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Abstract: Water distribution networks (WDNs) in urban areas are predominantly underground
for seamless freshwater transmission. As a result, monitoring their health is often complicated,
requiring expensive equipment and methodologies. This study proposes a low-cost approach to
locating leakages in WDNs in an urban setting, leveraging acoustic signal behavior and machine
learning. An inexpensive noise logger was used to collect acoustic signals from the water mains.
The signals underwent empirical mode decomposition, feature extraction, and denoising to
separate pure leak signals from background noises. Two regression machine learning algorithms,
support vector machines (SVM) and ensemble k-nearest neighbors (k-NN), were then employed to
predict the leak’s location using the features as input. The SVM achieved a validation accuracy
of 82.50%, while the k-NN achieved 83.75%. Since the study proposes using single noise loggers,
classification k-NN and decision trees (DTs) were used to predict the leak’s direction. The k-NN
performed better than the DT, with a validation accuracy of 97.50%, while the latter achieved
78.75%. The models are able to predict leak locations in water mains in urban settings, as the study
was conducted in a similar setting.

Keywords: leak localization; noise loggers; water distribution networks; machine learning; acoustic
sensors

1. Introduction

Based on recent statistics, the total coverage of constructed pipelines in 120 countries is
approximately 2,175,000 miles, of which 65%, 8%, and 3% of the whole length of pipelines
belong to the US, Russia, and Canada, respectively. Additionally, some other statistics show
that since 2010, 27% of the world’s population has been living in water-scarce areas, and
it is predicted that this amount will go beyond 42% in 2050 [1]. Implementing effective
management strategies should improve the current water distribution networks (WDNs).
This improvement will help solve the global water scarcity problems and minimize non-
revenue water (NRW). It will also strengthen the significant roles of pipelines in water
collection, transportation, and distribution [2,3].

Considering the above, the NRW percentage goes beyond 50% for old WDNs. How-
ever, this amount is approximately 30% in most WDNs [4]. Notably, the main source of
NRW is leakage in the water pipelines since it comprises 70% of the sources of NRW [5].
The leakage problems can lead to wasting natural resources and money and threaten public
health as contaminants can enter the water networks through the leaks. The development
of leak detection and localization technologies in WDNs is essential.

Approximately 50% of the WDNs in Hong Kong were constructed 40 years ago, result-
ing in the aging and degradation of pipes and, consequently, water loss through leaks [6].
The annual financial loss from pipeline leakages is approximately 173 million USD; therefore,
the respective departments should take action to control it [7]. Although the water supplies
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department (WSD) has started the rehabilitation and replacement scheme to improve the
WDSs and prevent water loss through the pipelines, the water network in this country
still needs further improvements since the number of reported leaks in pipelines was ap-
proximately 8512 in 2017. With this in mind, improving the leak detection and localization
approaches is urgent for the concerned municipalities to minimize the damages. Therefore,
several techniques have been utilized so far for leak localization on WDNs. However, using
acoustic sensors for leak localization is more reliable and less costly [8]. The acoustic sensors
that measure the acoustic waves in the pipes are classified into several groups, such as
traditional accelerometers, fiber optic sensors, magnetostriction sensors, pulsed lasers, and
noise loggers. Due to the high sensitivity of fiber optic sensors, magnetostriction sensors, and
pulsed lasers, they are popular in laboratory environments. However, since noise loggers
have a water-resistant design and wireless communication ability, they are more widely used
on-site [7,8]. Additionally, based on the conducted studies in this area, the current literature
is imbued with the following shortcomings:

1. There is a lack of studies that utilize one noise logger for leak localization on real
water networks, which is less costly and time-consuming [9,10]. Most of the studies
in this area have utilized two or more noise loggers to localize the leaks in WDNs,
which increases the project’s total cost and processing time.

2. Additionally, delving into the literature revealed that utilizing ML-based techniques
for leak localization on real WDNs has not achieved significant success yet. Most
recent studies have been conducted in laboratories under controlled conditions.

Considering the mentioned gaps, the objectives of this study are as follows:

1. To utilize one noise logger for localizing leaks on real water networks since the time
and cost of the project can be reduced considerably.

2. From objective (1), develop ML-based techniques for leak localization in real WDNs
in Hong Kong.

The primary goal of this study is to develop ML-based techniques for leak localization
in real WDNs by utilizing one noise logger in Hong Kong.

Background

Conducting a literature review is essential to capture the current breakthroughs
in the research industry [11]. Different steps are required for conducting a compre-
hensive literature review, as follows: (1) conducting a comprehensive bibliometric by
searching the popular primary databases, like Scopus, Web of Science, and Google
Scholar [10]; (2) conducting snowballing to increase the number of papers [12]; (3) filter-
ing the unrelated papers using different filters [13]; and (4) conducting a quantitative
and qualitative analysis [14].

For localizing the leaks in WDNs and overcoming the leakage issues in the pipelines,
different leak detection and localization techniques have been considered by various
researchers around the world. Additionally, several techniques have been utilized
for leakage detection, such as acoustic leak detection, optical fiber acoustic sensing,
analysis of the pressure point, ultrasound leak detection, infrared thermography, and
electromagnetic methods [15–25]. Since acoustic sensors are inexpensive and highly
reliable, the acoustic leak detection technique is one of the most reliable techniques for
leak detection and localization [8]. The signal behavior can easily be studied under
several factors, and the acoustic equipment is usually mechanically stable. This stability
grants it the potential to be helpful in a wide range of environmental and physical
conditions. Moreover, operating the noise loggers does not require demanding training
because using them is not sophisticated. One of the acoustic-based techniques is cross-
correlation, the most used technique for leak detection and localization. Although its
success is remarkable, it might cause false alarms in the city networks due to background
noises and water usage. Their high expenses are another drawback to consider [8].
Notably, leakage detection is comprised of two steps: detection of the leak, where the
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sensors are deployed in the WDSs for acquiring the acoustic signals and predicting
their states, and localization of the leaks, where their locations are pinpointed in the
WDNs. Either one sensor or multiple sensors can be utilized for leak localization. Some
studies suggest that using two sensors is more reliable than one. However, there are
some limitations to using several sensors, such as suitable environments and financial
issues [10]. For instance, Ref. [9] proposed new technology for localizing downhole
tubing leaks using only one sensor. As mentioned by [26], the position of leaks can be
localized in the WDNs using a listening stick for listening to each service connection,
step testing, or noise loggers. Notably, using noise loggers for localizing leaks on the
WDNs is preferable because step testing and listening stick surveys require night work
and are time-consuming. Whereas noise loggers can be configured and deployed to
record the acoustic signals on their own at any time.

Additionally, in studies where more than one feature is considered for leak lo-
calization, there is a need to consider sophisticated techniques for understanding the
relationship between the leakage location and several features. Researchers have im-
plemented machine learning (ML)-based models, such as artificial neural networks,
k-nearest neighbors, deep neural networks, support vector machines, naïve Bayes,
decision trees, and random forests, for detecting and localizing laboratory simulated
leaks [25–31]. Another study proposed a leak identification technique based on tran-
sient frequency response and deep learning. Noise loggers are generally positioned at
the meeting point of pipes during data collection for leak detection. Therefore, using
a single noise logger without knowing the pipeline on which the leak is located poses
a massive problem during repairs. The questions to answer here are: (1) Where is the
exact location of the leak? (2) Which side of the valve or connection (location of the
noise logger) is appropriate for excavation? (3) What is the most reliable method for
determining the exact location of the leak? This research explores the solutions to these
questions and presents models that tell in which direction excavation of the soil will be
required, pivoting to the position of the noise logger. In this case, it is represented as
“Right” or “Left”. Theoretically, any of these labels could be in the water flow direction
or against it. The possibility of the disturbance from the interaction between the acoustic
leak waves and water flow waves is applied in this study. However, it should be noted
that the actual properties of the waves are not studied. Instead, the effects of this inter-
action during feature extraction are utilized. The idea was motivated by the following
findings: Mahmutoglu and Turk [32] used the receiver signal strength technique with
two receivers to determine the location and direction of the leak point. The leak’s
distance was computed with one receiver’s data, while the second receiver was used to
estimate the direction. According to the authors, using multiple receivers to determine
the leak distance increases simulation errors. Furthermore, a study indicated that when
the water leaves the leak holes with turbulence, the vibrations transmit acoustic signals
through the pipe walls and into the water [33]. The propagation of waves in water and
other fluids is a complicated phenomenon. Still, it can be understood to occur through
the water core and the pipe wall simultaneously, as if the two media act as a couple.
Hence, the attenuation of the waves in both the water core and the pipe walls agrees to
co-occur [34]. Therefore, the propagation of the acoustic leak signal is affected by the
water flow and the pipe.

Considering the review of the current literature, this study aims to grapple with the
following gaps:

• The current literature lacks a study that considers the application of ML-based tech-
niques for localizing leaks in real water networks. Most studies in this area are
conducted in labs, which lack the conditions WDNs are subjected to in the field.

• Most studies in this area have also used multiple noise loggers for localizing leaks in
water networks, which have two main shortcomings.

(i) A significant increase in the total expenses incurred by the project;
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(ii) Increased time spent in data processing from multiple acoustic devices due to
correlation.

Therefore, the current body of literature lacks a study that utilizes one noise logger for leak
localization on real water networks, which is less costly and time-consuming.

The rest of the paper is organized as follows: Section 2 explains the study research
methodology in detail, including the data acquisition, the theoretical background of the
adopted signal decomposition technique, and the feature selection methods. The ML mod-
els’ development and their optimized parameters are also included in this section. Section 3
presents the performances and discussions of the developed models. The effectiveness of
the feature selection method (PCA) used in the study are highlighted in this section. Finally,
Section 4 summarizes the achieved study objectives and proposes relevant future research
directions in the study domain.

2. Methodology

Figure 1 illustrates the detailed research framework of this study, comprising four
phases: (1) conducting a comprehensive literature review, (2) acoustic signal acquisition
and leak detection, (3) signal processing and data preparation, and (4) leak localization.
Regarding the first phase, a literature review of noise-logger-based studies and machine
learning-based techniques was conducted. This review was conducted to ascertain the need
for the study. In the second phase, the noise loggers were deployed at midnight to acquire
acoustic signals. It took 12 months to acquire enough acoustic signals for the study. The
third phase, analyzing the dataset, was conducted simultaneously with the second phase
and was concerned with signal processing, feature extraction, and data preparation. In the
fourth phase, several ML-based techniques were applied to calculate the leak distance and
predict the direction of the leak.

The concept utilizes the features extracted from the acoustic signals generated and
recorded with noise loggers connected to the WDNs. The detailed explanations of the
different phases (see Figure 1) involved in this study are as follows:

2.1. PHASE 1: Conducting a Comprehensive Literature Review

The first phase reviewed the noise logger-based studies and machine learning-based
techniques. A detailed systematic review was conducted to find suitable techniques for
leak localization in WDNs. Several steps were taken to conduct a systematic review. As the
initial step, a comprehensive bibliometric search, including the key terms, was conducted
in three main databases: Scopus, Web of Science, and Google Scholar. After which, to
increase the number of papers, snowballing was conducted. The next step is the filtration
of irrelevant articles using several filters, such as those published in peer-reviewed journals
or the past fifteen years. After shortlisting the appropriate papers, a quantitative and
qualitative analysis was conducted.
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2.2. PHASE 2: Signal Acquisition and Leak Detection

Most leak detection and localization studies were conducted in laboratories under
controlled conditions. However, localization of leakages in the WDNs in the cities could
be challenging since the background noise, and other ambient conditions are difficult to
control in real WDNs that supply many households and companies. The Hong Kong
Water Supplies Department (WSD) provided information about suspected leaks and their
location maps to the research team. The research team then deployed the noise loggers
and configured them for time interval midnight recordings. The loggers automatically
record the signals and transfer them to the cloud for convenient recovery. They were
configured to take four (4) recordings every night from 3:30 a.m. to 4:15 a.m. at 15-min
intervals. The choice of operation time is to minimize the interference of noise from the
surrounding environment [27] in recording the actual acoustic leak signal. It is, however,
necessary to note that the distance from which noise loggers can detect acoustic signals
is determined by physical characteristics, such as pipe material, thickness, diameter, etc.
The signals travel farther in narrow and metallic pipes than wider pipes composed of
other materials, such as asbestos. Ideally, the signals could travel approximately 300 m
maximum in narrow ductile pipelines [26].

A sampling frequency of 4096 Hz was used with a recording length of 10 s for acquir-
ing acoustic vibrations each time. The frequency of the leak signal in the WDN typically
ranges from a few hundred Hz to a few kHz [27]. According to the Nyquist–Shannon
sampling theorem, the sampling rate of the equipment must be at least twice that of the
highest frequency component of the signal to capture its content accurately. Moreover,
a very high sampling rate was avoided to prevent a larger dataset generation, which
would cause storage burdens. Further, the distance of the proposed leak location from
the sensor is measured for localization model development. The deployed noise loggers
were left on the site for approximately 3–5 days to ensure that the data obtained was
devoid of significant biases. The recorded signals were downloaded from the cloud at the
end of the deployment period. It took the research team 12 months to acquire sufficient
data to develop and validate the localization models. A discrete wavelet transform was
applied to the collected signals to study their frequency patterns and changes further.
The signals then underwent feature extraction to obtain numeric data formats for the
machine learning techniques application. These features are level, root-mean-square
(RMS), spread, frequency spread, kurtosis, autocorrelation kurtosis, skewness, maximum
amplitude, peak amplitude, time-domain average amplitude, frequency-domain average
amplitude, peak frequency, frequency centroid, crest factor, energy, maximum Lyapunov
exponent (MLE), and autocorrelation MLE. Refer to [8,28] for further information on
features and leak detection. More information about the physical characteristics of the
features and their derivations is also found in those studies. The acoustic signals from
the no-leak cases were separated, and only those from the leak cases were used in the
subsequent stages of localization.

It was required to study the behavior of the signals generated in a non-leak condition
to reduce the influence of background noise on the pure leak signal. Due to this, the
team deployed noise loggers to record signals at locations in the WDNs that were initially
identified as leak points but subsequently repaired by the water supplies department. In
this process, the signal properties from the non-leak conditions were studied and used to
reinforce the application of the machine learning models used in the study.

2.2.1. Nature of the Deployment of Noise Loggers for Data Collection

Diverse leak sizes for different deployment distances were used to collect signals for
the training dataset. Further, three (3) different leak sizes, i.e., large, medium, and small,
were used to validate the developed localization models. The first of the noise loggers
was 3.556 m away from the large leak, the second was 0.9 m away from the medium-sized
leak, and the third was 1.314 m away from the small-sized leak. These distances were not
pre-simulated for data acquisition since it was field data. Distances here refer to the stretch
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between the leak spot and the pipeline valve through which the researchers could access
the pipelines. The noise logger deployment is shown in Figure 2.
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2.3. PHASE 3: Signal Processing and Feature Extraction
2.3.1. Signal Processing

Working with these signals requires prior knowledge of their behavior in a leak or non-
leak situation. Signal processing has been an integral part of this study since everything is
based on the behavior of the signals. It is imperative to obtain a clear pattern for the signals
for feature extraction. Tijani et al. [8] used correlation analysis to show how significantly
better data generated from processed signals performed than raw data. This study was
conducted with the same dataset used in this study.

Several signal processing techniques have previously been used to denoise leak
signals from acoustic noise loggers. Among these techniques are linear prediction (LP),
singular value decomposition (SVD), dual-tree complex wavelet transform (DTCWT),
empirical mode decomposition (EMD), a method based on the received signal strength
(RSS) [10,28], variational mode decomposition (VMD), [29] and fast Fourier transform
(FFT). FFT is implemented to compute the discrete Fourier transform since its direct
computation is inefficient [30]. The RSS method was proposed by [31] to denoise signals
for leak detection and localization. The authors went further with the application of the
method to determine the sizes of the leaks, which will be of great importance should
it successfully differentiate between small and large leak sizes. With this method, they
indicated that distant leakages could be located with minimal average errors. The main
drawback of this approach is the requirement of prior knowledge about the emanating
area of the strength and the wavelet propagation. A study by Liu et al. [29] used a
denoising technique based on VMD for leak localization in water supply pipes. The
method achieved an average accuracy of 93.58%, which is a good performance. LP
is efficient in analyzing wavelets that are propagated from sounds and voices. It has
largely been used in speech recognition and speech synthesis. The technique requires
simple computational demands in its application, coupled with its efficiency in sound



Buildings 2023, 13, 849 8 of 21

signal processing. It has been used to extract the significant features of a leak signal
recorded by acoustic noise loggers. The method works on the principle that the resonant
frequencies of a linear system can be captured using discrete-time signal outputs. It
considers a short time range to apply this discretization but has been able to obtain the
essential features required. It is then used to obtain the main features of the leak-induced
wavelet excitation and the system in decomposition [32,33]. Cui et al. [34] applied EMD
in dealing with the problems of wave attenuation and dispersion in a pipe during leak
detection. Propagated waves face these problems when they have lower frequencies and
have to travel long distances.

Moreover, undecomposed wavelets with these characteristics lead to low localization
accuracy. EMD identifies the main parts of the leak wavelet and facilitates its separation
from background noise. It is also effective in processing nonlinear and nonstationary signals
from acoustic emissions and is used to decompose signals in both time and frequency
domains. With an adaptive noise cancellation mechanism [35], high-fidelity acoustic
leak signals can be extracted without needing prior knowledge of the behavior of either
background noise or leak noise. The authors realized they could identify the features of
nonstationary, white, and color noises. This data-driven mechanism effectively removes all
external noise unrelated to the actual leak signal.

It should be noted that most of these studies were performed in the laboratory, and
the leaks were simulated. In this study, we used data from the field subjected to different
conditions from those obtained in laboratories, usually under controlled conditions. The
EMD method was used to extract the features for the ML models’ development, given its
effectiveness against background noise.

2.3.2. Feature Extraction

Feature extraction entails the production of the data-driven values of certain character-
istics of the acoustic waves using mathematical expressions. MATLAB/Octave codes were
used for the extraction of these features. The features were extracted using time-domain
and frequency-domain dependencies. Both domain attributes were used because vibroa-
coustic emissions have been shown to exhibit disparate features under each of them [36].
The extracted features are presented in Table 1.

Table 1. EMD feature extraction results.

Feature Maximum Value Average Value Minimum Value

Level 8.00 × 101 6.65 × 101 5.07 × 101

Spread 5.07 × 101 1.10 × 101 2.76 × 100

Root Mean Square 2.37 × 101 6.16 × 102 8.33 × 103

Time-domain
Average Amplitude 1.63 × 101 4.72 × 102 6.40 × 103

Peak Amplitude 1.89 × 100 2.80 × 101 5.17 × 102

Crest Factor 1.72 × 101 4.94 × 100 3.06 × 100

Energy 5.63 × 101 6.15 × 102 6.94 × 104

Maximum Lyapunov
Exponent (MLE) 3.00 × 104 2.05 × 104 8.41 × 103

Autocorrelation Kurtosis 1.44 × 104 1.52 × 103 4.65 × 100

Autocorrelation MLE 2.87 × 104 2.21 × 104 8.34 × 103

Frequency-Domain
Average Amplitude 1.34 × 103 3.04 × 104 2.00 × 105

Peak Frequency 1.96 × 103 6.98 × 102 1.06 × 101

Maximum Amplitude 4.46 × 102 9.03 × 103 4.40 × 104

Frequency centroid 1.38 × 103 6.62 × 102 2.84 × 101

Skewness 2.18 × 101 5.38 × 100 9.26 × 101

Kurtosis 8.49 × 102 8.91 × 101 3.78 × 100

Frequency Spread 1.33 × 100 1.01 × 101 4.88 × 104
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The EMD decomposes the signal x(t) in successive intrinsic mode functions (IMFs), ci.
It is a data-adaptive method that iterates to fine-tune the signal and minimize its residue rm,
thereby eliminating the white noise from the pure signal. Thus, the iteration continues for
m IMFs until rm reaches a monotonic function from which IMFs cannot be further extracted.
As shown in Equation (1), the residue rm converges to stop the iterations [37].

x(t) =
m

∑
i−1

ci + rm (1)

The residue is calculated at every time t [38] as:

r(t) = x(t)− c(t) (2)

The results of the extracted features in EMD are presented in Table 1. The table shows
the range of the values for each feature.

2.3.3. Data Preparation: Feature Selection by the Principal Component Analysis (PCA)

Classical machine learning algorithms can be susceptible to overfitting if the dataset
size and its features are not well balanced. Processes were taken to study the effects of the
feature combinations on the performance of the models. The principal component analysis
(PCA) was used since the attributes have significant variabilities. The combination was
set to select a group of features whose cumulative variability equals or exceeds 95% of the
total variability. The selection was achieved by preferring features with more significant
variabilities over those with smaller variabilities. Since PCA is sensitive to the data scale,
normalization with range transformation, that is, (0–1), was applied to the dataset before
running the analysis.

RapidMiner 9.10 was used for the PCA attribute reduction. The “dimensionality re-
duction” was set to “keep variance”, and the “variance threshold” was 0.95. This threshold
was set to ensure that the process stops adding new attributes when a cumulative variance
of 95% is achieved. The results of the PCA include the standard deviation of the individual
features, the proportion of variance, and the cumulative variance of the entire set of features
in the dataset, provided with the eigenvalues. The eigenvectors are provided so that users
can identify the features comprising the variance that might be considered. The following
steps were followed in choosing the best feature combination.

1. The combined most variable features are used for modeling to observe the performance.
2. The next most variable feature is added to the features used in step 1, the model is

revised, and the performance is observed again.
3. If the performance from step 2 is better than step 1, step 2 is repeated until there is a

reduction in accuracy or no increase in the subsequent accuracies of the predictions.
4. The features from step 3 are chosen as the optimal feature combination.

Out of the 17 initially extracted features, six emerged as the most suitable combination
for the best performance of the models. The dataset consists of 265 data points, of which 80%
were used for training and the remaining 20% for testing. Another leak dataset consisting
of 80 data points was collected to validate the developed algorithms. The resulting features
are presented in Table 2.
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Table 2. The cumulative variance of selected features.

Attribute Standard Deviation Proportion of Variance Cumulative Variance

Frequency Centroid 0.567 0.382 0.382
Maximum Amplitude 0.488 0.283 0.665

FD Average Amplitude 0.359 0.154 0.819
Crest Factor 0.247 0.073 0.892

Level 0.168 0.034 0.926
Spread 0.156 0.029 0.955

2.4. PHASE 4: Developing ML-Based Techniques for Leak Localization

In this study, the ML-based techniques for leak localization were developed in
RapidMiner Studio 9.10. After selecting the operators from the RapidMiner software
library, their parameters were configured based on our preferred definitions. A total of
four ML techniques were developed in this study for the prediction of leak direction
and distance. As shown in Figure 2, two arbitrary options were considered in predicting
the leak directions, i.e., left and right. Moreover, two ML-based techniques, decision
trees (DT) and k-nearest neighbors (k-NN), were utilized to predict leak direction. A
regression-based ensemble k-NN and a support vector machine (SVM) model were also
used for leak distance prediction. Notably, the same features and datasets were used
for the training and testing of the ML-based models since a comprehensive comparison
could be conducted among the developed models. Different parameters were employed
for developing the models in the RapidMiner Studio, such as multiply, select attribute,
set role, apply model, etc. By using the “apply model” function, the ML-based algorithms
can be applied to the dataset. The output of the models will be presented when the
process is executed.

2.4.1. Cross-Validation

The models were trained, tested, and validated on the datasets using cross-validation.
The cross-validation method is usually used when the dataset is small, as in this case. It
comprises two subprocesses: the training subprocess and the testing subprocesses. The
former houses the core operator of the model, while the latter applies the model to test
its performance. The parameters used for cross-validation in all the developed models
(i.e., DT, k-NN, and SVM) were the same and are as follows: split on batch attribute: no,
leave on out: no, number of folds: 10 (i.e., the dataset is divided into ten equal subsets,
from which one is used for testing and the remaining are used for training), sampling type:
automatic, use local random seed: yes (value = 1992), enable parallel execution: yes. Most
of these parameters were left default, except for the “number of folds”, configured to create
a suitable number of subsets for the dataset. Automatic sampling uses stratified sampling
since it is a nominal classification problem. This sampling type ensures that the distribution
of the target variable amongst the subsets is even. Specifying the local random seed allows
the same subsets to be created whenever the model is executed.

The explanations of the utilized techniques for the prediction of leak direction are
as follows:

2.4.2. Development of Regression Models for Leak Distance
Support Vector Machines (LibSVM)

After the PCA analysis of the dataset to obtain the most variable features, a special
form of support vector regression (LibSVM tool) was applied to predict the leak distances
with a 1 m accuracy. During its invention and development, experiments were used to
show its possession of superior performance in many cases for SVM applications [39].
The parameter settings for LibSVM used in this study are listed in Table 3. The last
three were seen as expert parameters. The RBF can easily handle both linear and
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nonlinear values and has a good way of handling the complexity of the models by
using hyperparameters.

Table 3. Parameters used for tuning the ML techniques for leak direction and distance.

ML Techniques Parameters

LibSVM

kernel type: radial basis kernel function (RBF), gamma (γ): 0, complexity
constant (C): 7.5, cache size: 80, epsilon: 0.1, tolerance of loss function of
epsilon-SVR (p): 0, shrinking: calculate confidences: confidence for
multiclass: False.

Ensemble k-NN
transformation regression: transformation method = exp, z-scale = False.
k-NN operator: k = 5, weighted vote = True, measure types = mixed
measures, and mixed measure = mixed Euclidean distance.

Decision Tree
criterion: Gini index, maximal depth: 10, apply pruning: yes, confidence:
0.1, apply prepruning: yes, minimal gain: 0.01, minimal leaf size: 2,
minimal size for split: 10, number of prepruning alternatives: 3

k-NN k = 3, weighted vote: yes, measure types: mixed measures, mixed
measures: mixed Euclidean distance

SVM requires a solution to the optimization problem.

minimize :
b,w

1
2 wTw

subject to : yn
(
wT§n + b

)
≥ 1

(3)

where the linear equation yn
(
wTxn + b

)
is the equation of the plane [40].

The regularization parameter C in Equation (5) is used to control the algorithm’s
complexity, which is essential because of the source of the data. Even though robust signal
processing and feature selection were performed, there is no guarantee that they will be
completely noise-free. The other parameters were left at their defaults.

The choice of a small C (7.5) was considered for regularization and controlling the
sensitivity of the outliers. The C was carefully chosen with the RBF kernel and the other
properties to provide a soft-margin SVM. Unlike a hard-margin SVM, the soft-margin
widens the boundary of the support vector while allowing some of the data points into it,
thereby violating the boundary. However, in return, it will achieve a better score, as seen in
Section 3.

Considering the training data (xn, yn) in Rn, n = 1, 2, . . . , N, the SVM allows a slack
ξn ≥ 0 for the number of violations in the margin allowed to the data points.

Considering the slack, the second part of Equation (3) [40] becomes flexible.

yn

(
wTxn + b

)
≥ 1− ξn (4)

The optimization then becomes:

minimize :
b,w,ξ

1
2 wTw + C

N
∑

n=1
ξn

subject to : yn
(
wT§n + b

)
≥ 1− ξn, ξn ≥ 0, ∇n = 1, 2, ..., N

(5)

The RBF kernel is helpful when the dataset is complex with high nonlinearity. There
is no doubt that multicollinearity in a dataset affects the learning and leads to overfitting
in most cases. Additionally, extreme complexity makes it tedious for the ML algorithm to
draw a simple pattern for the dataset. The RBF kernel [39] is defined as:

k
(
x, x′

)
= exp (−γ

∥∥x− x′
∥∥2
) (6)

where ‖x− x′‖ is the Euclidean distance between the two examples. It can be seen from
Equation (6) that γ directly affects the width of the kernel. A small γ = 0 was chosen in this
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work because of the dataset complexity to make the kernel as wide as possible. However, it
should be noted that the integrity of the support vectors was not over-compromised.

Ensemble Learner with a k-NN

A k-NN was used in an ensemble learner using the transformed regression operator
in the RapidMiner software. The transformation method used for the nested operator was
“exp”, which is exponential, and the “z scale” was set to false. Table 3 shows the parameters
utilized for ensemble k-NN in this study.

The choice of transformation specifies which type of transformation is to be performed
on the label variable. The process creates a linear relationship between the dependent
and the independent variables. A typical simple exponential transformation is shown in
Equation (7) [41].

y = Ba0+a1x → log(y) = a0 + a1x • log(B) (7)

A total of five nearest neighbors gave a better score for the training and validation of
the distance model. Voting based on the majority was used to classify the unknown point.

2.4.3. Development of Classification Models for Direction
Decision Tree (DT)

A decision tree technique is a tree-like model based on supervised learning and is
widely used in many machine learning problems. The DT structure comprises several
internal nodes, branches, and leaves. Notably, each internal node of the trees shows a test
on an attribute. Since the decision tree produces a visual flowchart as an outcome, it can
be easily interpreted and understood. Another advantage of the decision tree is that it
requires less effort and computation time than other techniques [42–44]. The tree structure
is presented in Figure 3, and Table 3 shows the parameters used to develop the decision
tree model in this study.
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The Gini index measures the inequalities in the distribution of the label characteristics,
and it is used to create partitions in the dataset. Low values of the Gini index show high
purity and stable node for a decision to be made, usually requiring no split anymore. It is
also determined which feature to use as the root or a node for the split. The wide diversity
of the attribute values resulted in the large distribution of the tree, requiring a parameter
that must sufficiently support the performance of the tree algorithm. Equation (8) [45]
indicates the mathematical description of the Gini index.

G = 1−∑m
k=1 p2

k (8)

where k = 1, 2, . . . , m and pk is the proportion of samples belonging to class K.
The depth of the tree, pruning, minimal gain, and size limitations were set to combat

overfitting issues. It is necessary to control and curb the decision tree’s growth to ensure
that memorization and overlearning do not occur during training. Otherwise, it will result
in poor performance when validated with unseen data.

k-Nearest Neighbor (k-NN)

k-NN is a nonparametric supervised learning algorithm utilized for classification
purposes in this study. This algorithm can predict the new dataset based on the similarity
measure. In doing so, the k-NN algorithm assumes the similarity between the new data
and the k-training dataset and puts the new case into the class nearest to the available
classes. In other words, it classifies the data based on how its neighbors are classified
and put the new data point in the category with the highest probability of housing
it [46]. One of the advantages of the k-NN algorithm is that it can provide good results
with high accuracies for large and small datasets in case they are labeled and noise-free.
However, finding a suitable k-number with a high-accuracy model is challenging [47].
The k-NN technique is suitable for classification purposes. This study used it to predict
the direction of leaks in real water networks. The parameters for the developed k-NN
model can be seen in Table 3.

3. Model Implementation and Validation
3.1. Performance Measures

The performance of the leakage distance prediction was measured using a 1-m maxi-
mum distance rule. The purpose of pinpointing the leak location is to make the excavation
and repair easier for the Water Supplies Department or any associated organization con-
cerned. The successful location of the position of a leak is performed within a 1-m radius of
the actual leakage point. Likewise, class recall, class precision, and classification accuracy
were used for assessing the leakage direction models. The computations of these metrics
are shown in Equations (9)–(11), respectively.

Given the following definitions [45]:

• TR = true Right: when both the predicted class and the actual class are R;
• TL = true Left: when both the predicted class and the actual class are L;
• FR = false Right: when the predicted class is R, but the actual class is L; and
• FL = false Left: when the predicted class is L, but the actual class is R.

Class recall =
TR

TR + FL
or

TL
TL + FR

(9)

Class precision =
TR

TR + FR
or

TL
TL + FL

(10)

Prediction accuracy =
TR + TL

TR + TL + FL + FR
(11)
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3.2. The Analysis of ML-Based Models for Leak Distance
3.2.1. LibSVM

The LibSVM yielded a bias of −4.196 for the prediction, similar to the intercept c in
the well-known line equation y = mx + c. Other salient outcomes to consider about the
model are the weights of the individual features, like the coefficients of the terms in a line
equation. These parameters are essential because the SVM algorithms use them to create
the hyperplane to achieve optimized predictions. They also reflect the actual effects carried
by the attributes in the dataset. The weights of the features are presented in Table 4.

Table 4. Weights of attributes for LibSVM.

Attribute Weight

Level 4.89 × 105

Spread 8.14 × 104

Crest Factor 4.45 × 104

Avg. Amp. 1.43 × 100

Max. Amp. 2.87 × 101

Freq. Centroid 6.02 × 106

The LibSVM model achieved a training accuracy of 85.28% and a validation accuracy
of 82.50% using a maximum of 1m radius measure as the acceptable limit. The errors
were uniformly distributed. Thus, the model performs well. A mean error of 0.036 and a
standard deviation of 0.980 were achieved. Therefore, the errors were not overspread about
their mean value.

3.2.2. Ensemble k-NN

The k-NN achieved an accuracy of 80.0% for training and 83.75% for validation,
maintaining the 1 m as the acceptable accuracy limit. The validation yielded a mean error
of 0.864 and a standard deviation of 4.381. These values were high because the few wrongly
calculated distances were strangely large compared to the actual. However, the mean error
and deviation of the correctly calculated distances were insignificant and as low as 0.067
and 0.260, respectively. Conspicuously different from the combined results, showing how
significantly the few wrongly predicted distances affected the entire model. Theoretically,
normalization is usually required when using k-NN because of its sensitivity to the scale
of the attributes. Outlier detection could also be used to minimize the effects of these
impurities, though none of them were considered in this study. For a pragmatic approach,
it was realized that these data cleansing mechanisms were not inapplicable to this model
and the given dataset as they resulted in poor performances. Subsequently, PCA was used,
and it proved useful and successful. The training and validation errors are presented in
Table 5.

Table 5. Training and validation of RMSEs and MAEs.

Model Parameter Training Validation

LibSVM
Root mean square error 2.888 0.981

Mean Absolute error 0.976 0.689

Ensemble k-NN
Root mean square error 4.589 4.465

Mean Absolute error 1.879 1.561

In Table 5, the validation RMSE and MAE values supersede those of the training sets
in terms of optimality. Here, the RMSE and MAE are agreed upon as performance measures
because the behaviors of the models follow an acceptable trend. This result is a reliable
performance indication of the models because the validation dataset was obtained from a
different field location and was never used in training.

The predicted leakage and actual leakage distances can be visualized in the plots
shown in Figure 4. The three noise loggers were stationed at three different distances
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(0.9 m, 1.314 m, and 3.556 m) from the three leakage spots, see Section 2.2.1. Most
points recorded validation errors of less than 1 m, with a few data points having high
variations. K-NN has six data points with wider marginal errors, and it is noteworthy
to recall that normalization and outlier detection were not considered during the data
processing stage.
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Accuracy Table

The training and validation accuracies for all the models are presented in Table 6. A
maximum of 1 m is considered in all cases. The accuracies are calculated by Equation (12).

Accuracy =
Number of correctly predicted datapoints

Total number of predictions
(12)

Table 6. The training and validation performances of the models.

Model Training Validation

LibSVM 85.28% 82.50%
Ensemble k-NN 80.00% 83.75%

3.3. The Analysis of ML-Based Models for Leak Direction
3.3.1. Decision Tree (DT)

The DT achieved a training and validation accuracy of 90.08% and 78.75%, respec-
tively. Also, the DT classification structure is shown in Figure 3. A confusion matrix in
Tables 7 and 8 shows the training and validation accuracy of the model.
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Table 7. The confusion matrices for the training of the direction machine-learning models.

k-NN

Accuracy = 92.08% true Right true Left class precision
predicted Right 68 7 90.67%
predicted Left 5 74 93.67%

class recall 93.15% 91.36% 92.06%

Decision Tree

Accuracy = 90.08% true Right true Left class precision
predicted Right 67 9 88.16%
predicted Left 6 72 92.31%

class recall 91.78% 88.89% 90.08%

Table 8. The confusion matrices for validation of the direction of machine-learning models.

k-NN

Accuracy = 97.50% true Right true Left class precision
predicted Right 29 1 96.67%
predicted Left 1 49 98.00%

class recall 96.67% 98.00% 97.50%

Decision Tree

Accuracy = 78.75% true Right true Left class precision
predicted Right 29 16 64.44%
predicted Left 1 34 97.14%

class recall 96.67% 68.00% 78.75%

3.3.2. k-NN

Tables 7 and 8 contain the training and validation results of the developed k-NN model.
It is seen that the k-NN model achieved a training accuracy of 92.08% and a validation
accuracy of 97.50%. Both class precision and class recall in all cases were also 90% or more,
showing the reliability of the model and its performance. The class precision and recall
indicate the relevance of the classifier. A low validation error, i.e., 2.50% from the model, is
also a good performance indicator.

3.4. Analyzing the Effectiveness of Adopting the PCA

All 17 extracted features were used as input attributes to show the cogency of adopting
the PCA to remove multicollinearity. The same parameters applied to the previous models
were used. The features were (1) level, (2) spread, (3) crest factor, (4) FD average amplitude,
(5) maximum amplitude, (6) frequency centroid, (7) RMS, (8) TD average amplitude,
(9) peak amplitude, (10) crest factor, (11) Energy, (12) MLE, (13) autocorrelation kurtosis,
(14) autocorrelation MLE, (15) peak frequency, (16) skewness, and (17) kurtosis.

The LibSVM model achieved a prediction accuracy of 37.50% (see Table 9), which
is lower than the accuracy of the same model when PCA analysis was done to generate
only the most variable features. Likewise, the ensemble k-NN also achieved an accuracy
of 62.50%.

Table 9. Training and validation accuracies of 17 features.

Model Training Validation

LibSVM 82.64% 37.50%
Ensemble k-NN 90.94% 62.50%

The addition of redundant features increases computational costs and induces over-
fitting and complexity. To avoid these difficulties in the study, the brute force method,
which involves feeding all the input variables into the model while relinquishing the re-
sponsibility of obtaining the best combination for achieving the maximum accuracy [48],
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is eliminated. The authors conducted a leak detection study in which fewer attributes
from feature selection techniques produced better results than the brute force practice. The
effects are seen when all 17 features are used in modeling; the validation accuracy is low,
but the errors’ standard deviation, RMSE, and MAE look good (see Tables 9 and 10). This
uneven performance shows the presence of overfitting. The actual and predicted results
are shown in Figure 5.

Table 10. Training and validation of RMSEs and MAEs for 17 features.

Model Parameter Training Validation

LibSVM
Root mean square error 2.812 1.966

Mean Absolute error 1.103 1.560

Ensemble k-NN
Root mean square error 2.950 2.515

Mean Absolute error 0.679 1.713

Buildings 2023, 13, x FOR PEER REVIEW 17 of 21 
 

Table 10. Training and validation of RMSEs and MAEs for 17 features. 

Model Parameter  Training  Validation 

LibSVM 
Root mean square error  2.812 1.966 

Mean Absolute error  1.103 1.560 
Ensemble k-

NN 
Root mean square error  2.950 2.515 

Mean Absolute error 0.679 1.713 

The graphical representation of the modeling results with all 17 features is presented 
in Figure 5. It is seen that both models are merely copying one value closer to one of the 
actual leakage distances throughout the predictions. This constancy is why they perform 
better in the RMSE and the MAE, but the results show unreliable models. 

 
Figure 5. Visualization of the predicted and actual leakage distances for Ensemble k-NN LibSVM 
with all features. 

4. Conclusions 
Most studies on localizing pipe leakages have been undertaken in labs under con-

trolled conditions, and only a few have been tested in the field. In addition, deploying 
several noise loggers on the WDNs is time-consuming and requires big budgets. There-
fore, this study aims to overcome the mentioned shortcomings for the first time in the 
body of relevant literature using a novel methodological approach. The methodology em-
ployed in this study is based on deploying a single noise logger on real WDNs and utiliz-
ing advanced ML-based techniques. Because there would be confusion about the leak’s 
location on the water mains in a blind deployment, this study predicts the leak’s distance 
and direction. Therefore, the noise logger is the reference point relative to the source of 
the acoustic leak signal. Water supply departments can use the developed models to de-
termine the locations of leakages in water mains when detected. They will be required to 
obtain and input the acoustic leak signals into the models. The signals are decomposed, 
and the locations are predicted using the ML techniques discussed in the paper. 

Figure 5. Visualization of the predicted and actual leakage distances for Ensemble k-NN LibSVM
with all features.

The graphical representation of the modeling results with all 17 features is presented
in Figure 5. It is seen that both models are merely copying one value closer to one of the
actual leakage distances throughout the predictions. This constancy is why they perform
better in the RMSE and the MAE, but the results show unreliable models.

4. Conclusions

Most studies on localizing pipe leakages have been undertaken in labs under controlled
conditions, and only a few have been tested in the field. In addition, deploying several
noise loggers on the WDNs is time-consuming and requires big budgets. Therefore, this
study aims to overcome the mentioned shortcomings for the first time in the body of
relevant literature using a novel methodological approach. The methodology employed in
this study is based on deploying a single noise logger on real WDNs and utilizing advanced
ML-based techniques. Because there would be confusion about the leak’s location on the
water mains in a blind deployment, this study predicts the leak’s distance and direction.
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Therefore, the noise logger is the reference point relative to the source of the acoustic leak
signal. Water supply departments can use the developed models to determine the locations
of leakages in water mains when detected. They will be required to obtain and input the
acoustic leak signals into the models. The signals are decomposed, and the locations are
predicted using the ML techniques discussed in the paper.

The data for this study was collected from 60 leaks and 32 non-leak sites in Hong
Kong, while the validation dataset was obtained from three (3) leak spots at another leak
site. Several experiments were conducted by placing the noise logger on pipelines in the
WDNs. The study was conducted in an urban city with rife noise and disturbances. The
adopted feature extraction and denoising technique is robust against background noises. It
separates a high-fidelity leak signal from any external noise that might contaminate the leak
signal. Therefore, the models can be applied to locate leaks in water distribution networks
from various noise disturbances. If no background noise is recorded, the pure leak signal is
maintained after the decomposition.

Using a single noise logger for leak localization is feasible, as shown in this study. The
empirical mode decomposition (EMD) signal processing effectively extracts high-fidelity
signal features from the acoustic leak signal for leak localization. The EMD was used to
extract high-fidelity signal features by fine-tuning the leak wavelets and separating them
from the background noises. Since obtaining leak signals devoid of noise from an operating
WDN is inconceivable, this decomposition technique was used. It is very effective in
dealing with the problems of white noise, which commonly plagues pressurized water
transport pipelines.

This study establishes that the SVM and the transformed regression ensemble with k-
NN techniques are effective for leak localization. Both models achieved closed accuracy, but
the SVM demonstrated a more reliable performance due to its immunity against overfitting.
Likewise, the classification techniques DT and k-NN are effective in determining the
directions of the location of the leaks when the noise logger is used as the reference point.
Out of the two ML algorithms employed, the k-NN performed better and is therefore
preferred for direction determination.

5. Future Studies

We encourage future research on using a single noise logger for leak localization to
observe the direction of the water flow during signal acquisition, as that was one of the
limitations of this study. The observed flow direction can be used as a reference for stating
the direction since it can be challenging to interpret arbitrary directions on the WDN
when using maps. Moreover, metal pipe materials with diameters of approximately
600 mm were considered in this study, which caused the early attenuation of the acoustic
signals. Therefore, the localization models were built on a dataset with a maximum
distance of 25 m. A thorough signal analysis of the acoustic leak signals should be studied
in two ways: (1) when the signals propagate in the same direction as the water flow and
(2) when the signal propagates in the opposite direction to the flow of the water. Even
though we tried our best to acquire enough data for our models’ developments, we still
believe that the quantity we used was insufficient for generalizability, especially when
considering different cities and varieties of environmental conditions. Further studies
involving a large amount of data with diverse distance ranges should be carried out to
avoid the biases of insufficient data. The proposed research can also not locate multiple
leaks simultaneously in the same pipeline. The noise logger deployment for individual
leaks should be completed since the method relies on acoustic signal propagation. It is
not yet clear how to differentiate between two or more leak signals traveling together
due to interference. The noise logger records the signals it encounters as one, whether
generated from a single leak or multiple leak points. When two leak signals interfere
constructively, the recordings from the noise logger might be interpreted by the leak
distance prediction models to be farther away than they actually are. This prediction
results from increased pressure, amplitude, frequency, etc., due to two compressions
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or rarefactions meeting. The models might also predict a distance shorter than the
actual leak distance location when one leak signal compression component meets with
a rarefaction component of another signal, thereby causing pressure reduction than in
typical situations. The prediction will not yield a correct value if the noise logger records
the signal in any of these situations.

The developed models did not also consider the network complexity in the modeling.
The water network complexity is another factor that can hinder the performance of the
developed models. The signals were acquired on pipelines whose layout arrangements
could be determined using the available maps. In the cases where multiple networks
conglomerate or there are bends, the models will face significant challenges in pinpointing
the exact leak location. They will only provide the approximate distance from the noise
logger, not including whether the pipeline is straight or arched.

More validation cases are required to establish the complete reliability of the models.
The validation dataset only consisted of signals from short distances, i.e., 0.9 m, 1.314 m,
and 3.556 m. Therefore, even though the models were trained to predict leak positions
up to 20 m, there were no validation cases beyond 4 m. However, this only applies to the
held-out testing dataset, but the training-validation steps were adequately completed using
the 80% training and 20% testing practice. Future research will be targeted toward solving
the above limitations.
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