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Abstract: A hybrid method based on the structural equation model (SEM) and a fuzzy cognitive
map (FCM) was developed to study the influences of the construction safety risks (CSR) of metro
tunnels constructed by the mining method on the project risk (PR). An SEM was used to identify
and verify the correlations between the CSR and PR. An FCM was developed adopting the verified
standardized causality and path coefficient in the SEM. On this basis, predictive reasoning and
diagnostic reasoning were performed in the framework of an FCM to simulate the CSR and PR. The
feasibility of the developed method was validated based on the construction project of a metro tunnel
in Wuhan City, China. The results show that (1) the cause concept node C2 (tunnel excavation) shows
the strongest positive correlation with the target concept node CT (PR). According to their risks, the
construction stages are ranked in descending order as C2 (tunnel excavation), C1 (advanced support),
C6 (auxiliary measures), C4 (structure waterproofing), C3 (primary support), and C5 (secondary
lining). (2) The target concept node CT is most sensitive to changes in the cause concept nodes C2 and
C1. (3) Close attention should be paid to key risks, such as X9 (over-excavation and under-excavation)
and X8 (unreasonable determination of excavation footage and sequence) in stage C2. Originality
and significance: (1) A hybrid method that can simulate the dynamic interaction between the CSR
and PR is proposed. (2) A new perspective for the dynamic evaluation of a PR is provided. (3) The
method can be used as a decision-making tool for controlling the PR.

Keywords: metro tunnel constructed by the mining method; construction safety risks; trend forecast;
structural equation model; fuzzy cognitive map

1. Introduction

At present, the demand for convenient traffic patterns in urban areas continues to grow.
The development plan of the modern integrated transportation system in the “Fourteenth
Five Year Plan” of China, Central People’s Government of PRC (2021) [1] points out that
the operating mileage of urban rail traffic will increase by one thousand kilometers per
annum and is expected to reach ten thousand kilometers by 2025. The construction of
urban rail traffic in China is developing to form deeper, denser, and larger underground
spaces [2]. However, urban rail traffic is characterized by a long construction period, a
large investment, complex construction techniques, and many unforeseeable risk factors [3].
In addition, necessary demonstration and a dynamic analysis have not been performed
for the potential risk factors [4]. As a result, major accidents occur frequently during
construction.Tunnels constructed by the mining method are widely used in urban metro
systems, with loose soil utilized in place of surrounding rocks [5]. Compared with the
shield method [6], construction of metro tunnels by the mining method involves complex
procedures and significant overlapping construction trades. Moreover, the overlapping
and dynamic coupling of multiple risks cause frequent major accidents [7]. Therefore, a
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modelling analysis and dynamic simulation were performed for the construction safety
risk (CSR) of metro tunnels constructed by the mining method [8]. This is of importance
for the scientific management of risks throughout the construction process.

In recent years, numerous researchers have studied the field of metro tunnels con-
structed by the mining method [9]. To ensure the environmental safety of construct-
ing metro tunnels by the mining method, Fang et al. (2010) [10] proposed a risk man-
agement system aiming to control surface subsidence and protect existing structures.
Gui et al. (2020) [11] adopted the limit equilibrium theory to build a mechanical model
for rock surrounding the sidewalls, and assessed the safety of the primary support during
the construction of metro tunnels by the mining method. Wu et al. (2021) [12] built a
multi-scale risk assessment model based on the principal component analysis and grey
correlation-TOPSIS method, which was adopted to evaluate the CSR of metro stations. In
the meantime, the structural equation model (SEM), an important tool for testing causality
and statistical analysis, has found wide application in practical risk management [13]. To
explore the risks of undertaking international construction projects, Liu et al. (2016) [14]
used an SEM to build 20 network paths for important risks. To assess the safety of a given
construction site, Gunduz et al. (2018) [15] proposed an index evaluation tool of safety
performance based on an SEM. To study the influencing factors for dangerous behavior
among construction workers, Zhang et al. (2020) [16] developed an analytical model based
on an SEM. These studies have laid the foundation for the scientific management of CSR of
metro tunnels constructed by the mining method. However, most studies are only static in
their evaluation and lack a dynamic analysis that conforms to the construction process.

The fuzzy cognitive map (FCM) combines fuzzy logic and the elements of neural
networks [17]. It can realize modelling and dynamic analysis of a complex system by
virtue of the reasoning mechanism of causality [18]. The FCM has been widely used
in practical risk management. Soner et al. (2015) [19] proposed a modelling method of
hybrid FCM in a bid to explore the fundamental cause of shipboard fires. To identify the
causal structural relation of the project change risk, Khanzadi et al. (2018) [20] developed a
reasoning rule model for project change based on a FCM. Wang et al. (2019) [21] combined
fuzzy logic and evidence reasoning and introduced an FCM to assess the effectiveness of
safety precautions for ship navigation. However, the traditional FCM faces difficulties in
acquiring expert knowledge and effectively determining weights of concept nodes [22].
Construction of metro tunnels by the mining method is characterized by high complexity
and the concealed nature of underground environments [23]. In addition, accidents may
be broad in their scope; hence, those factors influencing the CSR of metro tunnels show
a variety of characteristics, including intrinsic correlation and dynamic evolution [24].
Therefore, an FCM was developed based on the advantages of the SEM in hierarchical
causality and objective characterization of subjective data [25], thus analyzing the dynamic
evolution of CSR of metro tunnels constructed by the mining method. On this basis, the
mechanism of the interaction between the CSR and the project risk (PR) was investigated,
allowing for improvement of the dynamic interpretability of the evaluation model.

In summary, most existing studies of CSR for metro tunnels constructed by the mining
method are based on static analysis, while the use of dynamic risk evaluation matched
with construction progress is particularly scarce. It remains necessary to improve the
timeliness of risk evaluation when constructing metro tunnels by the mining method, and
to reduce difficulties in identifying, predicting, and resolving the risk factors [26]. For
this purpose, an SEM–FCM risk evaluation method for the entire construction process of
metro tunnels by the mining method was proposed. The research enshrines the following
novel aspects: (1) The method leverages the advantages of the SEM in establishing the
hierarchical causality and objective characterization of subjective data. Additionally, it
combines the characteristics of an FCM in dynamic prediction and reasoning diagnosis.
(2) The research integrates the identification of risk factors with a dynamic prediction and
reasoning diagnosis in order to better match the risk evaluation results with engineering
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practices. This improves the risk management efficiency when constructing tunnels by the
mining method.

The remainder of the research is organized as follows: Section 2 describes the research
variables; Section 3 introduces the SEM, FCM, and model integration characteristics (the
SEM–FCM hybrid model is also outlined); Section 4 presents the empirical analysis; Section 5
provides a comparative analysis with the SEM–AHP model and discussion thereof; and
Section 6 summarizes the conclusions, innovations, and limitations of the research.

2. Research Variables

The research variables were investigated by means of interviews, policy summaries,
and a literature review. Additionally, the research variables for the CSR of metro tunnels
constructed by the mining method were extracted (Table 1).

Phase 1: Dividing main construction stages. Based on the work breakdown structure, a
whole project was decomposed into unit projects, then divisional projects, then procedures.
In this way, the whole construction process of metro tunnels by the mining method was
divided into self-contained fine components from top to bottom [27].

Phase 2: Constructing the initial research variables. Documents including Production
Safety Law of the People’s Republic of China, Safety Management Specification for Divisional Work
& Subdivisional Work with Higher Risk, and The Administrative Regulations on the Work Safety
of Construction Projects were reviewed. The risk breakdown structure [28] was applied to
construct the initial risk variables of the CSR. As many latent research variables as possible
were determined by consulting experts [29].

Phase 3: Extracting connotations of the research variables. Keywords such as “metro
tunnels constructed by the mining method*” and “construction safety risk*” were input in
the Web of Science (WOS) core collection database and searched in the advanced search
mode (* represents a fuzzy search). In this way, the literature on the theme of CSR of
metro tunnels constructed by the mining method was summarized. Based on the literature
review, the research variables and index connotations were extracted. A total of 26 research
variables (X1–X26) for risks covering the six stages (C1–C6) in the whole construction
process by the mining method were extracted.

Table 1. Safety risk evaluation index system of metro tunnels constructed by the mining method.

Stages Abbreviation Index References

Advancing
support

C1

X1
The design of the advanced support construction
operation scheme is unreasonable.

Yue et al. (2016) [30], Leung et al. (2017) [31],
Song et al. (2021) [32]

X2 Material selection is not up to standard. Wang et al. (2021) [33]
X3 The quality of the advanced support is inferior. Zhang et al. (2018) [34], Xu et al. (2017) [35]
X4 The grouting construction effect is poor. Bai (2020) [36], Liu et al. (2021) [37]

Tunnel
excavation

C2

X5 Unreasonable selection of excavation methods. Yue et al. (2016) [30], Zhang et al. (2018) [34],
Liu et al. (2021) [37]

X6
The size of the excavation section does not meet
the design requirements. Rahimi et al. (2021) [38], Meye et al. (2020) [39],

He et al. (2022) [40]
X7 Improper control of the excavation profile. Rahimi et al. (2021) [38], He et al. (2022) [40]

X8
Unreasonable determination of the excavation
footage and sequence. Zhang et al. (2018) [34], Bai (2020) [36],

Zheng et al. (2022) [41]
X9 Over-excavation and under-excavation. Rahimi et al. (2021) [38], He et al. (2022) [40],

Qiu et al. (2020) [42]

Primary
support

C3

X10
The installation and construction of steel mesh do
not meet the specification requirements. Xu et al. (2017) [35], Huang et al. (2021) [43]

X11
The installation and construction of the steel frame
do not meet the specification requirements.

Xu et al. (2017) [35], Huang et al. (2021) [43],
Huang et al. (2022) [44]

X12
The construction quality of the mortar bolt
is inferior.

Yue et al. (2016) [30], Xu et al. (2017) [35],
Huang et al. (2022) [44]

X13 The shotcrete is not up to standard. Xu et al. (2017) [35], Bai (2020) [36],
Huang et al. (2022) [44], Gong et al. (2023) [45]

X14
The backfill grouting behind the initial support is
not in place.

Wang et al. (2021) [33], Xu et al. (2017) [35],
Huang et al. (2022) [44]
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Table 1. Cont.

Stages Abbreviation Index References

Structure
waterproof

C4

X15
The waterproof concrete construction quality
is inferior.

Wang et al. (2019) [46], Pelz et al. (2022) [47],
Ai et al. (2022) [48]

X16
The waterproof plate and waterproof coil are
not applicable.

Wang et al. (2019) [46], Pelz et al. (2022) [47],
Ai et al. (2022) [48]

X17 The deviation of the deformation joint is too large. Meye et al. (2020) [39], Luciani et al. (2019) [49]
X18 Seal failure of construction joint and wall pipe. Luciani et al. (2019) [49], Fan et al. (2021) [50]

Secondary
lining

C5

X19
The quality of lining construction is not up
to standard. Tian (2015) [51]

X20 The quality of rebar processing is poor. Wang et al. (2021) [33], Tian (2015) [51],
Wang et al. (2022) [52]

X21
The safety factor of the lining die frame and trolley
is not up to standard. Qiu et al. (2020) [42], Tian (2015) [51]

X22
Inadequate concrete placement and
curing conditions.

Qiu et al. (2020) [42], Tian (2015) [51],
Wang et al. (2022) [52]

Auxiliary
measures

C6

X23 The water table is not properly controlled. Liu et al. (2021) [37], Wang et al. (2019) [53]

X24
The organization and management of on-site
transportation are not coordinated.

Leung et al. (2017) [31], Qiu et al. (2020) [42],
Kang et al. (2017) [54]

X25
The monitoring and measurement scheme is
not complete.

Bai (2020) [36], Liu et al. (2021) [37],
Ghorbani et al. (2012) [55]

X26 Insufficient construction ventilation. Jalali et al. (2011) [56], Nie et al. (2022) [57]

3. Model Development

The SEM can resolve the interaction between the risk factors. It also provides a verified
causality and its path coefficient [58]. However, the SEM fails to realize the dynamic analysis
of the CSR and PR. An FCM can simulate the evolution trends of CSR and PR through
dynamic prediction and diagnostic reasoning, while it is difficult and time-consuming to
obtain accurate quantitative relationships between concept nodes. To solve such problems,
a hybrid method combining an SEM and an FCM was proposed in this study. An SEM
was used to analyze the interaction between the CSR and PR. The verified causality and its
path coefficient were obtained and then introduced in the FCM to serve as the quantitative
relationships between concept nodes. The dynamic evolutionary relationship between the
CSR and PR was then explored.

The steps for using the SEM–FCM hybrid method to evaluate the CSR of metro tunnels
constructed by the mining method are shown in Figure 1. The method mainly included
model development and model analysis. In the model development stage, an SEM was
adopted to develop the measurement model, which was used to quantify the causality and
standardized path coefficient between the CSR and PR. In the model analysis stage, an
FCM was developed to simulate the dynamic evolutionary relationship between the CSR
and PR.

3.1. Step 1: Research Data Acquisition

Research variables X1–X26 were set as the items in the questionnaires and the five-
point Likert scale was adopted to design the questionnaires (Table 2).

Table 2. Questionnaire survey standard.

Category Score Level Criteria

CSR

1 Not Important This index is not important for the safety of the mine tunnelling method of tunnel construction.
2 Less Important This index is less important for the safety of the mine tunnelling method of tunnel construction.

3 Neutral This index has neutral importance with regard to the safety of the mine tunnelling method of
tunnel construction.

4 More Important This index is more important for the safety of the mine tunnelling method of tunnel construction.
5 Important This index is important for the safety of the mine tunnelling method of tunnel construction.

PR

1 Extremely Dissatisfied Project participants are extremely dissatisfied with the project risk control.
2 Dissatisfied Project participants are dissatisfied with the project risk control.
3 Neutral Project participants have a neutral attitude about the project risk control.
4 Satisfied Project participants are satisfied with the project risk control.
5 Very satisfied Project participants are extremely satisfied with the project risk control.
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Figure 1. FCM structure based on SEM.

3.2. Step 2: Development of SEM

The SEM is an important tool for testing causality and devloping a statistical analysis
of diversified data [59]. It is used to judge the causality between variables according to
the covariance matrices of variables and therefore can intuitively reflect path relationships
between multiple variables [60]. Considering this, the SEM has been extensively applied to
multi-variable statistical studies.

The SEM consists of a measurement model and a structural model [61]. In the measure-
ment model, Equation (1) reflects the relationships between the PR and its five observational
indices (R1–R5); and Equation (2) hows the relationships between the six construction
stages (C1–C6) and 26 observational indices (X1–X26) of the CSR. In the structural model,
Equation (3) displays the relationships between the six construction stages (C1–C6) and
the PR. The measurement model and the structural model together constitute the complex
structure and mathematical relationship of the CSR of metro tunnels constructed by the
mining method.

Y = λη + ε (1)
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X = λξ + δ (2)

η = γξ + βη + ς (3)

where η represents the endogenous variable; ξ denotes the exogenous variable; Y signifies
the observational variable of the endogenous variable η; X denotes the observational
variable of the exogenous variable ξ; γ indicates the action of the exogenous variable on
the endogenous variable; β is the relationship between the endogenous variables; λ is the
factor loading; ζ represents the measurement error of the endogenous variable; ε is the
measurement error of variable Y; and δ denotes the measurement error of variable X.

3.3. Step 3: Verification of SEM

To guarantee the precision and accuracy of the output results of the SEM, the reliability,
validity, and fitness need to be tested [62]. Therefore, a reliability analysis was used to
measure the degree of reliability of the data, that is, the stability and consistency of the
questionnaire results. The validity analysis was adopted to measure the effectiveness and
accuracy of the data, that is, how accurately the research content is measured based on the
data [63]. The fitness tests were performed to evaluate the fitness between the survey data
and the hypothetical model [64].

A confirmatory factor analysis (CFA) was conducted to assess the reliability and
validity of the model and to judge whether the hypothetical model plays its role according
to the expected structure [65]. Generally, the composite reliability (CR) was utilized to
measure the reliability, which needs to be greater than 0.8 (in principle) [66]. The average
variance extraction (AVE) was commonly adopted to measure the validity, which needs to
be greater than 0.5 (in principle) [67]; these are given by Equations (4) and (5).

CR =
(∑ λ)2

(∑ λ)2 + ∑ δ
(4)

AVE =
∑ λ2

n
(5)

where λ represents factor loading and δ denotes the measurement error. They are standard-
ized parameters. n is the number of the measurement indices of a factor.

The CFA tests passed, which means that the survey data are highly consistent with the
hypothetical model, and the AMOS software was used to develop the initial SEM. Before
analyzing the SEM, a goodness-of-fit (GOF) analysis should be conducted to test the fitness
of the initial SEM. The test indices in the GOF analysis include the absolute, relative, and
parsimony GOF indices [68]. The test indices and criteria are listed in Table 3.

Table 3. The goodness-of-fit criteria for SEM.

Tests Statistic Meaning Fitness Test Standard

Absolute Fit Indices

RMR Root mean square residua <0.05
RMSEA Root mean square error of approximation <0.05

GFI Goodness of fit index >0.9
AGFI Adjusted goodness of fit index >0.9

Relative Fit Index

IFI Incremental fit index >0.9
CFI Comparative fit index >0.9
NFI Normal fit index >0.9
TLI Tucker–Lewis index >0.9

Parsimony Fit Index
PGFI Parsimony good fit index >0.9
PNFI Parsimony norm fit index >0.9

CMIN/DF Discrepancy divided by degree of freedom <3
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If the test statistics do not conform to the fitting standard, Hopper et al. (2008) [69]
proposed that the model needs to be improved by referring to the modification index
(MI) to reach the GOF indices [70]. The output results of the modified SEM are tested
again. If the latent variables have significant correlation coefficients, this indicates that
the hypothetical model is reasonable. Under the condition, the path coefficient reflects the
influence degree of the CSR on the PR, therefore the standardized path coefficient of the
SEM is converted to weights in the FCM.

3.4. Step 4: Development of the FCM

Kosko et al. (1986) [71] introduced an FCM to expand the concept of cognitive mapping
by combining the tenets of fuzzy logic and elements of various neural networks. An FCM
is a set of directed cyclic graphs composed of concept nodes and edges. A concept node
(Ci) represents a concept or variable related to a specific field; an edge (Cij) indicates
the causality between concept nodes Ci → Cj . The edges are directed, thus mirroring
the direction of action of causality [72]. Assuming that there are N concept nodes in the
FCM, the weight from a concept node Ci to Cj (1 ≤ i, j ≤ N; i 6= j) is defined by Wij, which
represents the relative influences of the concept node Ci on Cj. A positive value, zero, or a
negative value is assigned to Wij [73].

Wij > 0: the edge (Cij) from Ci to Cj indicates a positive relationship. An increase
in the value of the concept node Ci leads to a corresponding increase in the value of the
concept node Cj. Similarly, a decrease in the value of the concept node Ci leads to a decrease
in the value of the concept node Cj.

Wij < 0: the edge (Cij) from Ci to Cj indicates a negative relationship. An increase
in the value of the concept node Ci leads to a corresponding decrease in the value of the
concept node Cj, and vice versa.

Wij = 0: this reflects that there is no relationship between Ci and Cj.
An FCM is used for modelling and simulation of a complex system [74]. It can be used

to simulate the evolution of the CSR of metro tunnels constructed by the mining method via
dynamic prediction and diagnostic reasoning. Due to the scarcity of experts in the metro
construction field, it is difficult to acquire any quantitative relationship between concept
nodes [75].

The SEM can resolve the interplay between the CSR and PR [76]. It also provides
verified causality and its path coefficient; however, the SEM fails to analyze the CSR and PR
dynamically. Hence, the hierarchical causality and standardized path coefficient between
the CSR and PR in the SEM are introduced to the FCM. They serve as the quantitative rela-
tionship between concept nodes. This is more objective compared with the case of directly
importing the questionnaire survey data of the CSR and PR into the FCM. Meanwhile,
the FCM verifies the research results of the SEM from different aspects, including model
development, predictive analysis, and reasoning diagnosis. Therefore, it is necessary and
feasible to develop the SEM–FCM hybrid model based on the SEM by aiming at character-
istics of the factors influencing the CSR of metro tunnels constructed by the mining method.
These characteristics include intrinsic correlation and staged dynamic evolution. In the
SEM–FCM hybrid model, the causality of latent variables in the SEM is used to develop the
structure of the FCM; the standardized path coefficient is adopted to construct the weight
of the FCM.

3.5. Step 5: Reasoning of FCM

A connection weight matrix Wij is set in the FCM. The matrix is formed by N concept
nodes. The state matrix at time t is represented by Ai(t) (Ai(t) = [A1(t), A2(t), . . . , AN(t)]).
The reasoning transformation function shown in Equation (6) is used to dynamically
simulate the evolution. In this way, the state vector Ai(t + 1) of each concept node at time
t + 1 is obtained. In the reasoning process of the FCM, the value of the output concept
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nodes is stabilized at a steady value [77]. When changes in the value are periodic or in the
chaos state, a steady state is reached, and the iterations stop [75].

Ai(t + 1) = f

(
Ai(t) +

n

∑
j=1,j 6=i

Wij × Aj(t)

)
(6)

where t is the iteration step size; Ai(t) denotes the value of concept node Ci at time t; Aj(t)
represents the value of concept node Cj at time t; Ai(t + 1) indicates the value of concept
node Ci at time (t + 1); Wij is the connection weight from concept node Ci to Cj; and f (·)
represents the threshold function.

During the iterative transformation, the threshold function is used to ensure that the
values of the concept nodes always remain within the requisite interval [78]. In the FCM,
the sigmoid activation function and the hyperbolic tangent function are generally used as
the threshold function. When the concept nodes are in the interval of [0, 1], the sigmoid
activation function in Equation (7) is adopted; if they are in the interval of [−1, 1], the
hyperbolic tangent function in Equation (8) is employed.

f (x) =
1

1 + e−cx (c > 0) (7)

f (x) = tanh(x) =
ex − e−x

ex + e−x (8)

During reasoning using the FCM, the constant c in Equation (7) affected the con-
vergence rate of the threshold function and its value depends on experience. To ensure
randomness of the simulation experiment, Equation (8) was selected as the threshold func-
tion of the research. If Ai(t + 1) = Ai(t) appears in the iterative operation, it indicates that
the model has reached a steady state and the iterations have stopped.

3.6. Step 6: Predictive Analysis and Diagnostic Analysis

FCM reasoning analysis includes predictive reasoning and diagnostic reasoning [75].
Predictive reasoning refers to the reasoning from the cause concept node to the target
concept node. That is, it aims to find the key factors of the CSR that are most likely to cause
PR through predictive reasoning. The ultimate purpose is to control the risks timeously
and reduce losses. Diagnostic reasoning refers to reasoning from the target concept node to
the cause concept node: it aims to seek factors of the CSR that induce PR via diagnostic
reasoning. The ultimate purpose is to find the fundamental cause, thus realizing the goal of
risk warning.

To improve the timeliness of safety evaluations throughout the construction of metro
tunnels by the mining method, project managers can integrate the identification of key risk
factors with dynamic prediction and reasoning diagnosis. This is realized by virtue of the
advantages of an FCM in prediction and diagnostic reasoning. In this way, the dynamic
evolution of the key risks is analyzed, which resolves difficulties in identifying, predicting,
and disposing of risk in the construction process. As a result, the risk evaluation results
can better match the prevailing engineering conditions. This provides a reference for the
CSR management of metro tunnels constructed by the mining method.

4. Empirical Analysis Results

To prove the effectiveness and feasibility of the SEM–FCM hybrid model in analyzing
risk factors affecting the CSR of a metro tunnel constructed by the mining method, the
Phase 2 project of the Metro Line 8 constructed by the mining method in Wuhan was used
as an example. The application of the SEM–FCM hybrid model in the metro construction
site was demonstrated. As shown in Figure 2a, the Wuhan metro system is an urban rail
transport service serving Wuhan. By the end of December 2021, there were 11 metro lines
under operation in Wuhan and the total length thereof reached 435 km, passing a total of
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282 stations. By 2024, a total of 14 metro lines will be constructed in Wuhan to form a metro
network with a total length of 606 km [79].
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location of XHS in Metro Line 8; (c) the tunnel under construction by the mining method in XHS.

Wuhan Metro Line 8 has a total length of 39 km. Its construction started on 26 October
2014 and 26 stations are set along the line. The entire metro line is underground. The
Phase 2 project of Metro Line 8 (Liyuan station to Yezhihu station), which has been open
to traffic since 2 January 2021, is an important passenger traffic line linking up the central
region of the Wuchang District. A cross-section of the line was utilized as the research
object of interest, namely, Xiaohongshan—Hongshan Road Station (XHS), which is shown
in Figure 2b.

XHS is a double-track tunnel with a total length of 1595.595 m. The tunnel sections con-
structed by the shield method and large-section mining method are 1472.495 m and 106.1 m
long, respectively. A single cross-over is set at chainages DK23 + 680.41 to DK23 + 770.251
(right-hand tunnel), where the traffic is busy. Additionally, there are many pipelines and
civil air-defense tunnels under these roads, therefore a large-section mining method is
used at the cross-over. The tunnel constructed by this mining method is at chainages
DK23 + 661.251 to DK23 + 770.251 (right-hand tunnel). The width and height of the cross-
section are 19.62 m and 13.43 m, respectively. The overlying soil above the vault is 23.3 m
thick. The double side drift method is used for construction by dividing the large section
into six parts (Figure 2c).

4.1. Step 1: Verification of SEM

Researchers have not reached a consensus about the number of questionnaire samples
required to obtain an adequate sampling. Marsh et al. (1998) [80] and Jones et al. (2013) [81]
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believed that more samples may bring better results, while Vickers et al. (1993) [82] and
Gracia et al. (2020) [59] stated that the sample size should be larger than 200, but not exceed
400. Masters (1974) [83] insisted that the factor analysis results have a high explanatory
power if the sample size is five times that of the number of scale problems. To ensure the
accuracy of the expert evaluation results, experts with at least two years of management
and research experience were selected to participate in the survey. Both an off-line and
on-line survey was adopted (within China). A total of 405 questionnaires were returned,
and 394 questionnaires were obtained after eliminating those with incorrect selections or
omissions; the effective recovery rate was 97.28%. The statistical results arising from the
input from the experts are shown in Figure 3.
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As shown in Figure 3, males accounted for 75.38% of all the subjects; subjects with
fewer than five years of experience accounted for 44.92%; subjects with a bachelor’s degree
or above accounted for 50.25%; subjects aged from 30 to 40 years old accounted for 47.72%;
subjects with medium-grade professional titles or above accounted for 44.16%; and subjects
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from construction units accounted for 28.17%. According to the statistical results of the
survey samples, the gender, work experience, educational level, age, professional ranks
and titles, and work unit of the subjects all conform to the basic information pertaining to
the rail transportation sector in China.

An analysis of the normality tests in Table 4 reveals that the absolute value of the
skewness of the survey data is less than 3 [84]. The absolute value of the kurtosis of the
survey data is lower than 10 [85]. According to Zhao et al. (2018) [76], the results indicate
that the data follow the normal distribution and can be used in a subsequent analysis.

Table 4. Descriptive outline of the measures.

Measures
Mean

Statistic
SD

Statistic
Skewness Kurtosis

Statistic SD Statistic SD

X1 3.3401 1.01694 −0.166 0.123 0.034 0.245
X2 3.4112 1.02313 −0.174 0.123 −0.078 0.245
X3 3.3883 1.03573 −0.169 0.123 −0.086 0.245
X4 3.4442 1.01800 −0.117 0.123 −0.220 0.245
X5 3.1523 1.04706 0.066 0.123 −0.492 0.245
X6 2.4010 1.04192 0.591 0.123 −0.294 0.245
X7 2.7335 0.92604 0.109 0.123 −0.059 0.245
X8 3.1066 1.02081 0.016 0.123 −0.170 0.245
X9 3.1193 1.02562 0.001 0.123 −0.194 0.245
X10 3.2919 1.03800 −0.072 0.123 −0.195 0.245
X11 2.3477 1.03791 0.734 0.123 0.209 0.245
X12 3.2284 0.99802 −0.131 0.123 −0.213 0.245
X13 3.7234 1.08523 −0.681 0.123 −0.167 0.245
X14 3.2995 1.07322 −0.259 0.123 −0.274 0.245
X15 2.9873 1.01005 0.338 0.123 −0.254 0.245
X16 3.0076 1.06885 0.299 0.123 −0.457 0.245
X17 2.9797 1.01620 0.362 0.123 −0.268 0.245
X18 2.9239 1.06973 0.152 0.123 −0.319 0.245
X19 3.0533 1.12781 0.012 0.123 −0.533 0.245
X20 2.9695 1.11163 0.094 0.123 −0.550 0.245
X21 3.5051 1.13524 −0.401 0.123 −0.831 0.245
X22 2.2919 1.06701 0.799 0.123 0.059 0.245
X23 1.9645 0.97749 0.663 0.123 −0.375 0.245
X24 3.5228 1.04150 −0.564 0.123 −0.278 0.245
X25 3.3020 1.06178 −0.114 0.123 −0.467 0.245
X26 2.1015 1.00879 0.827 0.123 0.191 0.245
R1 2.9746 1.20405 0.093 0.123 −0.768 0.245
R2 3.0000 1.13020 0.255 0.123 −0.594 0.245
R3 2.9772 1.15337 0.145 0.123 −0.603 0.245
R4 2.7386 1.20228 0.276 0.123 −0.629 0.245
R5 2.9061 1.12515 0.218 0.123 −0.501 0.245

To test the reliability and validity of the questionnaire survey samples, a CFA was
conducted on the basis that the samples pass the normality tests. The CFA results are
shown in Table 5: in reliability tests, the factor loading of each observational variable
exceeds 0.5; Cronbach’s α coefficient of the total scale is 0.918, which is greater than 0.8;
and the minimum CR is 0.849, which is above 0.7. All these factors indicate high internal
consistency of the scale. In validity tests, the KMO value is 0.853, which is larger than 0.5;
Barlett’s test value of sphericity is less than 0.001; and the minimum AVE is 0.535, which
is greater than 0.5. These indicate that the questionnaire data have high validity and the
survey samples can support the development and analysis of the model.

The AMOS software was used to develop the initial SEM. The results show that the
degree of freedom of the model is 231; this indicates that the initial SEM can be identified.
The GOF of the initial SEM is shown in Table 6, which displays that the χ2/d f and RFI
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statistics are approximate to the evaluation criteria. The other statistics all meet the GOF
evaluation criteria. Therefore, the initial SEM should be modified.

Table 5. CFA results of the questionnaire survey samples.

Variables Item Rotated
Component Matrix R2 AVE CR

C1
(Advanced support)

X1 0.879 0.773

0.738 0.918
X2 0.858 0.736
X3 0.862 0.743
X4 0.837 0.701

C2
(Tunnel excavation)

X5 0.885 0.783

0.700 0.921
X6 0.79 0.624
X7 0.785 0.616
X8 0.849 0.721
X9 0.869 0.755

C3
(Primary support)

X10 0.775 0.601

0.535 0.849
X11 0.508 0.258
X12 0.762 0.581
X13 0.729 0.531
X14 0.840 0.706

C4
(Structure

waterproofing)

X15 0.945 0.893

0.868 0.963
X16 0.924 0.854
X17 0.925 0.856
X18 0.932 0.869

C5
(Secondary lining)

X19 0.911 0.830

0.624 0.866
X20 0.895 0.801
X21 0.578 0.334
X22 0.728 0.530

C6
(Auxiliary measures)

X23 0.755 0.570

0.612 0.862
X24 0.855 0.731
X25 0.848 0.719
X26 0.655 0.429

PR
(Project risk)

R1 0.885 0.783

0.719 0.927
R2 0.842 0.709
R3 0.859 0.738
R4 0.788 0.621
R5 0.862 0.743

Note(s): Cronbach α = 0.918; KMO = 0.853, P = 0.000.

Table 6. Results of the GOF analysis for the initial model.

Types of Fit Indices Indicators Fit Criteria Before
Modification Test Results

Absolute fit indices

Root mean square residual (RMR) ≤0.08 0.051 YES
Root mean square error of approximation (RMSEA) ≤0.08 0.074 YES

Goodness-of-fit index (GFI) ≥0.80 0.844 YES
Adjusted goodness-of-fit index (AGFI) ≥0.80 0.807 YES

Relative fit indices

Normal fit index (NFI) ≥0.80 0.909 YES
Relative fit index (RFI) ≥0.90 0.895 NO

Incremental fit index (IFI) ≥0.90 0.936 YES
Tucker–Lewis index (TLI) ≥0.90 0.926 YES

Comparative fit index (CFI) ≥0.90 0.935 YES

Parsimony fit indices

Parsimonious goodness-fit-index (PGFI) ≥0.50 0.684 YES
Parsimonious normed fit index (PNFI) ≥0.50 0.791 YES

Parsimonious comparative-fit-index (PCFI) ≥0.50 0.814 YES
Chi-square/degree of freedom (χ2/df ) ≤3 3.151 NO
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4.2. Step 2: Modification of SEM

To modify the initial SEM, the covariance, variance, and path coefficient were utilized
as the modification parameters of the model. Combined with the MI index, the modification
was repeated until all the GOF evaluation criteria were met. Taking C2 (tunnel excavation)
as an example, the modification process is shown in Figure 4.
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Figure 4. Measurement results of safety risk model.

According to an analysis of Figure 4a, only the initial SEM of C2 passes the significance
tests. After modifying the model using the MI value and deleting X7, Figure 4b shows that
each index meets the verification criteria. χ2/d f , RMR, and RMSEA exhibit a decreasing
trend, which is better aligned with the evaluation criteria. This indicates that the GOF
indices of the C2 model have been verified. Likewise, modification using the MI is repeated
in other stages, and variables X2, X11, X13, X14, X20, and X26 are deleted successively. The
GOF test results of the modified SEM are listed in Table 7. An analysis of Table 7 reveals that
the modified SEM always meets the fitting standard, indicative of the good overall fitting
effect of the model. In summary, the modified SEM can quantitatively reflect causality
between the CRS and PR.

Table 7. Results of the GOF analysis for modification SEM.

Types Indicators Fit Criteria Before After Results

Absolute fit indices

Root mean square residual (RMR) ≤0.08 0.051 0.048 YES
Root mean square error of approximation (RMSEA) ≤0.08 0.074 0.067 YES

Goodness-of-fit index (GFI) ≥0.80 0.844 0.881 YES
Adjusted goodness-of-fit index (AGFI) ≥0.80 0.807 0.845 YES

Relative fit indices

Normal fit index (NFI) ≥0.80 0.909 0.929 YES
Relative fit index (RFI) ≥0.90 0.895 0.917 YES

Incremental fit index (IFI) ≥0.90 0.936 0.954 YES
Tucker—Lewis index (TLI) ≥0.90 0.926 0.944 YES
Comparative fit index (CFI) ≥0.90 0.935 0.953 YES

Parsimony fit indices

Parsimonious goodness-fit-index (PGFI) ≥0.50 0.684 0.678 YES
Parsimonious normed fit index (PNFI) ≥0.50 0.791 0.778 YES

Parsimonious comparative-fit-index(PCFI) ≥0.50 0.814 0.798 YES
Chi-square/degree of freedom (χ2/df) ≤3 3.151 2.757 YES
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4.3. Step 3: SEM Analysis

The CFA results show that the questionnaire and scale are designed reasonably. In
addition, the results also indicate that the survey data have high explanatory power for
the risk of the whole construction process of metro tunnels by the mining method. The
results of the GOF analysis indicate that the questionnaire survey data are consistent with
the hypothetical model. The results also show that the SEM conforms to the prevailing
practical situation. The modified SEM was run again and the standardized path coefficient
was determined, as shown in Figure 5.
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Figure 5 shows that the standardized factor loading is mostly greater than 0.5 (exclud-
ing X6, X10, and X23), and the standardized path coefficient is deemed significant. This
indicates that the 19 research variables can be used as the quantitative indices for CSR in the
six construction stages of metro tunnels constructed by the mining method. The correlation
coefficients between the standardized path coefficient and the latent variables are shown
in Table 8. According to an analysis of Table 8, the path coefficients of C1, C2, C3, C4, C5,
and C6 are all positive, which indicates that the CSR is positively correlated with the PR. In
addition, the latent variables exhibit significant correlation coefficients, and can therefore
be used to develop the FCM.
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Table 8. Analysis of path effects among constructs in SEM.

Causal Path Standard Coefficient (R) t Value p

Project risk← Primary support 0.093 2.164 0.03
Project risk← Tunnel excavation 0.263 5.476 ***
Project risk← Secondary lining 0.085 1.438 0.15

Project risk← Auxiliary measures 0.195 4.199 ***
Project risk← Structure waterproofing 0.190 4.119 ***

Project risk← Advanced support 0.233 4.852 ***
Primary support↔ Secondary lining 0.196 3.274 0.001

Primary support↔ Auxiliary measures 0.161 2.952 0.003
Primary support↔ Structure waterproofing 0.266 4.949 ***

Tunnel excavation↔ Secondary lining 0.455 6.893 ***
Tunnel excavation↔ Auxiliary measures 0.320 5.805 ***

Tunnel excavation↔ Structure waterproofing 0.246 4.588 ***
Secondary lining↔ Auxiliary measures 0.408 6.307 ***
Tunnel excavation↔ Advanced support 0.137 2.512 0.012
Primary support↔ Advanced support 0.208 3.738 ***

Structure waterproofing↔ Advanced support 0.361 6.136 ***
Secondary lining↔ Advanced support −0.065 −1.054 0.292

Auxiliary measures↔ Advanced support 0.104 1.868 0.062
Primary support↔ Tunnel excavation 0.238 4.405 ***

Secondary lining↔ Structure waterproofing 0.229 3.743 ***
Auxiliary measures↔ Structure waterproofing 0.137 2.582 0.01

Note(s): *** p < 0.001.

4.4. Step 4: Development of FCM

To study the dynamic evolving relationship between the CSR and the construction
stages of metro tunnels constructed by the mining method, the causality and its path
coefficient in the SEM were transformed to concept nodes and quantitative relationships
in the FCM. Predictive reasoning and diagnostic reasoning were performed in the FCM.
To simplify the research, the latent variables of the SEM were employed to develop the
FCM. The six construction stages constituted by the CSR in the SEM were transformed
into the cause concept nodes of the FCM, which are expressed by Ci (i = 1, 2, 3, 4, 5, 6).
The PR in the SEM was transformed into the target concept node of the FCM, which is
expressed by CT . The standardized path coefficients of the SEM in Table 8 were introduced
by conversion into the connection matrix Wij of the FCM. In this way, the FCM based on
the SEM was developed, as shown in Figure 6.

4.5. Step 5: Predictive Analysis of FCM

Predictive analysis is reasoning from the cause concept node to the target concept
node, which aims to predict possible outcomes in the future according to the current
evidence. In the FCM, the cause concept node is expressed by Ci (i = 1, 2, 3, 4, 5, 6) and
the target concept node is represented by CT . Based on the connection matrices between
concept nodes Ci and CT , the degree of influence of various construction stages on the PR
is quantitatively predicted.

The cause concept node Ci was valued according to the five-point verbal scale and
then simulated. Taking C2 (tunnel excavation) as an example, its initial value was set to one
of five state values: −1 (very unfavorable), −0.5 (unfavorable), 0 (neutral), 0.5 (favorable),
and 1 (very favorable). C2 was set to different initial values (−1, −0.5, 0, 0.5, and 1). Except
for C2, the initial values of the other cause concept nodes (C1, C2, C3, C4, C5, and C6)
were all 0 and remained unchanged; the initial value of the target concept node was also
0 and remained unchanged. Throughout the simulation, the steady value of the target
concept node CT was finally obtained. The predictive reasoning results of the state values of
Ci (i = 1, 2, 3, 4, 5, 6) and the corresponding steady values of CT are listed in Table 9. The
predictive analysis of the FCM was run 30 times; iteration trends under different scenarios
are illustrated in Figure 7.
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Table 9. Change statistics of predictive reasoning process.

P(CT|Ci=−1) P(CT|Ci=−0.5) P(CT|Ci=0.5) P(CT|Ci=1)

C1 −0.7576 −0.6376 0.6376 0.7576
C2 −0.7785 −0.6583 0.6583 0.7785
C3 −0.5997 −0.4909 0.4909 0.5997
C4 −0.7222 −0.6033 0.6033 0.7222
C5 −0.5849 −0.4776 0.4776 0.5849
C6 −0.7267 −0.6076 0.6076 0.7267

Combining the analyses in Table 9 and Figure 7b, when C2 = −1 (or −0.5), CT
stabilizes at−0.7785 (or−0.6583) after many iterations, as exemplified by the cause concept
node C2, if C2 = 1 (or 0.5), CT stabilizes at 0.7785 (or 0.6583) after many iterations. This
indicates that C2 and CT are positively correlated. Similarly, after repeating the operation
above, C1, C3, C4, C5, and C6 are found to have positive correlations with CT . By comparing
the steady values and rates of change of CT in different scenarios, Figure 7b–f shows the
strongest correlation between C2 and CT . According to the intensity of the correlations
with CT , C2, C1, C6 C4, C3, and C5 are listed thus (in descending order). This indicates
that controlling the key risks in construction stages, such as tunnel excavation (C2) and
advanced support (CT), is critical for ensuring construction safety.

4.6. Step 6: Diagnostic Analysis of FCM

Diagnostic analysis is reasoning from the target concept node to the cause concept
node, which aims to explore the most possible causes leading to the occurrence of the
known outcomes. In the FCM, the target concept node is expressed by CT and the cause
concept node is expressed by Ci (i = 1, 2, 3, 4, 5, 6). Based on the connection matrices
between concept nodes Ci and CT , the construction stages that most likely cause changes
in the PR are quantitatively diagnosed. In a diagnostic analysis of the FCM, it is necessary
to reverse the arc of the nodes in the SEM while keeping the weight constant.
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The target concept node CT was valued according to the five-point verbal scale and
then simulated. The initial value of CT was set to one of five state values, namely, −1
(very unfavorable), −0.5 (unfavorable), 0 (neutral), 0.5 (favorable), and 1 (very favorable).
CT was set to different initial values (−1, −0.5, 0, 0.5, and 1). Except for CT , the initial
values of the cause concept nodes (C1, C2, C3, C4, C5, and C6) are all 0 (neutral) and remain
unchanged. Throughout the simulation, the steady values of the cause concept node Ci
(i = 1, 2, 3, 4, 5, 6) were finally obtained. The diagnostic reasoning results are listed in
Table 10. The diagnostic analysis of the FCM was run 30 times. The iteration trends under
different scenarios are shown in Figure 8.
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Table 10. Change statistics of diagnostic reasoning process.

C1 C2 C3 C4 C5 C6

P(Ci|CT = −1) −0.7576 −0.7785 −0.5997 −0.7222 −0.5849 −0.7267
P(Ci|CT = −0.5) −0.6376 −0.6583 −0.4909 −0.6033 −0.4776 −0.6076
P(Ci|CT = 0.5) 0.6376 0.6583 0.4909 0.6033 0.4776 0.6076
P(Ci|CT = 1) 0.7576 0.7785 0.5997 0.7222 0.5849 0.7267
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Combining the analyses of Table 10 and Figure 8a, Ci (i = 1, 2, 3, 4, 5, 6) stabi-
lizes at −0.7576 (0.7576), −0.7785 (0.7785), −0.5997 (0.5997), −0.7222 (0.7222), −0.5849
(0.5849), and −0.7267 (0.7267) after many iterations, as exemplified by the target con-
cept node CT = −1 (or +1). This suggests that Ci is positively correlated with CT .
Meanwhile, a comparison of the curve slopes of P(Ci|CT = −1) (i = 1, 2, 3, 4, 5, 6) re-
veals that P(C2|CT = −1) > P(C1|CT = −1) > P(C6|CT = −1) > P(C4|CT = −1) >
P(C3|CT = −1) > P(C5|CT = −1). The diagnostic reasoning results are consistent with
those arising from the predictive analysis. Figure 8b–d shows that similar results are
obtained when comparing the curves of P(Ci|CT = −1) (i = 1, 2, 3, 4, 5, 6) under the
conditions of CT = −0.5,+0.5,+1. The most possible cause for the changes in the target
concept node CT is tunnel excavation (C2), followed successively by advanced support
(C1), auxiliary measures (C6), structure waterproofing (C4), primary support (C3), and
secondary lining (C5). This indicates the need to pay more attention to controlling the
key risks in different construction stages, including tunnel excavation (C2) and advanced
support (C1).
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5. Discussion

The proposed SEM–FCM hybrid model takes advantages of the SEM in building
hierarchical causality and objective characterization of subjective data. It also combines
with characteristics of the FCM in dynamic prediction and reasoning diagnosis. Therefore,
it can integrate the identification of risk factors with the dynamic prediction and reasoning
diagnosis, which leads to better conformity between risk evaluation and practical conditions
in live projects. This provides a new perspective for the CSR management of metro tunnels
constructed by the mining method.

Compared with existing research, the FCM in this study was developed using the
SEM, which overcomes the drawback of a traditional FCM, with its over-dependence on
the subjective ideas of experts. At the same time, it can also achieve a dynamic evolution
analysis of the CSR of metro tunnels constructed by the mining method. An empirical
analysis has proven that the proposed method is reliable, although it needs to be compared
with other methods theoretically. Based on the SEM, the standardized path coefficient
in Figure 5 is quantified using the analytic hierarchy process (AHP) [86]. The results
are shown in Table 11: according to the risks, various stages are ranked in a descending
order as C2 > C1 > C6 > C4 > C3 > C5. The analytical results from the SEM–AHP
hybrid method match the prediction and diagnostic analysis results arising from the use
of the SEM–FCM hybrid model [87]. The analysis from the SEM–AHP hybrid method
aligns with the conditions at the construction site, according to daily management reports.
Similarly, the results from the SEM–FCM hybrid model also match the site’s conditions. We
acknowledge the importance of validating theoretical methods with experimental or field
data. In our future work, we plan to test the SEM with such data. We will then compare
these results with those from the SEM–FCM and SEM–AHP methods. This will help us
refine the effectiveness of our proposed methods.

Table 11. Quantitative results and their weight ranking.

Latent
Variables

Standardized
Path Coefficient

Weight
I

Rank
I

Observational
Variables

Standardized
Path Coefficient

Weight
II

Rank
II

Weight
III

Rank
III

C1
(Advanced

support)
0.233 0.220 2

X1 0.901 0.196 1 0.071 4
X3 0.844 0.183 2 0.066 5
X4 0.808 0.176 3 0.063 8

C2
(Tunnel

excavation)
0.263 0.248 1

X5 0.888 0.227 3 0.082 3
X6 0.637 0.163 4 0.059 12
X8 0.956 0.244 2 0.088 2
X9 0.978 0.250 1 0.090 1

C3
(Primary
support)

0.093 0.088 5
X10 0.532 0.043 3 0.016 19
X12 0.791 0.064 2 0.023 15
X14 0.988 0.080 1 0.029 14

C4
(Structure

waterproofing)
0.19 0.179 4

X16 0.935 0.172 3 0.062 10
X17 0.966 0.178 1 0.064 6
X18 0.953 0.176 2 0.063 9

C5
(Secondary

lining)
0.085 0.080 6

X19 0.733 0.058 1 0.021 16
X21 0.707 0.056 3 0.020 18
X22 0.725 0.058 2 0.021 17

C6
(Auxiliary
measures)

0.195 0.184 3
X23 0.591 0.108 3 0.039 13
X24 0.910 0.166 2 0.060 11
X26 0.965 0.176 1 0.063 7

Based on the combined analysis of the SEM–FCM and SEM–AHP models, we offer the
following suggestions for CSR management in metro tunnel construction using the mining
method:

(1) The use of macroscopic–microscopic and dynamic–static combined risk manage-
ment is suggested. Construction stages should be ranked according to risks based on the
quantification results of weight I using the SEM–AHP method [88]; the key stages with
risks to be controlled need to be identified by combining data with the prediction and



Buildings 2023, 13, 1335 20 of 24

diagnostic analysis results of the SEM–FCM hybrid model. Based on the quantification
results of weight II [86], the risks in each construction stage should be ranked, and control
measures for the staged key risks should be implemented. The overall risks should be
ranked based on the quantification results of weight III [87], facilitating identification of the
key risks from the macroscopic perspective.

(2) Control of the staged key risks should be emphasized in each construction stage [89].
The risk control throughout the entire construction process of metro tunnels by the mining
method should be enhanced. In addition, close attention should be paid to the key stages
including tunnel excavation. The safety responsibility system needs to be implemented
to eradicate safety and quality hazards. For example, research shows that the risk of the
occurrence of over-excavation and under-excavation is the highest in the tunnel excavation
stage. Therefore, specific construction plans need to be formulated in the construction
organization plan and construction preparation stages. In addition, early-warning measures
and refined risk management should be implemented.

(3) Throughout the construction process, risk management should be enhanced by
combining multiple measures [90]. It is also necessary to implement health monitoring
throughout the construction process; this should be dominated by intelligent methods. It
is suggested to strengthen the perception of monitoring information and real-time data,
and build the systematic Internet of Things for early-warning of CSR. Additionally, a
third-party safety inspection system should be established at the construction site to ensure
that reformation of daily illegal and dangerous operations takes place. In doing so, it is
expected that safe construction practices will be implemented throughout the process.

6. Conclusions

The empirical analysis results are summarized as follows:
(1) In combining the discussion results from the joint analysis of the SEM–FCM

model and the SEM–AHP model, we can see that the results reveal that, according to the
weights and ranks of the risk factors in the construction process, the key risks in stage
C2 (tunnel excavation) should be the focus of the engineer’s attention. These include X9
(over-excavation and under-excavation), X8 (unreasonable determination of excavation
footage and sequence), and X5 (unreasonable selection of excavation methods).

(2) The risk predictive analysis of the FCM shows that the cause concept node C2
(tunnel excavation) has the strongest positive correlation with the target concept node CT
(PR). According to their risks, various stages are ranked (in descending order) as follows:
C2 (tunnel excavation), C1 (advanced support), C6 (auxiliary measures), C4 (structure
waterproofing), C3 (primary support), and C5 (secondary lining). The SEM and FCM show
the most consistent CSR evaluation results. This indicates that controlling the key risks
in construction stages, such as tunnel excavation and advanced support, is critical for
ensuring safe construction.

(3) The risk diagnostic analysis of the FCM implies that the target concept node CT (PR)
is most sensitive to changes in the risks of the cause concept node C2 (tunnel excavation).
Therefore, it is the tunnel excavation stage that is most likely to induce CSR in metro tunnels
constructed using the mining method. The diagnostic analysis results of CSR using the
FCM are highly consistent with the practical situation, which verifies the effectiveness of
the model.
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Nomenclature

Parameters
C1 Advancing support
C2 Tunnel excavation
C3 Primary support
C4 Structure waterproof
C5 Secondary lining
C6 Auxiliary measures
CSR Construction safety risk
PR Project risk
Variables
η Endogenous variable
ξ Exogenous variable
Y Observational variable of endogenous variable
X Observational variable of exogenous variable
γ Action of exogenous variable on endogenous variable
β The relationship among endogenous variables
λ Factor loading
ζ Measurement error of endogenous variable
ε Measurement error of variable Y
δ Measurement error of variable X
Acronyms
CR Composite reliability
AVE Average variance extraction
RMR Root mean square residua
RMSEA Root mean square error of approximation
GFI Goodness of fit index
AGFI Adjusted goodness of fit index
IFI Incremental fit index
CFI Comparative fit index
NFI Normal fit index
TLI Tucker–Lewis index
PGFI Parsimony good fit index
PNFI Parsimony norm fit index
CMIN/DF Discrepancy divided by degree of freedom
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