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Abstract: This paper presents a multi-objective optimization of steel trusses using direct analysis. The
total weight and the inter-story drift or displacements of the structure were two conflict objectives,
while the constraints relating to strength and serviceability load combinations were evaluated using
nonlinear inelastic and nonlinear elastic analyses, respectively. Six common metaheuristic algorithms
such as nondominated sorting genetic algorithm-II (NSGA-II), NSGA-III, generalized differential evo-
lution (GDE3), PSO-based MOO using crowding, mutation, and ε-dominance (OMOPSO), improving
the strength Pareto evolutionary algorithm (SPEA2), and multi-objective evolutionary algorithm
based on decomposition (MOEA/D) were applied to solve the developed MOO problem. Four
truss structures were studied including a planar 10-bar truss, a spatial 72-bar truss, a planar 47-bar
powerline truss, and a planar 113-bar truss bridge. The numerical results showed a nonlinear rela-
tionship and inverse proportion between the two objectives. Furthermore, all six algorithms were
efficient at finding feasible optimal solutions. No algorithm outperformed the others, but NSGA-II
and MOEA/D seemed to be better at both searching Pareto and anchor points. MOEA/D was also
more stable and yields a better solution spread. OMOPSO was also good at solution spread, but its
stability was worse than MOEA/D. NSGA-III was less efficient at finding anchor points, although it
can effectively search for Pareto points.

Keywords: optimization; truss; multi-objective; inelastic analysis; direct analysis; metaheuristic

1. Introduction

Steel truss structures with lightweight properties, efficient use of materials, and various
shapes have been widely used in civil and industrial works. Due to the nonlinear inelastic
behavior of steel structures, steel trusses should be designed by using nonlinear inelastic
analyses, which have recently been accepted by major standards such as Eurocode [1]
and AISC LRFD [2]. In nonlinear inelastic analyses, the boring and complicated separate
check of every structural member in member-based analysis methods has simply been
replaced by using the ultimate load-carrying capacity of the whole structure. Furthermore,
the nonlinear inelastic behavior, failure mode, overall buckling, and member interaction of
the whole system were directly assessed. Some highlight studies regarding this topic can
be reviewed in [3–5], among others.

To improve the quality of the truss design solutions, optimization approaches have
been studied extensively for more than three decades. The most common problem is
single-objective optimization (SOO), where only one objective function is considered under
several constraints to ensure normal working conditions (for example, [6–8]). The objective
function is often chosen as the minimization of the total weight/cost of the whole structure
with continuous or discrete design variables. Due to the several nonlinear aspects such
as complicated search spaces, non-convex feasible regions, structural nonlinear behaviors,
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etc., metaheuristic algorithms have been widely used that can better find global optimal
solutions [9–12]. A common characteristic of metaheuristics algorithms is that they provide
good optimum results but not optimal solutions, and spend abundant structural analyses
to evaluate the constraints. Computation efforts of structural optimization using nonlinear
analysis become too excessive since nonlinear analysis is much slower than linear analysis.
In light of this, the number of studies on truss optimization using nonlinear inelastic
analysis is still small. Some of the prominent studies are in [13–17].

It should be noted that the actual design works often have more than one objective
function to satisfy several requirements both in terms of the cost and technical aspects.
Normally, such a problem can simply be solved by converting them into an SOO using
weighted methods or by considering the considered objective functions as constraints.
However, weighted methods are not effective in some cases, especially when the objec-
tives are conflicted and a trade-off among the objectives is required. For example, the
cost minimization objective often conflicts with the maximization of structural safety and
serviceability objectives. In addition, the methods considering objective functions as con-
straints, namely, letting them receive specific values, can find only one optimal solution
for each optimization run. Therefore, these approaches may require excessive computa-
tional efforts to find the realistically optimal solution set of a multi-objective optimization
(MOO) problem. As a consequence, aside from SOO, MOO, which simultaneously con-
siders two or more objective functions, has attracted significant interest from researchers.
Unlike SOO, where only one optimal solution is found, MOO, in principle, provides a
group of solutions, called Pareto optimal solutions or non-dominated solutions. Therefore,
the main goal of the MOO is to search for as many non-dominated solutions as possible.
Mahrach et al. [18] presented a comparison between single and multi-objective evolution-
ary algorithms to solve the Knapsack Problem and the Travelling Salesman Problem. The
results prove that the direct application of a multi-objective solver to a MOO problem
is much better than transforming the MOO problem into an SOO one. In light of this,
many multi-objective optimization algorithms based on evolution have been proposed
such as the strength Pareto evolutionary algorithm (SPEA) [19], vector evaluated genetic
algorithm (VEGA) [20], Pareto-archived evolution strategy (PAES) [21], and nondominated
sorting genetic algorithm-II (NSGA-II) [22], among others. The efficiency of evolutionary
multi-objective optimization algorithms (EMOA) has been proven through their successful
application in many fields such as composite structures [23], structural damage detec-
tion [24], reinforced concrete structures [25], buildings [26], etc.

Regarding the MOO of truss structures, several interesting studies have been pub-
lished in the literature. Eid et al. [27] proposed a multi-objective water cycle algorithm
(MOWCA) and demonstrated its efficiency through bi-objective optimization of three
benchmark trusses including 10-bar, 25-bar, and 200-bar trusses. Gholizadeh et al. [28] de-
veloped multiobjective uniformly distributed particles (MO-UDPs) for the multi-objective
optimization of steel moment frames under seismic loading, which was proven using two
benchmark 10-bar and 25-bar trusses. Kaveh and Ghazaan [29] introduced a multi-objective
variant of the vibrating particle system (MOVPS) and used a 120-bar dome-shaped truss
and a 582-bar tower truss as two case studies for verification. Ho-Huu et al. [30] proposed
a framework for reliability-based MOO of trusses using NSGA-II. The case studies were
three benchmark truss optimization problems including 10, 25, and 120 bars. Lemonge
et al. [31] used the third evolution step of generalized differential evolution (GDE3) to
the MOO of truss structures considering the natural frequencies of vibration and global
stability. More studies on the MOO of truss structures are presented in [32–37], among
others. The above studies show the effectiveness and potential of applying MOO to truss
design. However, the number of truss MOOs is much less compared to that of SOO. Fur-
thermore, the published works only focused on linear trusses through benchmark case
studies. Studies on the effectiveness of MOO for nonlinear truss structures are a gap in the
literature. Furthermore, the publications utilized different MOO methods with most based
on evolutionary algorithms. As a consequence, an important question still needs to be
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answered about the effectiveness of such algorithms for unstudied optimization problems
such as nonlinear inelastic truss structures.

In this study, the multi-objective optimization of steel trusses using nonlinear in-
elastic analysis was developed. Two conflict objectives such as the total weight and the
inter-story drift or displacements were considered. The constraints were set according to
the strength and serviceability load combinations which are evaluated using direct analy-
sis. Six efficient and popular metaheuristic algorithms such as NSGA-II, NSGA-III, GDE3,
PSO-based MOO using crowding, mutation, and ε-dominance (OMOPSO), improving
the strength Pareto evolutionary algorithm (SPEA2), and multi-objective evolutionary
algorithm based on decomposition (MOEA/D) were employed to solve the developed
MOO problem. Four truss structures were studied including a planar 10-bar truss, a
spatial 72-bar truss, a planar 47-bar powerline truss, and a planar 113-bar truss bridge.
The rest of this paper is organized as follows. The MOO problem of nonlinear inelastic
trusses is formulated in Section 2. Section 3 overviews the considered MOO algorithms.
Four examples of truss optimization are presented in Section 4, and Section 5 presents
some of the conclusions drawn from this work.

2. Multi-Objective Optimization Problem Formulation of Nonlinear Inelastic Trusses
2.1. Nonlinear Inelastic Analysis of Truss Structures

The nonlinear inelastic analysis of truss structures was performed by dividing the ap-
plied loading into many small increments. The structural responses and deformation were
memorized consecutively. In this way, the nonlinear relationship of force–displacement
was directly captured, which was used to determine the ultimate load-carrying of the
whole structure. For simplicity, the ultimate load factor (ULF), which is the ratio between
the ultimate load-carrying capacity (R) and applied loading (S), was used instead of the
ultimate load-carrying capacity. The structural safety was satisfied when ULF was not
smaller than 1.0 and in contrast. As a consequence, a trivial safety check of every structural
member in the linear analysis was eliminated.

To include the nonlinear behavior of truss elements, the stress–strain constitutive
model proposed by Blandford [38] was utilized, which is presented in Figure 1. As can be
seen in this figure, Blandford’s model includes all major modes such as compression, elastic
and inelastic post-buckling, inelastic post-buckling unloading, tension, post-yielding, and
tension unloading. The detailed equations for these curves can be found in [38].

The nonlinear equilibrium equation for a truss element is as follows, using an incre-
mental form developed by Yang and Kuo [39]:

([kE] + [kG] + [s1] + [s2] + [s3]){d}+ 1 f = 2 f (1)

where 1f and 2f are forces acting on the two nodes at the previous and current states,
respectively; [kE] and [kG] are the elastic and geometric stiffness matrices, respectively;
and [s1], [s2], and [s3] are higher-order stiffness matrices to consider the nonlinear part
of the axial strain. To solve Equation (1), the generalized displacement control (GDC)
method [40], which efficiently calculates the equilibrium path of nonlinear structures with
multiple limit points and snap-back, is employed. The aforementioned nonlinear truss
model and GDC algorithm were utilized in the Practical Advanced Analysis Program
(PAAP) [41]. This program was used to perform nonlinear inelastic analysis of truss
structures in this study.
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Figure 1. Stress–strain constitutive model of the nonlinear truss [38]. 
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2.2. Statement of Multi-Objective Optimization of Trusses Using Nonlinear Inelastic Analysis

In a multi-objective optimization problem, at least two mutually conflicting objectives
are considered. Commonly, to reflect the economic efficiency of the proposed design,
the total cost or weight of the structure is selected as an objective function in structural
optimization. In light of this, the cross-sections of structural members are designed to reach
the minimum total cost/weight of the structure, while all design requirements are still
satisfied including the strength, serviceability, and constructability conditions. However,
minimizing the total cost/weight of the structure tends to use smaller cross-sections of
structural members that may significantly reduce the stiffness of the structure, in other
words, reduce the structural safety. To enhance the structural performance, the maximum
inter-story drift or lateral displacement has been considered the second objective function
in the MOO problems of truss structures [30,31,34]. By minimizing the maximum inter-
story drift/lateral displacement, the global structural stiffness was increased. The above
objectives are the two basic objectives in the design of the structure that were also taken
into account in this study. It should be noted that several aspects of the structural design
may be considered objective functions such as the smallest load-carrying capacity, natural
frequencies, number of different cross-section types, failure probability, etc. The considered
MOO problem for the sizing optimization of trusses using nonlinear inelastic analysis with
continuous design variables is written as follows:

Objective function 1 : Minimize : F1(X) =
N

∑
i=1

ρiXiLi (2)

Objective function 2 : Minimize : F2(X) =

√√√√Nstory

∑
j=1

(
dk,j

)2
k = 1, .., Nservice (3)
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where i, j, and k are the numerical orders of structural members, structural stories, and
serviceability load combinations considered, respectively; ρ, L, and X are the material
weight density, member length, and member cross-sectional area, respectively; Nservice is
the number of serviceability load combinations considered; dk,j is the inter-story drift of
the jth story in the kth serviceability load combination. It should be noted that the second
objective function in Equation (2) can be presented in the form of nodal displacements of
the truss.

The first constraint of the considered optimization problem is the value range for
continuous design variables, which are written as

Alowb
i ≤ Xi ≤ Aupb

i (4)

where Alowb
i and Aupb

i are the lower- and upper-bounds of the ith design variable. The
next constraints are strength constraints that correspond to the strength load combinations
required by design standards. In light of nonlinear inelastic analysis, the structural safety
is simply checked by comparing the overall load-carrying capacity of the structure R with
the applied loading S. Therefore, the strength constraints are as follows:

Cstrength
l = 1− Rl

Sl
= 1−ULFl ≤ 0 l = 1, .., Nstrength (5)

where Nstrength is the number of the strength load combinations considered. Corresponding
to the serviceability load combinations, the inter-story drifts of the structure are guaranteed
through the following equation:

Subject to : Cservice
n,j =

∣∣∣dk,j

∣∣∣
du

k,j
− 1 ≤ 0 k = 1, .., Nservice; j = 1, .., Nstory; n = 1, .., Nservice (6)

where Nservice is the number of serviceability load combinations considered and du
k,j is

the allowable value of the inter-story drift of the jth story in the kth serviceability load
combination dk,j. In the case the second objective function is presented in the form of nodal
displacements, Equation (6) will also be expressed as nodal displacements.

For constraint handling, the penalty function method was employed in this study
since this method is simple and easy to use. The objective functions presented in Equations
(2) and (3) can be rewritten as

Fun
1 (X) =

1 +
Nstrength

∑
l=1

αstr,l β1,l +
Nservice

∑
n=1

αdisp,nβ2,n

× F1(X) (7)

Fun
2 (X) =

1 +
Nstrength

∑
l=1

αstr,l β1,l +
Nservice

∑
n=1

αdisp,nβ2,n

× F2(X) (8)

where : β1,l = max
(

Cstrength
l , 0

)
; β2,n =

Nstory

∑
j=1

max
(

Cservice
n,j , 0

)
(9)

where αstr,l and αdisp,n are the pre-defined penalty parameters chosen with large values to
remove the unfeasible candidates in the optimization process. In this study, the penalty
parameters were equal to 10,000.

3. Description of Multi-Objective Optimization Algorithms
3.1. Short Review of MOO Algorithm Development

To solve MOO problems, several methods have been developed in the literature that
can be classified into three big categories: (1) transforming into an SOO problem by combin-
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ing the individual objective function; (2) transforming into a single objective optimization
by keeping only one objective and moving others to the constraint set; (3) finding the entire
Pareto optimal solutions. In the first approach, the weighted sum method is employed by
using the weighting coefficients wi with Σwi = 1. By changing the values of wi, many SOO
problems were developed where one Pareto optimal solution could be found corresponding
to each SOO problem. An SOO problem is now simply solved by using metaheuristic
SOO algorithms, for example, differential evolution (DE) [42], genetic algorithm (GA) [43],
harmony search (HS) [44], etc. However, this approach still has several limitations such
as (1) requiring more computational efforts compared to using MOO algorithms; (2) it is
not easy to find the best form of weighted sum function since there are too many ways to
construct it; (3) changing the values of the weighting parameters does not ensure finding
good Pareto front points since the same or very close points are found. Furthermore, the
weighted sum method is not efficient in the case of a nonconvex objective space.

In the second approach, only one objective function is kept while the remaining are
moved to the constraint set. The MOO problem is now converted into several SOO problems
by changing the constraining values for moved objective functions. However, this approach
seems rather arbitrary in choosing constraining values that should be carefully chosen so
that they are in the minimum and maximum values of the corresponding objective function.
Furthermore, this approach has similar limitations as the first approach, although it works
well with nonconvex objective spaces.

In the third approach, the entire Pareto optimal solutions or Pareto front are found
simultaneously thanks to metaheuristic algorithms for this type of problem called MOO al-
gorithms. Metaheuristic algorithms such as evolutionary algorithms deal with a population
of promising solutions, so they are potentially suitable for finding Pareto optimal solutions
to a MOO problem with only a single run. Furthermore, metaheuristic algorithms based on
stochastic searching techniques are efficient in finding globally optimal solutions to highly
nonlinear and non-convex optimization problems. In light of this, the current work focused
on MOO metaheuristic algorithms including NSGA-II, NSGA-III, GDE3, OMOPSO, SPEA2,
and MOEA/D. The main content of each algorithm is presented in the following sections.

3.2. Nondominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II was proposed by Deb et al. [22] in 2002. It is an improved version of
NSGA introduced by Srinivas and Deb in 1995 [45], which is considered as one of the first
MOO methods based on evolutionary algorithms (EA). Basically, NSGA-II follows the
general outline of a GA inspired by Darwin’s evolutionist theory. In GA, the individual
or chromosome of the next population is created from the “good” parents, which are
the individuals/chromosomes of the current population through three basic techniques
including mutation, crossover, and selection. In the traditional GA version, an individual
or chromosome is presented in binary form with many discrete units called genes, having
values of 1 or 0. The process of producing a child/offspring starts by choosing two chromo-
somes/parents from the current population using a selection process such as roulette wheel
selection, event selection, rank-grounded selection, etc., in order to find the better parents
from the current population. Then, in the crossover process, parents are combined by
swapping genetic information. Some typical crossover techniques are one-point crossover,
two-point crossover, etc. The mutation operator is applied at a very small rate by changing
the values of some genes in the offspring to prevent premature convergence to the local
optima. To maintain the solution quality obtained in the optimization process, the “elitist
selection” technique is usually employed, which allows keeping the best individual of the
current population to the next one.

In light of GA, NSGA-II was developed to solve MOO problems with two key aspects
including fast nondominated sorting and crowded comparison to sort individuals. A fast
nondominated sorting is used to sort individuals into different non-domination fronts
using two entities: (1) domination count nt, which is the number of solutions dominating
the solution p, and (2) Sp, which is a set of solutions that the solution p dominates. This
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approach can save the computational costs for sorting the population into nondomination
levels in the optimization process. The crowded comparison is a selection mechanism
based on two factors: (1) nondomination rank and (2) crowding distance. A solution is
defined as better than another if it is on lower nondomination ranks or located in a lesser
crowded region in the case they are in the same front. The common crossover and mutation
operators used in NSGA-II are simulated binary (SBX) and polynomial, respectively, which
can be found in the [46] and [47]. More details of NSGA-II are given in [22].

The main steps of NSGA-II are as follows:
Step 1: Randomly create an initial population.
Step 2: Sort the population using fast nondominated sorting and crowding distance

techniques.
Step 3: Choose parents using the binary tournament selection using the crowded-

comparison operator.
Step 4: Create offspring using simulated binary crossover and polynomial mutation.
Step 5: Offspring and current populations are combined to fill the new population

from better fronts. Crowding distance is used for individuals in the same front.

3.3. Nondominated Sorting Genetic Algorithm-III (NSGA-III)

The numerical results in the literature prove the efficiency of NSGA-II to solve multi-
objective optimization problems with two or three objective functions. However, NSGA-II
faces great difficulties when the number of objective functions increases due to the existence
of dominance-resistant individuals. The characteristics of dominance-resistant individuals
are that they are good at some objectives, but also bad at several others. On one hand,
with some very bad objective values, they are far away from the Pareto front. On the other
hand, they are difficult to dominate by other individuals since they have some very good
objectives. In addition, with their very bad objective values, they are far away from other
individuals, which allows them to have a good crowding distance. Therefore, they can
survive over several generations, or the convergence speed of NSGA-II is severely affected.

To overcome the above-mentioned drawbacks of NSGA-II, Deb and Jain proposed
NSGA-III in 2014 [48]. The basic framework of NSGA-III is similar to NSGA-II with
new selection operator techniques in order to solve many-objective problems. In NSGA-
III, instead of using the crowding distance as in NSGA-II, reference points are used to
maintain the diversity of the population. Commonly, the Das–Dennis method is employed
to uniformly sample reference points on a normalized hyper-plane. In this method, an
(M-1) dimensional normalized hyper-plane was created first, where M is the number of
objectives. Along each objective, p divisions are considered that form a total of reference

points H =

(
M + p− 1

p

)
. The widely distributed reference points make the obtained

individuals likely to be widely distributed on or near the Pareto-optimal front. A niche-
preservation operation was developed to select the individuals on the same front. The brief
procedure of this operation is as follows. First, a new population St is constructed including
the individuals from the first front F1 to the lth front Fl while the size of St is first greater
or equal to the defined size of the optimization population N. Second, each individual in
St\Fl is associated with a reference point having the minimum perpendicular distance. The
individuals in Fl are chosen in light of filling up the underrepresented reference directions.
If the reference direction does not have any individual specified, the individual with the
smallest perpendicular distance is selected. If a second individual is added to this reference
line, it is chosen randomly from the remaining individuals in Fl. The details of NSGA-III
can be found in [49].

3.4. Generalized Differential Evolution 3 (GDE3)

GDE3 was developed by Kukkonen and Lampinen [50] in 2005, which is an expanded
version of DE, one of the most popular metaheuristic algorithms for solving MOO problems.
The mutation technique DE/rand/1/bin proposed in the traditional DE algorithm is used
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in GDE3 to generate the trial vectors. Then, the new population is filled up by using the
following selection operation:

(1) If both the trial vector U and target vector X are infeasible, U will be chosen if it
weakly dominates X in the constraint violation space and otherwise;

(2) If only one vector in U and X is feasible, it will be chosen;
(3) If both U and X are feasible, U will be chosen if it weakly dominates X in the objective

function space and otherwise.

In light of the above selection operation, the size of the population after a generation
of GDE3 is in the range [NP, 2NP] that will be decreased to a NP size by using the fast
nondominated sorting and crowding distance proposed in NSGA-II. The details of GDE3
can be found in [48].

3.5. PSO-Based MOO Using Crowding, Mutation, and ε-Dominance (OMOPSO)

OMOPSO was introduced by Reyes and Coello [51] in 2005. This algorithm is an
improved version of the well-known SOO algorithm PSO for MOO problems. Basically,
OMOPSO is based on the Pareto dominance and crowding value for the selection of leaders.
For each individual/particle, the leaders are selected by using a binary tournament in light
of their crowding values. The leaders are stored in an external archive with a size equal
to the size of the population/swarm. After each generation, this set is updated with new
crowding values of the stored leaders. If the size of the set is greater than the defined size,
the best leaders are kept based on their crowding values.

For mutation operation, three types are proposed in OMOPSO including (1) uniform
mutation; (2) non-uniform mutation; (3) not using mutation. Uniform and non-uniform
mutations are used to modify the values of the decision variables of a particle with a
certain probability. A scheme was developed, allowing the swarm to be divided into
three equal parts, which was applied to the three above different types in order to achieve
the exploration and exploitation abilities of the uniform and non-uniform mutations,
respectively. The mutation probability is equal to 1/codesize, where codesize is the total
length of the string for encoding all variables.

The ε-dominance is employed to fix the size of another external, which is used to contain
the non-dominated solutions (final solutions). In this approach, an individual dominates (or
ε-dominate) X2 if fi(X1)/(1 + ε)≤ fi(X2) with all objectives and fi(X1)/(1 + ε)≤ fi(X2) for at least
one objective. The value of ε is predefined by users and is the same for all objective functions.

3.6. Improving the Strength Pareto Evolutionary Algorithm (SPEA2)

SPEA2 developed by Zitzler et al. [52] is the improvement of SPEA proposed by Zitzler
and Thiele [53] with three basic strategies including an enhanced archive truncation, a fine-
grained fitness assignment, and a density estimation. At the beginning of the optimization
process, an empty external archive Q is created, along with the population P. Each individual
i in both P and Q is assigned a strength value S(i), which is then the number of solutions in
(P ∪ Q) dominated by or equal to i. The fitness F(i) of i is calculated as

F(i) =

(
∑

j∈P∪Q,jΦi
S(j)

)
+

(
1

σk
i + 2

)
(10)

where jφi means the individual j dominates or is equal to the individual i. The distances in
the objective space of the individual i to all individuals j in P and Q are sorted in increasing
order to find the k-th element, which is denoted as σk

i with k =
√

size(P) + size(Q).
The archive Q is updated as follows: (1) take all nondominated individuals having

F(i) < 1 from P and Q to the archive of the next generation; (2) if quantity is not enough, the
remaining is taken from the best-dominated individuals in P and Q; (3) if the quantity is too
large, a truncation strategy is employed to remove the individuals having the minimum
distance to another individual in the archive.
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3.7. Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

MOEA/D or MOEAD was developed based on evolutionary algorithms (EA) and
decomposition [54]. In fact, MOEAD is a framework that allows the use of several evo-
lutionary operators such as DE crossover and mutation strategies. The most innovative
MOEAD is to decompose a MOO problem into several SOO sub-problems that are solved
simultaneously and cooperatively to find and combine good solutions of neighboring
problems, which are expected to be Pareto points, as illustrated in Figure 2. A sub-problem
is solved primarily using information from its neighboring ones.
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The weighted Tchebycheff approach, one of the famous decomposition methods, can
be used to decompose a MOO problem, since it can effectively handle problems with non-
convex Pareto fronts. Note that this approach often only works well with MOO problems
with normalized objective functions. The simple normalization method uses the ideal point
z∗ =

(
z∗1 , z∗2 , .., z∗m

)
where z∗i is the optimum value of the objective i-th as follows:

f ′i (x) = fi(x)− z∗i (11)

4. Numerical Examples

Four steel trusses (planar 10-bar, spatial 72-bar, 47-bar power line, and 113-bar planar
bridge) are discussed in this section. The design variables were the member cross-sectional
areas, which were continuous in the range [645.16, 6451.6] (mm2) in the first three cases
and [3870.96, 22580.6] (mm2) in the last case study. The steel material was A992 with an
elastic modulus of 200 (GPa) and a yield strength of 344.5 (MPa). Considered algorithms
were developed using the programming language Python with the system parameters
presented in Table 1, which were chosen by using trial-and-error to find suitable values.
The population size was equal to 100 in all cases. The number of iterations was 200 for
the first case study and 300 for the three remaining case studies. Each algorithm was run
10 independent times to minimize the effect of stochastic characteristics in the metaheuristic
algorithms. The PAAP program [41] was employed to perform nonlinear inelastic analysis
of the steel truss structures. All applied loads were converted into concentrated loads at
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structural nodes. To evaluate the performance of MOO algorithms, four indicators were
used including generational distance (GD), generational distance plus (GD+), inverted
generational distance plus (IGD+), and hypervolume (HV). The GD indicator measures
the distance from optimal solutions to the Pareto-front, which is later improved by using
GD+ through modifying the distance. IGD+ measures from any point in the Pareto-front
to the closest point in the optimal solution set. The HV indicator measures the volume of
the dominated area formed by the optimal solutions and a reference point. With the above
definition, the better algorithm will have smaller values of GD, GD+, and IGD+ and higher
values of HV. Detailed equations of these indicators can be found in [35].

Table 1. Optimization algorithm parameters.

Algorithm Parameter Value

NSGA-II
offspring_population_size = 1; crossover = SBXCrossover (probability = 0.9);
mutation = Polynomial_Mutation (probability = 1.0/number_of_variables);
tournament selection

NSGA-III
Uniform Reference Points = Population size—1;
crossover = SBXCrossover (probability = 0.9);
mutation = PolynomialMutation (probability = 1.0/number_of_variables)

GDE3 CR = 0.9; F = 0.1; DE/rand/1

OMOPSO

epsilon = 0.0075; leaders = Crowding_Distance_Archive (100)
Uniform_Mutation (probability = 1.0/number_of_variables, perturbation = 0.5);
Non_ Uniform_Mutation(probability = 1.0/number_of_variables, perturbation =
0.5)

SPEA2
offspring_population_size = population_size;
crossover = SBXCrossover (probability = 1.0);
mutation = Polynomial_Mutation (probability = 1.0/number_of_variables)

MOEA/D

crossover = Differential_Evolution_Crossover (CR = 1.0, F = 0.5);
mutation = Polynomial_Mutation (probability = 1.0/number_of_variables);
aggregative_function = Tschebycheff (dimension = number_of_objectives);
neighbor_size = 20; neighbourhood_selection_probability = 0.9;
max_number_of_replaced_solutions = 2

4.1. Planar 10-Bar Truss

A 10-bar planar truss with the layout and geometry in Figure 3 was studied in this
section. The number of design variables was 10. The dead load (D), live load (L), and
wind load (W) were equal to 150, 100, and 100 (kN), respectively. Two strength and one
serviceability load combinations were considered including 1.2D + 1.6L, 1.2D + 0.5L + 1.7W,
and 1.0D + 0.5L + 0.7W, respectively. The allowable drift is h/400, where h is the story
height of the truss. The first objective is the total weight of the structure and the second

objective is F2(X) =
√

x2
1 + x2

3, where x1 and x3 are the horizontal displacements of nodes
1 and 3, respectively. Since the Pareto-front of a structural MOO problem is often not given,
it was assumed that the approximate Pareto-front is found by using all optimal solutions
found from all runs of the MOO algorithms. As a consequence, the Pareto-front of this
case study is presented in Figure 4, where all optimal solutions found were also shown to
provide more visualization.

Figure 5 presents the calculated values of GD, GD+, IGD+, and HV of MOO algorithms
of the 10-bar truss. Note that GD, GD+, and IGD+ were determined by using the above
approximate Pareto-front while HV was computed using the reference point with the
coordinate values of the maximum objective functions in all of the obtained optimal results
plus 1.1. As can be seen in Figure 5a–d, MOEA/D had the best performance since it
achieved the smallest values of GD, GD+, and IGD+ and the greatest value of HV. In detail,
the average values of GD, GD+, IGD+, and HV of MOEA/D were 1.936, 0.573, 2.466, and
70,097.2, respectively. In the five remaining MOO algorithms, NSGA-III had the smallest
values of GD and GD+, which were equal to 2.562 and 1.621, respectively. However, GDE3
yielded the smallest value of the average IGD+ with 4.567 and the greatest value of the
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average HV with 67369.3. However, in general, the performance of NSGA-II, NSGA-III,
GDE3, OMOPSO, and SPEA2 was quite similar in terms of the GD, GD+, IGD+, and HV
indicators.

Buildings 2023, 13, x FOR PEER REVIEW 12 of 29 
 

neighbor_size = 20; neighbourhood_selection_probability = 0.9; 
max_number_of_replaced_solutions = 2 

4.1. Planar 10-Bar Truss 
A 10-bar planar truss with the layout and geometry in Figure 3 was studied in this 

section. The number of design variables was 10. The dead load (D), live load (L), and wind 
load (W) were equal to 150, 100, and 100 (kN), respectively. Two strength and one service-
ability load combinations were considered including 1.2D + 1.6L, 1.2D + 0.5L + 1.7W, and 
1.0D + 0.5L + 0.7W, respectively. The allowable drift is h/400, where h is the story height 
of the truss. The first objective is the total weight of the structure and the second objective 

is ( ) 2 2
2 1 3= +XF x x , where x1 and x3 are the horizontal displacements of nodes 1 and 3, 

respectively. Since the Pareto-front of a structural MOO problem is often not given, it was 
assumed that the approximate Pareto-front is found by using all optimal solutions found 
from all runs of the MOO algorithms. As a consequence, the Pareto-front of this case study 
is presented in Figure 4, where all optimal solutions found were also shown to provide 
more visualization. 

 
Figure 3. Layout and geometry of the 10-bar truss. Figure 3. Layout and geometry of the 10-bar truss.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 29 
 

 
Figure 4. The approximate Pareto-front of the 10-bar truss. 

Figure 5 presents the calculated values of GD, GD+, IGD+, and HV of MOO algo-
rithms of the 10-bar truss. Note that GD, GD+, and IGD+ were determined by using the 
above approximate Pareto-front while HV was computed using the reference point with 
the coordinate values of the maximum objective functions in all of the obtained optimal 
results plus 1.1. As can be seen in Figure 5a–d, MOEA/D had the best performance since 
it achieved the smallest values of GD, GD+, and IGD+ and the greatest value of HV. In 
detail, the average values of GD, GD+, IGD+, and HV of MOEA/D were 1.936, 0.573, 2.466, 
and 70,097.2, respectively. In the five remaining MOO algorithms, NSGA-III had the 
smallest values of GD and GD+, which were equal to 2.562 and 1.621, respectively. How-
ever, GDE3 yielded the smallest value of the average IGD+ with 4.567 and the greatest 
value of the average HV with 67369.3. However, in general, the performance of NSGA-II, 
NSGA-III, GDE3, OMOPSO, and SPEA2 was quite similar in terms of the GD, GD+, IGD+, 
and HV indicators. 

 
 

(a) (b) 

Figure 4. The approximate Pareto-front of the 10-bar truss.



Buildings 2023, 13, 868 12 of 26

Buildings 2023, 13, x FOR PEER REVIEW 13 of 29 
 

 
Figure 4. The approximate Pareto-front of the 10-bar truss. 

Figure 5 presents the calculated values of GD, GD+, IGD+, and HV of MOO algo-
rithms of the 10-bar truss. Note that GD, GD+, and IGD+ were determined by using the 
above approximate Pareto-front while HV was computed using the reference point with 
the coordinate values of the maximum objective functions in all of the obtained optimal 
results plus 1.1. As can be seen in Figure 5a–d, MOEA/D had the best performance since 
it achieved the smallest values of GD, GD+, and IGD+ and the greatest value of HV. In 
detail, the average values of GD, GD+, IGD+, and HV of MOEA/D were 1.936, 0.573, 2.466, 
and 70,097.2, respectively. In the five remaining MOO algorithms, NSGA-III had the 
smallest values of GD and GD+, which were equal to 2.562 and 1.621, respectively. How-
ever, GDE3 yielded the smallest value of the average IGD+ with 4.567 and the greatest 
value of the average HV with 67369.3. However, in general, the performance of NSGA-II, 
NSGA-III, GDE3, OMOPSO, and SPEA2 was quite similar in terms of the GD, GD+, IGD+, 
and HV indicators. 

 
 

(a) (b) 

Buildings 2023, 13, x FOR PEER REVIEW 14 of 29 
 

  
(c) (d) 

Figure 5. GD, GD+, IGD+, and HV of the MOO algorithms of the 10-bar truss: (a) GD; (b) GD+; (c) 
IGD+; (d) HV. 

To evaluate the solution spread of the MOO algorithms, Figure 6 presents the mini-
mum values of two considered objectives. As can be seen in Figure 6a, if the minimization 
of the total structural weight is important, NSGA-II achieved the smallest result of 2004.1 
(kg). However, the stability of MOEA/D was the best with the smallest value of 2087.5 (kg) 
of runs. At the same time, the dispersion of the MOEA/D results was also minimal among 
the MOO algorithms. In Figure 6b, when the minimization of the second objective func-
tion was important, MOEA/D yielded the best optimal result of 20.028 (mm). This algo-
rithm also had the best stability with the smallest average value of 20.285 (mm). The per-
formance of the five remaining algorithms seems similar. For more visualization, Figure 
7 presents the Pareto-front curve with all optimal points obtained using each algorithm. 
Obviously, MOEA/D had a better spread compared to the other algorithms. 

  
(a) (b) 

Figure 6. Spread illustration of the optimal solutions in the 10-bar truss regarding the (a) first ob-
jective; (b) second objective. 

Figure 5. GD, GD+, IGD+, and HV of the MOO algorithms of the 10-bar truss: (a) GD; (b) GD+;
(c) IGD+; (d) HV.

To evaluate the solution spread of the MOO algorithms, Figure 6 presents the minimum
values of two considered objectives. As can be seen in Figure 6a, if the minimization of the
total structural weight is important, NSGA-II achieved the smallest result of 2004.1 (kg).
However, the stability of MOEA/D was the best with the smallest value of 2087.5 (kg) of
runs. At the same time, the dispersion of the MOEA/D results was also minimal among
the MOO algorithms. In Figure 6b, when the minimization of the second objective function
was important, MOEA/D yielded the best optimal result of 20.028 (mm). This algorithm
also had the best stability with the smallest average value of 20.285 (mm). The performance
of the five remaining algorithms seems similar. For more visualization, Figure 7 presents
the Pareto-front curve with all optimal points obtained using each algorithm. Obviously,
MOEA/D had a better spread compared to the other algorithms.
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4.2. Spatial 72-Bar Truss

The second example was a spatial 72-bar truss with the layout and geometric presented
in Figure 8. The structural elements were classified into 16 cross-sectional groups including
(1) A1-A4; (2) A5-A12; (3) A13-A16; (4) A17-A18; (5) A19-A22; (6) A23-A30; (7) A31-A34; (8) A35-
A36; (9) A37-A40; (10) A41-A48; (11) A49-A52; (12) A53-A54; (13) A55-A58; (14) A59-A66;
(15) A67-A70; (16) A71-A72. The dead load (D), live load (L), and wind load (W) were
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equal to 100, 50, and 40 (kN), respectively. The information on the load combinations
considered was the same as in the first case study. The first objective was the total weight

of the structure and the second objective was F2(X) =
√

x2
5 + x2

9 + x2
13 + x2

17, where x5, x9,
x13, and x17 are the horizontal displacements of nodes 3, 9, 13, and 17, respectively. The
approximate Pareto-front and all optimal solutions found in this case study are presented
in Figure 9.
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The calculated values of GD, GD+, IGD+, and HV of the MOO algorithms are pre-
sented in Figure 10. As can be seen in Figure 10a, MOEA/D had the smallest value of GD
with 1.557. However, NSGA-II seemed to have a better performance among the algorithms
with the smallest average values of 2.044 and dispersion of the results. However, regarding
GD+ and IGD+, MOEA/D yielded the best results among the algorithms in terms of both
the value and stability. NSGA-II and OMOPSO ranked second, while GDE3 and NSGA-III
were not good with GD+ and IGD+, respectively. Regarding the HV indicator, OMOPSO
was the best, but was only slightly better than NSGA-II and MOEA/D. NSGA-III was the
worst with the smallest value of HV and poor stability.
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Figure 11 presents the minimum values of two considered objectives to evaluate the
solution spread of the algorithms. As can be seen in Figure 11a, if the minimization of the
total structural weight was important, NSGA-II achieved the smallest result of 1606.1 (kg)
and the second was OMOPSO with 1609.4 (kg). However, the stability of OMOPSO was
the best with the smallest value of 1614.6 (kg) of runs, and was just slightly better than
that of NSGA-II and MOEA/D. In Figure 11b, when the minimization of the second
objective function was important, OMOPSO found the best optimal result of 15.479 (mm).
The performance of NSGA-III was the worst in both case studies. Figure 12 presents the
Pareto-front curve with all optimal points obtained using each algorithm.
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4.3. Planar 47-Bar Power Line Truss

The third example was a 47-bar power line truss with the layout and geometric
presented in Figure 13. Cross-sectional areas of member groups were divided into 27
groups such as (1) A1-A3; (2) A2-A4; (3) A5-A6; (4) A7; (5) A8-A9; (6) A10; (7) A11-A12;
(8) A13-A14; (9) A15-A16; (10) A17-A18; (11) A19-A20; (12) A21-A22; (13) A23-A24; (14) A25-
A26; (15) A27; (16) A28; (17) A29-A30; (18) A31-A32; (19) A33; (20) A34-A35; (21) A36-A37;
(22) A38; (23) A39-A40; (24) A41-A42; (25) A43; (26) A44-A45; (27) A46-A47. The dead and
live loads were simulated as the vertical point loads at all nodes and were equal to 70 (kN)
and 50 (kN), respectively. The wind load of 30 (kN) was according to the X-axis at nodes
17 and 22. The information on load combinations considered was the same as in the
above case studies. The first objective was the total weight of the structure and the second

objective was F2(X) =
√

x2
3 + x2

5 + x2
7 + x2

9 + x2
11 + x2

13 +
2
15 +x2

17, where xi is the horizontal
displacements of the node ith. Figure 14 illustrates the approximate Pareto-front and all
optimal solutions found in this case study.

Figure 15 shows the GD, GD+, IGD+, and HV values of the MOO algorithms. As can
be seen in Figure 15a,b, NSGA-II and NSGA-III had the smallest values of GD and GD+.
The second was SPEA2 and MOEA/D, and the worst was OMOPSO. Regarding the IGD+
and HV indicators, MOEA/D yielded better results among the considered algorithms while
NSGA-III was the worst. GDE3 ranked second with slightly better than NSGA-II. Figure 16
presents the minimum values of two considered objectives. If the minimization of the total
structural weight is important, NSGA-II achieved the smallest result of 1461.4 (kg), and
the second was MOEA/D with 1494.6 (kg). However, the stability of MOEA/D was the
best with the smallest average value of 1556.6 (kg) of runs, but was just slightly better than
that of NSGA-II and GDE3. In Figure 16b, when the minimization of the second objective
function was important, OMOPSO found the best optimal result of 12.008 (mm). Once
again, the performance of NSGA-III was the worst in both case studies. Figure 17 presents
the Pareto-front curve with all optimal points obtained using each algorithm.



Buildings 2023, 13, 868 18 of 26Buildings 2023, 13, x FOR PEER REVIEW 20 of 29 
 

 
Figure 13. Layout and geometry of the 47-bar power line. Figure 13. Layout and geometry of the 47-bar power line.

Buildings 2023, 13, x FOR PEER REVIEW 21 of 29 
 

 
Figure 14. The approximate Pareto-front of the 47-bar power line. 

Figure 15 shows the GD, GD+, IGD+, and HV values of the MOO algorithms. As can 
be seen in Figure 15a,b, NSGA-II and NSGA-III had the smallest values of GD and GD+. 
The second was SPEA2 and MOEA/D, and the worst was OMOPSO. Regarding the IGD+ 
and HV indicators, MOEA/D yielded better results among the considered algorithms 
while NSGA-III was the worst. GDE3 ranked second with slightly better than NSGA-II. 
Figure 16 presents the minimum values of two considered objectives. If the minimization 
of the total structural weight is important, NSGA-II achieved the smallest result of 1461.4 
(kg), and the second was MOEA/D with 1494.6 (kg). However, the stability of MOEA/D 
was the best with the smallest average value of 1556.6 (kg) of runs, but was just slightly 
better than that of NSGA-II and GDE3. In Figure 16b, when the minimization of the second 
objective function was important, OMOPSO found the best optimal result of 12.008 (mm). 
Once again, the performance of NSGA-III was the worst in both case studies. Figure 17 
presents the Pareto-front curve with all optimal points obtained using each algorithm. 

  
(a) (b) 

Figure 14. The approximate Pareto-front of the 47-bar power line.



Buildings 2023, 13, 868 19 of 26

Buildings 2023, 13, x FOR PEER REVIEW 21 of 29 
 

 
Figure 14. The approximate Pareto-front of the 47-bar power line. 

Figure 15 shows the GD, GD+, IGD+, and HV values of the MOO algorithms. As can 
be seen in Figure 15a,b, NSGA-II and NSGA-III had the smallest values of GD and GD+. 
The second was SPEA2 and MOEA/D, and the worst was OMOPSO. Regarding the IGD+ 
and HV indicators, MOEA/D yielded better results among the considered algorithms 
while NSGA-III was the worst. GDE3 ranked second with slightly better than NSGA-II. 
Figure 16 presents the minimum values of two considered objectives. If the minimization 
of the total structural weight is important, NSGA-II achieved the smallest result of 1461.4 
(kg), and the second was MOEA/D with 1494.6 (kg). However, the stability of MOEA/D 
was the best with the smallest average value of 1556.6 (kg) of runs, but was just slightly 
better than that of NSGA-II and GDE3. In Figure 16b, when the minimization of the second 
objective function was important, OMOPSO found the best optimal result of 12.008 (mm). 
Once again, the performance of NSGA-III was the worst in both case studies. Figure 17 
presents the Pareto-front curve with all optimal points obtained using each algorithm. 

  
(a) (b) 

Buildings 2023, 13, x FOR PEER REVIEW 22 of 29 
 

  
(c) (d) 

Figure 15. GD, GD+, IGD+, and HV of the MOO algorithms of the 47-bar power line truss: (a) GD; 
(b) GD+; (c) IGD+; (d) HV. 

  
(a) (b) 

Figure 16. Spread illustration of the optimal solutions in the 47-bar power line truss regarding the 
(a) first objective; (b) second objective. 

  
(a) (b) 

Figure 15. GD, GD+, IGD+, and HV of the MOO algorithms of the 47-bar power line truss: (a) GD;
(b) GD+; (c) IGD+; (d) HV.

Buildings 2023, 13, x FOR PEER REVIEW 22 of 29 
 

  
(c) (d) 

Figure 15. GD, GD+, IGD+, and HV of the MOO algorithms of the 47-bar power line truss: (a) GD; 
(b) GD+; (c) IGD+; (d) HV. 

  
(a) (b) 

Figure 16. Spread illustration of the optimal solutions in the 47-bar power line truss regarding the 
(a) first objective; (b) second objective. 

  
(a) (b) 

Figure 16. Spread illustration of the optimal solutions in the 47-bar power line truss regarding the
(a) first objective; (b) second objective.

4.4. 113-Bar Plane Truss Bridge

The last example was a 113-member plane truss bridge with 43 independent groups,
as presented in Figure 18. Cross-sectional areas of the member groups were considered as
design variables of the optimization problem and were in the range [3870.96, 22,580.6] (mm2).
The strength and serviceability load combinations considered were (1.25D + 1.75L) and
(1.0D + 1.0L), respectively. The dead and live loads were simulated as the point loads at every
truss joint on the upper chord equaling 100 (kN) and 50 (kN), respectively. The first objective

was the total weight of the structure and the second objective was F2(X) =
√

y2
1 + y2

2, where
y1 and y2 are the vertical displacements of the middle points of the side and main spans of the
bridge, respectively. The constraints relating to the serviceability load combination were to
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limit the vertical displacement of the middle points to be greater than 43.1 (mm). Figure 19
presents the approximate Pareto-front and all of the optimal solutions found.
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Figure 19. The approximate Pareto-front of the 113-bar truss bridge.

Figure 20 illustrates the GD, GD+, IGD+, and HV values of the MOO algorithms. As
can be seen in Figure 20a,b, NSGA-III and NSGA-II had the smallest values of GD and
GD+. The second was SPEA2 and MOEA/D, and the worst was OMOPSO for GD and
GDE3 for GD+. Regarding IGD+, NSGA-II and MOEA/D had better performance than
the other considered algorithms. SPEA2 and GDE3 were the worst. However, regarding
the HV indicator, the best performance was OMOPSO and GDE3, while the worst was
NSGA-III. The minimum values of the two considered objectives are presented in Figure 21.
Once again, NSGA-II achieved the smallest result of 51,107.0 (kg) when the minimization
of the total structural weight was important. The second was OMOPSO with 51,605.0 (kg).
In Figure 21b, when the minimization of the second objective function was important,
OMOPSO found the best optimal result of 29.137 (mm), which was slightly better than the
result of MOEA/D with 29.156 (mm). The performance of NSGA-III was the worst in both
case studies. Figure 22 presents the Pareto-front curve with all optimal points obtained
using each algorithm.

4.5. Discussions

The above numerical results provided us with useful information on the multi-
objective optimization of steel frames using direct analysis. As presented in Figures 4, 9,
14 and 19, the relationship between two objectives (structural weight and inter-story drift
or lateral displacement) was nonlinear and inversely proportional to each other. This was
completely consistent with our forecast, and also showed that the use of a multi-objective
problem, in this case, was necessary and reasonable. Based on the multi-objective opti-
mization problem built, all six considered MOO algorithms showed a high efficiency since
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they successfully searched for feasible optimal solutions in all independent runs. Generally,
the numerical results proved that no algorithm outperformed the others. However, if we
consider the overall performance in all four case studies, NSGA-II and MOEA/D were
somewhat more effective in both searching the Pareto and anchor points. Compared to
MOEA/D, NSGA-II seemed to find better Pareto solutions, but its stability and optimal so-
lution spread were worse. Among the remaining algorithms, NSGA-III effectively yielded
Pareto points, but was less efficient in finding anchor points. OMOPSO also had a good
performance, especially in finding the anchor points, but was less stable than MOEA/D.
GDE3 and SPEA2 were only average in all case studies.
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5. Concluding Remarks

The current work successfully developed the multi-objective optimization of steel
trusses using direct analysis. Two conflict objectives were minimized including the total
weight and the inter-story drift or displacements in the structure. Nonlinear inelastic
analysis and nonlinear elastic analysis were used to evaluate the constraints relating to the
strength and serviceability load combinations, respectively. Six well-known metaheuristic
algorithms such as NSGA-II, NSGA-III, GDE3, OMOPSO, SPEA2, and MOEA/D were
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employed to solve the developed MOO problems. Four truss structures were studied
including a planar 10-bar truss, a spatial 72-bar truss, a planar 47-bar powerline truss, and
a planar 113-bar truss bridge. The numerical results proved that the relationship between
the two objectives was nonlinear and inversely proportional to each other. Generally, all six
algorithms successfully found feasible optimal solutions and no algorithm outperformed
the others. In detail, NSGA-II and MOEA/D were better at both searching for the Pareto
and anchor points. MOEA/D was more stable and had a better solution spread. OMOPSO
was also good at solution spread, but its stability was worse than that of MOEA/D. NSGA-
III seemed to be less efficient in searching for anchor points, although it could effectively
yield Pareto points. A future extension of this study is to develop a novel combination of
metaheuristic algorithms for MOO problems to enhance the advantages of the considered
algorithms. This is currently under study by the authors.
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