
The aspect function in the QGIS toolkit was used to generate the azimuth angle raster
layers. A rooftop’s azimuth angle (aspect) is its angle of departure from north (0◦). It has a
range of 0 to 360 degrees, with 0 representing north and 180 degrees indicating south. The
aspect function in QGIS returns the azimuth distribution of the input BHM (Figure 3). The
azimuth raster was coloured to illustrate different angular values. Each rooftop’s azimuth
angle was then exported as an attribute table, which was subsequently utilised to simulate
rooftop PV.

The tilt angle, like the azimuth angle, is an important angular parameter for simulating
PV output. The Slope function in QGIS takes the BHM as input and generates the rooftop
tilt angle layer. The tilt angle layer, like the azimuth angle layer, was coloured to show the
angle values (Figure 4).

Furthermore, GIS-based approaches were used to identify both existing and potential
solar PV resources in the case study city. With the high-resolution aerial image data and
the Mask R-CNN [47] image recognition algorithm, the existing PV systems installed on
Bendigo rooftops were delineated. Based on the angular parameter and shading impact
factor, the solar PV potential mapping of the rooftop PV in the case study area was created
(Figure 5). The GIS processing outcome of PV delineation, azimuth angle, tilt angle, and
potential mapping was used in the following sections for PV modelling and simulation.
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3.2. System Modelling

The system modelling in this study comprises the modelling of the PV system, battery
energy storage system (BESS), the control mechanism of the VPP, and the energy market.
The modelling was carried out using MATLAB and Simulink. To simulate the operation
of the PV system, the following factors were taken into consideration: (1) Plane of array
(POA) irradiance; (2) Solar position; (3) Losses caused by heat transfer; (4) Losses caused by
the inverter, mismatch, wiring, shading, dust, etc. On the one hand, POA irradiance, solar
position, and heat loss are closely related to the GIS-defined urban environment profile,
which was sophisticatedly modelled to enable the analysis of different input scenarios. The
model adopted the PVlib toolbox developed by Sandia National Lab [48]. The modelling of
a storage system mainly requires inputs of system specifications such as charge/discharge
rate, maximum capacity, and efficiency. The reference value for BESS is based on the
specifications of the TESLA Powerwall [49].

3.3. Demand Data Mining

Energy consumption data were provided by the case study city’s local distribution
network service provider: PowerCor. The dataset included an aggregated customer-type-
based dataset for postal areas and 3000 de-identified samples with categories of different
property purposes: residential, commercial, industrial, agricultural (coded as R, C, I, and
A, respectively). A data-mining approach integrating Random Forest (RF) and K-means
Clustering was used to extract the features of the sample demand data and reconstruct the
demand dataset for the four user types in each SA1 cluster.

The data mining process comprised the following steps: (1) Train the RF model with
sample postal-area-level input features and validate the results at the postal area level,
(2) Establish the RF forecasting model on expanded postal-area-level input features and
validate the results at the postal area level, (3) Train the RF model on postal-area-level
input features to forecast the SA1-level consumption profile, (4) K-means clustering of
the de-identified sample to extract the consumption profile for each type of user, and
(5) Reconstruct SA1-level demand patterns based on clustered profiles and the forecasted
SA1-level consumption profile.

Additional input variables of the user type composition, population density, and
dwelling density for each SA1 and postal area were acquired from ABS to create a prediction
model with RF that could estimate a SA1-level aggregated consumption profile from postal
area demand data. The following input features were labelled on the aggregated postal
area demand data: (1) Season, (2) User type, (3) User type count, and (4) User type ratio.

The K-means approach was adopted for the clustering of the random sample data
to identify the typical demand patterns among different user types in the City of Greater
Bendigo. K-means is one of the most fundamental but efficient unsupervised learning
algorithms for data mining [50]. The goal of K-means clustering is to seek the optimal
clustering policy that has the minimal total squared errors across all defined clusters, which
can be described using the following equations:

EK(a, b) =
√

∑n
i=1(a− bi)

2 (1)

where, EK is the Euclidean distance of each cluster, a is the cluster mean, and bi are the
members of the defined cluster. The objective of the K-means approach is to minimise the
aggregated E across all K clusters:

min(EK) = ∑K
j=1 EK(a, b) (2)

The process of using K-means clustering to establish typical demand patterns is
shown in Figure 6. The dataset was divided into four sections by user type during the
pre-processing stage. Following that, each sub-dataset was divided into four seasons,
which generated sixteen independent datasets. The K parameter should be established
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after the sixteen independent datasets are ready for clustering. Because the goal of K-
means clustering is to minimise total squared errors across all clusters, inertia analysis
was performed to calculate the within-cluster sum of squared errors (WCSS). In the inertia
analysis, the WCSSs in each K were displayed in a line chart to show the reduction in inertia.
A suitable K divides the dataset into K clusters, resulting in a considerable reduction in
inertia when compared to the inertia in K 1 clusters. Following the selection of K, each
independent dataset was grouped into K clusters using the K-means algorithm. Each cluster
indicates a group of people who have the same customer type and use similar amounts of
electricity during a given season.
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Shown in Figure 7 is a sample of the reconstructed demand pattern. Each row of
Figure 7 shows one month’s electricity demand profile (kWh) for all residential users in one
sample SA1. The outcome is the hourly interval demand data for each type of user in each
SA1 of the City of Greater Bendigo. The reconstructed hourly demand pattern was then
amplified to fit the aggregated SA1 electricity consumption in each SA1 for each user type.
The models used in the demand data mining process were cross-validated multiple times at
the postal area level to ensure its efficacy as far as possible. However, it remains a limitation
that the true fidelity of this approach cannot be verified on a more detailed level (i.e., SA1
level), due to the lack of ground truth data at the SA1 level and the de-identification of the
sample user data.

3.4. Reinforcement Learning VPP Operation Model

To operate the VPP under uncertainties and complexities in the urban environment
and provide optimised control decisions, this study applied an RL-based approach to model
the VPP control system. The concept of RL is very similar to human behaviour patterns
when we observe and learn about the world. We learn something by obtaining sufficient
positive feedback and learn that something is incorrect or dangerous by receiving negative
feedback. Similar to human learning, the foundation of RL is the Markov Decision Process
(MDP), which defines the procedure by which RL agents interact with the environment.
MDP provides a control model for decision making in a discrete and stochastic process.
The MDP creates an environment for the decision maker, in our case, an artificial intelligent
entity (agent). In the MDP environment, the agent generates actions to change the states of
the environment randomly. The changes result in the reward the agent can obtain and the
probabilities of future state transitions. The agent’s objective is to select actions to maximise
the long-term measure of total reward.

In this study, the RL-controlled VPP system is capable of adjusting electricity trading
and scheduling strategies based on the observation and forecast of the users’ demand, the
national energy market (NEM) electricity price for wholesale and ancillary services, and
the renewable energy systems’ output. In total, four RL agents were trained under the four
demand patterns, namely A, C, I, and R. The RL agent applies the deep deterministic policy
gradient (DDPG) algorithm to construct its deep neural network through training iterations.
The VPP system structure was modelled in Simulink with a MDP environment embedded.
The RL system’s objective function is to maximise the economic benefits and minimise the
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losses in the operation of a VPP by providing demand shifting and participating in the
electricity market. The objective function can be formulated as the following equation:

max CF = ∑T
t=1 pvpp(t)× kmarket(t) + abs(pancillery (t))× kancillery (t) (3)

where CF is the total cashflow of all timesteps, kmarket(t) is the AEMO-recommended retail
price used to estimate the cash flow for trading with the public grid, and kancillery (t) is the
AEMO ancillary services market price used for estimating ancillary services incomes.
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With the objective function defined, the reward function for the RL system can then be
formulated with the following three components: (1) the objective reward (Robj), (2) the
step reward (Rmove), and (3) the finishing reward (Rmadeit). The reward function for the RL
system can be described as:

max R = ∑T
t=1[Robj(t) + Rmove(t)] + Rmadeit (4)
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Robj is modified from the objective function (Equation (4)) to represent the actual cash
flow of the VPP system.

3.5. Multi-Scenario Simulation and Analysis

The multiple scenario analysis of this study simulated and investigated the impacts
of different VPP operation strategies under the different scenario cases. When generating
scenario cases, this research considered the spatial and temporal dynamics of the urban
environment in terms of the demand/supply changes, market changes, etc. The following
aspects were considered in the scenario settings:

Scenario group A: Scenarios of potential PV coverage
Based on the PV system delineation results, the PV coverage scenario was established,

considering solar potential, rooftop orientation, the slope of the roof, and the rooftops’
financial viability for deploying PV systems. The scenarios were as follows: (1) Base case
with currently detected solar panels, (2) Medium coverage ratio scenario (25% of total
available rooftop), (3) High coverage ratio scenario (50% of total available rooftop).

Scenario group B: Scenarios of electricity storage facilities
The PV/battery ratio is an essential factor to be considered when designing a dis-

tributed PV system. Many studies have investigated the coverage ratio impact of PV sys-
tems and battery systems on self-sufficiency capability and economic performance [51–54].
However, most of these studies applied scenario analyses that investigate different ratios’
performance. The recommended ratio ranges from 50% to 200%, as can be found in these
studies. Based on a recommended system ratio from an Australian State Government
document, the baseline ratio in this research was set for 70% of the PV system capacity [55].
For scenario group B, three cases were introduced: (1) base case scenario without battery
capacity, which affects the base case VPP operation scenario only, (2) battery capacity of
70% PV capacity, (3) battery capacity of 140% PV capacity, and (4) battery capacity with
210% PV capacity.

Scenario group C: Scenarios for electricity demand growth
This study considered a demand growth of 5 years to reflect the future demand con-

ditions. The current demand is based on the demand data as introduced in Section 3.3.
The 5 years’ demand growth is forecasted using the estimated demand growth rate recom-
mended by Australian Department of Industry, Science, Energy and Resources (DISER) [56].
In the DISER’s 2020 report, the recent growth rate for 2019–2020 is used to estimate the
five years’ growth in the near future.

4. Findings and Discussions

This section discusses the feasibility of a distributed renewable energy management
system—VPP from the following aspects: (1) Carbon emission reduction, (2) Project eco-
nomic performance, (3) User electricity price reduction and (4) Consumption efficiency
measured by load factor.

4.1. Carbon Emission Reduction Performance of VPPs

Figure 8 presents the histogram of the simulation results of carbon emission reduction
(CO2-e) with VPP implemented in each SA1. The emission reduction was calculated using
Equation (5), where Ce−VPP is the emission of CO2 with VPP implemented, Ce−Total is the
total CO2 emission, and Ce−R is the emission reduction rate:

Ce−R =

(
1− Ce−VPP

Ce−Total

)
× 100% (5)

The carbon emission reduction factor was calculated based on the carbon dioxide
(CO2) emission factor provided in [57] for electricity purchased from the grid. According to
the report, in Victoria, Australia, the emission factor for CO2 is 0.98 kg/kWh. As can be seen
in Figure 8, with low PV coverage levels, the vast majority of SA1s have carbon emission
reduction rates lower than 10%, and the frequency of the 0–10% group increases while
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the demand growth scenario changes from current to future years. Increased PV coverage
scenarios have a significant effect in increasing the rate of reduction of CO2 emissions. It
can also be noticed that within the same PV coverage scenario, increasing BESS capacity
enlarges the group size of SA1s with higher carbon emission reduction rates.
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Figure 8 presents the histogram plots of SA1 communities’ carbon emission reduction
rate under different VPP operation scenarios. The X-axis represents the 10% interval
of carbon emission reduction rates being measured. The Y-axis represents the count of
observations that fall within each interval.

Based on Figure 8, VPPs have the potential to reduce communities’ reliance on fossil
fuel-based electricity. However, this capability depends on the capacity of available PV
and BESS in the VPP systems. Furthermore, the figure shows that even with medium or
high levels of PV coverage, around 20–30 communities in the second and third columns
have low carbon emission reduction rates of less than 20%. This is likely due to extreme
consumption levels in some industry or agriculture-focused communities that cannot be
effectively offset by renewable generation. Therefore, while VPPs perform well in most
communities with higher renewable energy and storage penetration, they may not be a one-
size-fits-all solution for all communities with various demand patterns. Future investments
and policy making should consider each community’s suitability when evaluating VPP as
a carbon emission reduction approach.

4.2. Economic Performance of VPPs Measured by 25 Years Net Present Value (NPV)

As presented in Section 4.1, the VPPs tend to have a better performance among the
communities when exposed to more renewable resources and BESS capacity. Neverthe-
less, the increasing size of distributed PV and BESS will involve a greater amount of
capital investment. Hence, it is essential to examine VPPs’ costs and benefits among the
multiple scenarios.

To measure the financial viability of investing in VPPs, this study calculated the VPP
project’s life cycle net present value (NPV) for each SA1. The NPV calculation considers a
25-year lifetime for PV and BESS systems. In the life cycle, the cost of the project includes:
(1) The cost of PV systems, (2) the cost of BESS systems, (3) the cost of construction, (4) the
cost of maintenance and replacement, and (5) the cost of electricity purchased from the
grid. The income of the project includes: (1) Income from selling electricity wholesale, and
(2) income from participating in FCAS services.
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The NPV calculation is this research applied the following equation:

CFn=1 =
(CPV+CBESS+CE_purchase_grid+CMaintenance+Iwholesale+IFCAS+SE_consumer)

(1+R)(n−1)

CFn =
(CE_purchase_grid+CMaintenance+Iwholesale+IFCAS+SE_consumer)

(1+R)(n−1)

NPV = ∑25
n=1 CFn

(6)

where, CFn is the present value of annual cashflow at year n, C is the cost item, I is the
income item, SE_consumer is the saving in expenditure on electricity by offsetting users’
demand, and R is the discount rate.

Figure 9 shows the histogram of the VPPs’ economic performance in each community
measured by 25 years NPV. The X-axis has a range from AUD −7 to 10 million with an
interval of AUD 1 million. The Y-axis shows the count of observations within each interval.
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It was found that the financial performance of VPP largely relies on the capacity of
renewable generators and storage systems. When the capacity remains at the current level,
the forecasted net present value (NPV) for investing in community-level VPP will be low.
The simulation results on the 25 years project NPV indicate that with current PV coverage,
most of the SA1s have low NPV or negative NPV values and the lowest NPV is around
AUD −5 to −4 million. In the current scenario, around 34–35% of the SA1s have positive
NPV values. This indicates that the investment in VPP with current installed PV capacity
will have a relatively low expected financial payback.

When the PV coverage increases to medium or high level, the NPV among SA1s shows
an increasing pattern, with over 88% of the SA1s populated above AUD 1 million in the
5-year scenario. The percentage grows up to above 90% of the SA1s with a higher NPV
than AUD 1 million in the 10-year scenario. Increasing PV capacity will have a positive
impact on the VPP’s NPV among the SA1s. However, the increase in BESS capacity can
have a double-sided effect on the project NPV. For example, if an SA1 community already
has a higher estimated profit (above AUD 10 million 25-year NPV), extra BESS capacity
will be more likely to further increase the profit level. On the contrary, if an SA1 community
has an estimated profit of less than AUD 1 million, the extra BESS capacity that incurs more
initial cost and maintenance cost will have a higher chance of reducing the exiting profit.

In summary, the economic payback and project value of the future VPP deployment
largely rely on the capacity of PV and BESS system. Higher PV and BESS system capacity
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gives VPP greater capability in demand offset and energy trading. It can also be found that
the high BESS capacity can sometimes reduce project economic feasibility, which may be
due to the high capital cost and maintenance cost of the BESS system.

4.3. Economic Benefits of VPP for Communities and End-Users

Based on the calculation of the NPV, this research also provides an estimation of the
electricity retail price which can fully offset the cost of the VPP. The adjusted electricity was
calculated using the ratio of the users’ net demand after the demand offset action of VPP
and the 25-year NPV in each SA1, as shown in the following equations:

CF′n=1 =
(CPV+CBESS+CE_purchase_grid+CMaintenance+Iwholesale+IFCAS)

(1+R)(n−1)

CF′n =
(CE_purchase_grid+CMaintenance+Iwholesale+IFCAS)

(1+R)(n−1)

NPV′ =
25
∑

n=1
CF′n

Padjusted =
∑25

n=1

(
ETotal − EVPP_User

) /
(1 + R)(n−1)

NPV′

(7)

where ETotal is the total demand in each SA1 and EVPP_User is the user demand offset by VPP.
Figure 10 is the histogram plots of the simulation results for the adjusted electric-

ity price with VPP operating under each scenario. The X-axis has a range from 0 to
0.1 AUD/kWh with an interval of 0.01 AUD/kWh. The Y-axis shows the count of observa-
tions (i.e., the number of SA1 communities) falling into certain intervals.
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The resulting histogram plots are shown in Figure 10. It can be found that VPP’s
economic performance has a strong impact on reducing the electricity cost for the local
communities, even with the current PV installation capacity. Most of the SA1s with
current PV capacity and low BESS capacity have reduced electricity price ranging from
0.05 to 0.08 AUD/kWh, while over 50% of the SA1s have an electricity price of less than
AUD 0.01. This illustrates a significant reduction compared to the Default Offer electricity
price (ranging from 0.1297 to 0.3091 AUD/kWh, excluding the service charge) provided
by the Essential Services Commission (ESC) of Victoria [58]. This demonstrates that the
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VPP has significant capacity in reducing the users’ electricity expenditure with different
demand profiles.

The results from the adjusted electricity price indicate that VPPs offer significant
benefits to end-users, even at the current level of renewable energy and BESS coverage.
Comparing the first column of Figures 9 and 10, it can be seen that despite the NPVs of
investment being suboptimal at low-PV and BESS coverage levels, end-users would still
benefit from much lower electricity prices by using VPPs. Therefore, it is recommended
that government bodies and potential investors take into account the positive impact on
end-users when considering VPP deployment. The successful implementation of VPPs
largely depends on the increase in distributed renewable energy and storage capacity. Since
a large portion of the procurement for such distributed generators comes from prosumers
or households, it is crucial to demonstrate the direct benefits of participating in VPPs to
end-users, prosumers, and the wider community.

4.4. Consumption Efficiency Measured by Load Factor

The load factor is an essential indicator for assessing the effects of load on the power
grid. As a distributed generator network, VPP has a significant impact on grid stability. The
load factor is defined as the ratio of the average load over time to the peak load over time.
The electricity infrastructure is built to sustain peak loads rather than normal loads. When
the load factor in a user cluster is higher, it signifies that the average load of the users is close
to the peak load, indicating that the energy infrastructure in this cluster is more efficient. In
contrast, if the load factor is low, it suggests that the consumers’ electricity consumption is
substantially lower than the peak demand that the electricity network is designed to meet
most of the time. As a result, a higher load factor indicates that the electricity network is
more efficient, whereas a lower load factor indicates that the network is less efficient, and
the network requires more ancillary service capacity to mitigate imbalanced frequency or
voltage when demand is much lower than the designed capacity.

This section provides an assessment of the VPP model’s impact on the grid’s consump-
tion efficiency using load factor as an indicator. The load factor in this study was calculated
using the following equation:

FL =
∑n E h

n

max
(

E h
n

) × 100% (8)

where FL is the load factor as a percentage and E h
n

is the hourly user demand in a year.
In this study, a comparison was made between the original load factor and the load

factor under VPP control. The original load factor was calculated using the current demand
data in each SA1, and a histogram plot was created (Figure 11) to show the distribution of
the load factors among the SA1s. The X-axis in Figure 11 represents the range of load factor
from 50 to 80% with an interval of 10%, while the Y-axis shows the count of observations
that belong to each interval. The figure shows that, of the 235 SA1s, over 50% have load
factors of around 60–65% and approximately 30 SA1s have load factors ranging from 65%
to 80%. Over one quarter of the SA1s have load factors below 60%.

The load factor results for VPP-controlled scenarios are shown in the histogram
(Figure 12). Compared with the original load factor histograms in Figure 11, the histograms
of low-PV scenarios in Figure 12 show a significant decrease in the distribution pattern,
with over 50% of the SA1s having lower load factors than 55%. This indicates that, when
applying the VPP system at current PV coverage level, the VPP will have a negative impact
on the efficiency and stability of Bendigo’s electricity network. The reason is that PV
has a higher output during the daytime while the users do not make their peak demand.
However, the PV output is not high enough to last in the system until the peak demand.
The consequence is that the PV output only reduces the average demand while the peak
demand cannot be mitigated. As a result, the load factor becomes higher than in the
situation without PV.
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The load factor situation is improved as the PV coverage level increases. As Figure 12
shows, in scenarios with high PV coverage and medium–high BESS scenarios, less than
25% of the SA1s have load factors lower than 60%. Furthermore, the BESS capacity shows
its benefits in the medium–high PV coverage scenarios, where the scenarios with higher
BESS capacity have more SA1s located in the load factor range of 65–75% compared to the
scenarios with low BESS capacity.

In summary, the results of load factors presented in Section 4.4 demonstrate that there
is a significant impact on the public electricity network in terms of consumption efficiency
when PV and BESS coverage are low. The current renewable and storage capacity in the
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sample communities are not sufficient to effectively offset the peak load among users,
resulting in a reduced load factor. This could cause unexpected frequency and voltage
turbulence during peak hours, which should be a concern for local network distributors.
Increasing the PV and BESS capacity can significantly improve the load factor of most
sample communities. However, approximately 10–20 communities experience a drop in
load factors even with medium–high PV and BESS coverage. This suggests that VPP may
not be a suitable option for these communities from the perspective of grid stability. It is
important to consider the balance between the deployment of VPPs and the stability of the
public electricity network when planning future investments and policies.

5. Conclusions and Further Research

This paper reports the results of a case study of an implementation of community-
focused VPP system in an Australian city. The aim of this study is to investigate the
VPP’s benefits and risks for end-users and local communities. In this study, a novel VPP
model with an RL-based control mechanism is introduced which is capable of operating
under various demand and supply profiles within each SA1 community. Geospatial
mapping and data mining approaches were utilised to capture the local renewable resources
and reconstruct the demand patterns for community-based user clusters. Based on the
simulation results, the data analysis provides an overview of the VPP’s performance in
terms of carbon emission reduction, project economic performance, electricity cost benefits
for end-users and communities, and the impacts on the grid consumption efficiency.

From the investment perspective, it was found that at current PV coverage level, the
implementation of VPP is not a feasible option due to the risks of low economic value, and
relatively poor performance in carbon emission reduction. Nevertheless, analysis of the PV
and BESS growth scenarios proves that the VPP has great potential to support the future
growth of the city’s renewable energy system and unlock the distributed system’s values
among the communities.

Ideally, with an increase in PV rooftop coverage to 25%, over 50% of the SA1 com-
munities will have a significant reduction in carbon emissions. When the PV coverage
further increases to 50% of rooftop are, over 70% of the SA1 communities will reduce the
carbon emissions by half. The increasing BESS capacity has the effect of maintaining carbon
emission reduction against demand growth. Compared with the scenario groups with
low BESS capacity, those with mid to high systems capacity will maintain a higher carbon
emission reduction rate even as the electricity consumption continues to grow.

For end-users, VPPs have great capacity in reducing the user’s expenditure on electric-
ity in all the scenarios when the adjusted electricity price lower than the Default Offer as
provided by the Victoria Essential Service Commission.

The analysis of load factor indicated that with current levels of renewable energy
penetration, VPPs tend to have a negative impact on the local electricity network that will
lower the consumption efficiency. It is a result of the insufficient PV and BESS capacity,
which reduces the average load but fails to significantly reduce the peak load. The alter-
native scenarios suggested that, with increasing PV and BESS capacity, VPP is capable of
improving the load factors compared to the default situation.

Due to the limitations in the data collection, this research does not consider the
detailed VPP operation from an electrical engineering perspective. The interaction among
VPPs operating in different communities are not considered as this requires single line
diagrams of the supply, distribution, and transmission network. The operating voltage and
frequency of the VPPs are not considered in this study, as they require further data input and
modelling of the grid-connected inverters and the feeder network. It is recommended that
future research may further expand the scope of research to include detailed simulation
of VPPs to include more aspects of electricity network impact factors such as voltage
control and frequency regulation. It is recommended that future studies may considerably
expand VPP modelling and functionalities, for example, by integrating a game-theory-
based bidding system in the market end of the VPP system model.
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To sum up, this research validates the VPP benefits for end-users and the communities
in terms of reducing carbon emissions and reducing electricity costs. However, the financial
viability and the grid impacts of VPP projects largely depend on the availability and
capacity of the renewable energy generators and storage systems.
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