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Abstract: In recent years, research has focused on designing buildings with higher energy efficiency
and lower emissions by considering multiple objectives. This can impact financial savings, smaller
environmental footprints, and energy consumption optimization. The purpose of the current study is
to develop a new technique to solve this challenging multiple-objective optimization problem. While
there are different methods to solve optimization problems, based on the NLP theory, there is not any
metaheuristic algorithm that can solve all the problems accurately. Sometimes, the outcome of a basic
algorithm is a local optimum. Therefore, to reach the global optimum, we propose the Improved
Billiard-based Optimization Algorithm (IBOA). Moreover, in some cases, the basic model suffers
from premature convergence, which prevents reaching an accurate result. Hence, this study aims
to solve this problem and attain better convergence results using the proposed method to minimize
CO2-eq emissions and life cycle costs. The design variables include some parameters of the envelope
of a single-family residential dwelling to indicate the efficiency of the presented method. Based on
the Pareto optimum solutions achieved, it is proved that the method is effective.

Keywords: multi-criteria optimization; carbon dioxide emissions; life-cycle cost; energy efficiency;
improved metaheuristic algorithm

1. Introduction

Energy consumption is increasing worldwide [1]. This causes some problems, such as
serious environment-related effects, exhausting energy sources, and supply shortages [2].
Commercial and residential buildings in developed countries consume almost 20% to 40%
of the energy, exceeding other main sectors such as transportation and industrial [3]. Glob-
ally, more than 40% of energy is consumed in buildings and almost 33% of GHG emissions
are related to this sector [4]. It is noticeable that the growing importance of teleworking as
a result of advancements in technology and changing work patterns should be highlighted.
Teleworking allows individuals to work remotely from their homes, reducing the need
for daily commuting and, consequently, transportation-related carbon dioxide-equivalent
emissions. Since teleworkers can perform their tasks from home, there is less need for
energy-intensive office buildings, reducing energy consumption and associated emissions.
Moreover, the connection between teleworking and the future of transportation should be
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noted by highlighting the potential reduction in the demand for traditional commuting
methods, such as personal vehicles and public transportation. This reduction can lead to
decreased traffic congestion and the need for extensive transportation infrastructure.

Therefore, an investigation and assessment of the energy use and CO2 emissions of
buildings are necessary [5–8]. Based on the achievements in [9], the highest concerns about
carbon neutrality are generally associated with the environment, governance, and society.
The consumption of households is increasing due to increases in population and reductions
in family size [10]. For the design of buildings, new solutions have been suggested by
using novel technology. For outdoor and indoor exchange control, the envelope of the
building has a major role [11]. For a high decrease in the consumption of energy, the
efficient design of the envelope of the building is essential [12]. Indeed, more than 50% of
energy demand is related to heat losses from the building shell in terms of a multipurpose
building [13]. Hence, the energy efficiency of these buildings should be improved [14].
For the minimization of the energy requirements, various design variables concerning
the envelope should be optimized. The authentic assessment of energy use and potential
economic-related advantages is critical to achieving a robust and efficient energy design of
buildings [15].

Studies have indicated that the embodied phase can account for up to 30% of the
life-cycle energy and emissions of a building, and if the building is energy efficient and
passive, this number could rise to 50%. US emissions are significantly impacted by the
residential housing market alone. In this respect, in [16], Atlanta was investigated as
a growing metropolis and assessed with embodied Life Cycle Assessments (LCAs) for
single-family residential retrofits considering their original construction year. In [17], the
cost-efficient energy retrofitting actions in Finnish detached houses was examined. For the
minimization of carbon dioxide emissions and life-cycle costs (LCC), multiple-objective
optimization using a genetic algorithm (GA) has been utilized in each type of building
for five various major heating systems by enhancing the systems and envelope of the
building. It was deduced that the most cost-efficient single renovating actions have been
the installation of the air-to-air heat pumps for additional heating and the enhancement of
the outer walls’ thermal insulation. In [18], a probabilistic multi-objective-based congestion
management method has been presented and used for the optimal transmission switching
(OTS) approach for system suitability maximizing and the minimizing of overall production
costs. In [19], a multiple-objective method was used by the NSGA-II algorithm for the
optimization of the energy design of a library facility. For the minimization of a weighted
fitness function that includes objectives concerning economic-, energy-, and environment-
related performance, a system of ventilation, set point temperatures, and types of windows
was optimized. To address various objectives, various trade-off solutions were presented. It
concluded that budget constraints and financial accessibility are important to the economic
side of building design.

The building designs that use new methods are primarily concentrated on reducing
emissions and conserving energy. Several studies have been conducted in this area in
recent years. A primary objective of these works is to minimize the consumption of energy
and, consequently, the costs associated with it. The building envelope materials, including
types of insulation, types of roofing, finishing materials, types of windows, and types of
glazing, are altered to minimize the consumption of energy. There has been an analysis
of building shapes, orientations, and sizes concerning energy consumption in several
studies. The proper setting of these parameters at the design stage can result in considerable
improvements. It is highly difficult to optimize the energy design of the building during the
initial phases due to the fact that these problems are multi-discipline, including different
economics, engineering fields, architecture, and mathematics [20]. Also, they resolve
multiple objective functions that are usually conflicting [15]. The Pareto optimization
establishes trade-off non-dominated solutions, which are included in multiple-criteria
techniques [21]. These solutions are collected on the Pareto set with dimensions the same as
the objective functions’ number. Therefore, to achieve the optimum solution of the Pareto
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set based on the employed criteria, implementation of multiple-criteria decision-making
(MCDM) is needed. The employment of a new alternative method is required due to the
task’s complicatedness, even though different techniques have been presented for building
designs that are cost-efficient with lower emissions. In this respect, a new metaheuristic
algorithm, called the Improved Billiard-based Optimization Algorithm (IBOA), is used in
this paper. Many related papers have focused on the emissions concerning the use step,
but in this study, the total life-cycle emissions are considered for investigation. To design
buildings with lower emissions and higher energy efficiency, the target is to minimize the
carbon dioxide-equivalent emissions and life-cycle costs (LCC) of the buildings. Indeed,
the considered objectives are conflicting. For the evaluation of the LCC and the emissions
of the defined model, a simulation was performed. For cooling, heating, ventilation, and
lighting modeling, EnergyPlus [22] was used. A single-family house located in Atlanta,
a city in Georgia, USA, was selected for study to show the efficiency of the suggested
technique. Due to extensive study on energy-efficient buildings with low emissions in
residential buildings of the USA being rare, such a building was especially selected for this
study. The main contributions of the presented paper are stated in the following:

- Providing a multi-objective optimization to design buildings with higher energy
efficiency and lower environmental effects;

- Minimizing the CO2-eq Emissions and Life-Cycle Costs;
- Using a new optimization method, called Improved Billiard-based Optimization

Algorithm;
- Applying EnergyPlus for cooling, heating, ventilation, and lighting modeling.

In the following sections, the multi-objective optimization method is explained. In
the next section, the results and discussions are represented. Finally, the conclusions are
outlined.

2. Research Method
2.1. Improved Billiard-Based Optimization Algorithm (IBOA)

Billiards is a game that is played on a rectangular table with some balls. An extended
staff is used to move the ball. The table is covered with billiard cloth, often called “felt”,
bounded by elastic bumpers known as cushions. This is an old game the precise origin of
which is unknown. There are two types of billiards including carom billiards and pocket
billiards. Carom billiards, also known as” French”, is made with three balls with no pockets.
The white cue ball is directed into the other balls in this type. Pocket billiards, or “pool”,
is played with 16 balls. There is a cue ball with six pockets, scattering on the rails. The
balls should be shot into the pockets. Pocket and carom billiards have different rules for
playing the game, the mass of the pockets, and the number of balls. Pocket billiards has
various types [23]. Eight Ball is the most common. This type has sixteen balls, a stick, and
six pockets. There is a cue ball with the number 8; the other balls are classified into striped
or solid balls. Starting the game, the balls are scattered on the table, and by putting one of
the balls in the pocket, the player is allotted to that ball group. As a general rule of billiards,
the ball can be moved in various directions to be thrown into the pockets [24].

2.1.1. The Billiard-Based Optimization Algorithm

This algorithm’s design is based on the billiards game. Resolution variables are
surrounded by each solution, considered to be balls with various dimensions. Balls are
assumed to be factors in the optimization problem, and as dimensions of balls, variables
are taken into account. Thus, the balls are first generated and located in various places
randomly and the best one is assumed to be the pocket. Next, the balls are divided into two
groups, cue balls and ordinary balls. The balls are directed by cue balls into the pockets.
After the collision, based on the kinematics and collision rules, the movement direction of
balls and their position is set. The Billiard-based Optimization Algorithm (BOA) steps are
defined in the following:
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(1) Solution initialization:

The population location of initial balls in the search space is calculated as below:

B0
n.s = varmin

s + rand[0.1]
(
varmax

s − varmin
s
)

n= 1, 2, 3 . . . , 2N
s= 1, 2, 3, . . . , S

(1)

where n defines the balls’ values and s is the variable’s value. B0
n.s denotes the primary

quantity for the sth variable; varmin
s and varmax

s are the minimum and maximum values
of the variables. Distributing uniformly, rand[0,1] shows the variables located in the range
[0, 1].

(2) Evaluation

In this step, the position of the pockets and balls is assessed using the objective
function [24].

(3) Definition of the pockets

The pockets generated by BOA are considered as a goal for the balls, allowing the
balls to discover the search space; also, memory is created for storing the first K optimum
solution. The optimum balls produced in each epoch have been substituted in the memory
and the memory is updated.

(4) Category of balls

Based on the appropriateness, the balls are located in the pockets after they are
determined. Here, there are two groups including the ordinary balls (i.e., n = 1, . . . , N)
and the cue balls (i.e., n = N + 1, . . . , 2N). Colliding bodies optimization is used for the
categorization approach.

(5) Allot pockets to the balls

The roulette-wheel selection procedure is applied for the target determination of
ordinary balls. Pockets with lower values of the objective function are proper targets for
balls. To choose pockets, the below equation is defined.

Pm =
e−α fm

∑k e−α fm
; m = 1, 2, . . . .M (2)

where fm defines the value of the objective function for each pocket. α refers to the
considered pressure, which is higher than 0. Consequently, the more effective pocket can
be selected. The cue balls hit the rest of the balls and throw the balls into the pocket at this
point.

(6) Modifying the position of balls

After the cue balls collide with the rest of the balls, based on the precision of the hit,
the ordinary balls are located around their pockets. With the increase in exploitation in
the solution space, the error probability in the search process can decrease. The places of
ordinary balls are determined as follows:

Bnew
n,s = rand[−ER,ER](1− PR)

(
Bold

n.s − Pn
m.s

)
+ Pn

m.s, n= 1, 2, 3, . . . N (3)

PR =
iter

itermax
(4)

where n and s stand for the balls’ and variables’ number, respectively. Bold
n.s and Bnew

n.s are the
old and new places for ordinary balls, respectively. rand[−ER,ER] is defined between −ER
and ER, in which ER denotes the value of error. Pn

m.s defines the sth variable of the mth
pocket, belonging to the nth pair of the ordinary ball. The precision value is represented
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by PR, the highest number of the epoch. itermax and iter shows the present number of the
epoch.

The velocities of the balls that define the position of the cue balls after colliding can be
calculated based on the following equation:

−→
v′n =

√
2a
−−−−−→
Bold

n Bnew
n

̂Bold
n Bnew

n n= 1, 2, 3, . . . N (5)

Here,
−→
v′n is the speed of each ordinary ball after colliding.

−−−−−→
Bold

n Bnew
n refers to the

motion vector and ̂Bold
n Bnew

n is the unit motion vector of each ordinary ball. a defines the
acceleration rate, which is considered to be 1. The dot creation is shown by the symbol “.”.
The velocity of the cue balls before and after colliding is defined as given below:

−−→vn+N =

−→
v′n

̂Bold
n Bnew

n · ̂Bold
n+N + NBold

n

Bold
n+N B̂old

n ; (6)

−−→
v′n+N = ω

(
1− iter

itermax

)(−−→vn+N −
−→
v′n
)

(7)

−−→vn+N and
−−→
v′n+N denote the velocity of the cue balls before and after colliding, respec-

tively. Bold
n+N refers to the position of each cue ball before hitting. ω is defined in the range

[0, 1], which is defined by the utilizer, and the movement of the cue ball is regulated by it.
The updated position of the cue balls through the equations for the velocity of the cue

balls and the kinematic relations is obtained as follows:

−−−→
Bnew

n+N =

−−→
v′n+N

2a
−−→
v′n+N +

−→
Bold

n , n= 1, 2, 3, . . . N (8)

(7) Escaping the local optima

An escape threshold (ET) in the range [0, 1] is determined in the exploitable process of
BOA. This is then not constrained to local optima. To know whether the dimension of each
new ball is changed or not, the defined ET and rand are compared. With consideration that
ET > rand, the ball dimension in the updated position is defined as follows:

Bn,s = varmin
s + rand[0.1]

(
varmax

s − varmin
s

)
(9)

(8) Testing the boundary circumstance limitations

A deviation from the determined limit may occur when the balls move. In this case,
the dimensions of the balls should be enhanced.

(9) The termination criterion test

The search process finishes and the optimum pocket can be obtained when a definite
criterion, for instance, a determined number of iterations, is achieved, otherwise, the
procedure continues.

2.1.2. Improved Billiard-Based Optimization Algorithm (IBOA)

Similar to other metaheuristics, the BOA algorithm has several drawbacks, such as
premature convergence and occasional instability. Hence, to resolve these drawbacks, an
improved design of BOA is presented in this paper. To enhance the efficiency of the BOA, a
chaotic procedure is used by Lévy flight, balancing the exploitation and exploration. The
random walk is applied by this procedure to perform this case, as follows:

Le(w) ∼= w−(ξ+1) (10)
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w = A×|B|−1/ξ (11)

σ2 =

{
Γ(1 + ξ)

ξΓ((1 + ξ)/2)
sin(πξ/2)
2(1+ξ)/2

} 2
ξ

(12)

Here, Γ(.) is the Gamma function, w defines the step size, and ξ refers to the Lévy index
defined in (0, 2] and A, B ∼ N

(
0, σ2). According to [25], the amount of the ξ is considered

to be 3/2 herein.
Thus, the updated location of the ordinary balls is defined as given below:

Bnew
n,s = Le(δ)× (1− PR)

(
Bold

n,s − Pn
m,s

)
+ Pn

m.s, n= 1, 2, 3, . . . N (13)

where
A = a× (2× r− 1) (14)

B = C× f (t)− Bold
n,s (15)

Here, f (t) is a random position vector, and a ∈ [0, 2] and r ∈ [0, 1] denote random
variables. The Pseudo-code of the IBOA is represented in Figure 1.
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2.1.3. Algorithm Validation

In order to evaluate and confirm the effectiveness of the suggested technique, several
different standard test functions were conducted [4]. The applied test functions are stated in
Table 1. The formulation of these functions, the limitation range for the decision variables,
and the optimum amount is the lowest amount for all functions.
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Table 1. The details of benchmark functions.

Function Range fmin Ref

F1(x) =
n
∑

i=1
x2

i
[−100,100] 0 [26]

F2(x) = ∑n
i=1 ix4

i + random[0, 1) [−128,128] 0 [26]

F3(X) =
n−1
∑

i=1

[
(xi + 0.5)2

]
[−100, 100]n 0 [26]

F4(X) =
(

x2 − 5.1
4π2 x2

1 +
5
n x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5, 15]2 0 [26]

F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30,30] 0 [26]

A comparison of the achieved results with several various of the latest techniques,
which are Biogeography-Based Optimizer (BBO) [27], Ant lion optimizer (ALO) [28], World
Cup Optimization (WCO) [29], and the basic BOA [24], are performed to confirm the results
of the suggested method. The parameter setting of these algorithms is tabulated in Table 2.

The proposed improved Billiard-based Optimization Algorithm (IBOA) is processed
in MATLAB 2016b and all of the tests are used on a pc with an Intel Core i5-2410 @ 2.30 GHz
CPU and 8 GB RAM. The size of the population is considered to be 45 and the highest
number of iterations is equal to 150 for all algorithms. The number of evaluations of the
objective function is 6750. The simulations are independently run 35 times to provide a
proper comparison according to their mean and the standard deviation values of them. The
results of compared algorithms on the test functions are stated in Table 3.

According to this table, the presented IBOA method gives the minimum amounts for
the mean value, which shows that the suggested algorithm provides better accuracy for
giving the lowest value than the other techniques. Similarly, the achievements also indicate
that the presented method has the lowest value for the STD value, which provides better
consistency of this algorithm in comparison with the latest techniques, compared herein.

To show further validation of the proposed algorithm, it has been compared with
some other state-of-the-art algorithms, as concerns the convergence rate. The convergence
diagram of the compared algorithms is depicted in Figure 2.

As can be observed from this figure, it can be stated that the suggested algorithm gives
the best convergence rate in comparison with the other comparative algorithms, which
shows the better accuracy and consistency of the presented method.

This paper aims to minimize the objective functions, which are the CO2 equivalent
emissions and life-cycle costs (LCC) [30], through a simulation process. LCC means
considering all the costs that will be incurred during the lifetime of the building: purchase
price and all associated costs (delivery, installation, insurance, etc.).

Table 2. Parameter setting of the studied algorithms.

Algorithm Parameter Value

BBO [27]

Habitat modification probability 1
Immigration probability bounds per gene [0, 1]

Step size for numerical integration of probabilities 1
Max immigration (I) and Max emigration (E) 1

Mutation probability 0.005
Algorithm Parameter Value

ALO [28] W [2, 6]
No. Search agents 50

Algorithm Parameter Value

WCO [29] Playoff 0.04
Ac 0.3

Algorithm Parameter Value

BOA [24]
No. of pockets 22

w 0.7
ES 0.3
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Table 3. The results of compared algorithms on the test functions.

Test Function Metric BBO [27] ALO [28] WCO [29] BOA [24] IBOA

F1
Mean 9.38 × 10−7 8.05 × 10−8 6.27 × 10−9 6.84 × 10−10 7.60 × 10−11

STD 5.33 × 10−8 11.99 × 10−8 3.03 × 10−10 13.80 × 10−10 17.12 × 10−11

F2
Mean 2.250 1.848 1.255 1.001 0.91
STD 1.030 1.112 1.035 0.93 0. 82

F3
Mean 75.32 65.31 57.10 43.15 2.049
STD 65.20 57.40 39.77 40.49 1.080

F4
Mean 0.49 0.36 0.30 0.20 0.16
STD 1.40 × 10−4 2.55 × 10−5 4.29 × 10−6 4.85 × 10−7 6.72 × 10−8

F5
Mean 3.15 2.73 1.96 1.13 1.00
STD 2.50 2.14 1.87 1.12 1.025

2.2. Design Variables

Building envelope components, including the roof, glazing type, wall, floor, and
ceiling materials, are included in the design variables. Due to the fact that dealing with
discrete variables is complicated in numerical optimization approaches, these variables are
considered continuous. Nevertheless, it is noteworthy that the optimal values achieved
here are unavailable in the market, which leads to conflict between optimization proposals
for materials according to numerical achievements and elements generally utilized in
designing [31]. To deal with this clear conflict problem, all considered variables are only
materials and are discrete. The assumed variables in the process of optimization are
accessible in the market. The design variables applied to the case study here with related
variation ranges are stated in Table 4.

Table 4. The design variables with a related variation range [31].

Definition Exterior Walls: Living Room Definition Ceiling: Living

Layer L 1 Layer L 3 L 4 Layer L 1 L 2

Variable Va Variable Vc Vd Variable Vo Vp

Range 12, 13 Range 23, 26–39, 45,
46 8–11 Range 22, 24–33,

40–44 8–11

Definition Internal walls Definition Ceiling: Attic

Layer L 1 Layer L 3 Layer L 1

Variable Ve Variable Vg Variable Vq

Range 8–11 Range 8–11 Range 8–11

Definition Floor: Garage Definition Gable

Layer L 1 Layer L 1

Variable Vh Variable Vr

Range 18–21 Range 14–16

Definition Floor: Living Definition Garage: Door

Layer L 1 L 2 Layer L 1

Variable Vi Vj Variable Vs

Range 18–21 47–49 Range 50

Definition Roof Definition Ceiling: Garage

Layer L 1 L 2 Layer L 1

Variable Vk Vl Variable Vt

Range 1–7 14–16 Range 8–11
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Table 4. Cont.

Definition Exterior walls: Garage Definition Windows

Layer L 1 Layer Layer L 1 L 2

Variable Vm Variable Variable Vu Vv

Range 12, 13 Range Range 52–72 3, 6, 8, 13

2.3. Objective Functions

The minimization of the CO2-eq emissions and the life-cycle costs is the target in this
paper. Residential buildings are assumed to be studied herein. Indeed, the considered
objectives are conflicting. High-energy-efficiency materials may have less environmental
benefit than low-energy-efficiency ones, while the cost of materials that benefits the environ-
ment is often more than the same customary materials. Consequently, a multiple-objective
optimization (MOO) [32] technique is required. A Pareto frontier is required to help the
decision maker to quickly evaluate the balance between the two objectives. A Pareto
optimum is a solution to the MOO problem that lowers an objective with no simultaneous
effect on the other objective. The Pareto frontier is the plot of the objective function in
which its non-dominated vectors are in the Pareto optimum set that is non-dominated. A
Pareto frontier [33] whose objectives are LCC and carbon dioxide emissions is depicted in
Figure 3 as an example.
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Figure 4 shows all the steps of a building’s lifetime in the life-cycle evaluation of
residential buildings. These steps are the before-use step, which includes extracting raw
materials and processing them, producing components for construction, transporting the
materials, and constructing the building; the use step, which consists of all emissions in
25 years of the building‘s life use, concerning the building maintenance in addition to the
utilized energy for cooling, heating, lighting, and equipment; and the after-use step, which
includes the building demolition and then transferring waste.
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Figure 4. The life cycle of the single-family house [34].

The LCC formula of the building is defined as follows [35]:

LCC = ICp + SCcv + ECcv + OMRCcv (16)

where ICi is the primary investment cost. SCcv denotes the current value of substitution
costs. ECcv refers to the current value of energy costs. OMRCcv is the current value of
operating, maintenance, and repair costs.

RSMeans data as the primary data are used to obtain construction cost data [36],
including the costs of labor, materials, equipment, and replacement. The LCC evaluation is
considered for the life span of 25 years as aforementioned.

The yearly report of the United States Department of Energy (DOE) [37] is used for
the energy escalation rates as the secondary data. The minimization of carbon dioxide
emissions in the building’s lifespan is the next objective. Carbon dioxide, methane, and
nitrous oxide are considered herein as emissions. The Global Warming Potential (GWP) [38]
factor for CO2, CH4, and N2O is equal to 1, 21, and 256, respectively. Some life-cycle
assessment (LCA) [39] datasets have been used for the GWP data of all materials. All
materials’ emission data applied herein are illustrated in Figure 5.

According to the GWP data at all steps, the emission lifetime for each design has
been computed. First, when calculating before-use step emissions of a building, each mass
of material must be calculated. After that, based on the data provided in Figure 5, the
associated emissions of the extraction of raw material and the manufacturing of materials
is measured.

Two parts are included in the use-step emissions, which are the electrical power use
emissions in the building and building maintenance emissions during the life cycle of
it. The needed yearly cooling–heating load is first measured for the determination of the
electrical power-associated emissions. Second, the factors of the local electrical power
emissions have been applied for the determination of the emission factor of the electrical
power use. The electrical power emissions factors of the Louisiana average that are defined
by the Emissions and Generation Resource Integrated Database (eGRID) [40] have been
applied herein. Then, to achieve the first part of the use-step lifetime emissions, the yearly
emissions have been multiplied by 25 years. A series of materials, which are required to be
replaced within a defined period during the life cycle of a building, have been specified for
the next part of the emissions calculation. The GWP [38] of the substituted materials has
been measured in a similar way to the main construction materials. In the end, the amount
is included in the use-step emissions. Notably, the emissions related to the extracting,
processing, and transporting of materials and fuels utilized at the plants are not considered
in eGRID. Therefore, the total energy chain is not investigated in this study. All emissions
are concerned with the lifecycle of demolition and transportation to recycling or disposal
sites. The factors of the emissions related to this step are given in Figure 5 [41,42].
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In the current study, first, the geometry of the building, meteorological information,
occupation scheduling, lighting, and HVAC system [43] are defined. Then, the primary
amounts of design variables are determined randomly by the Improved Billiard-based
Optimization Algorithm. The design variables are the materials of the building envelope.

After that, for the evaluation of the life cycle cost and emissions of the defined model,
a simulation is performed. For cooling, heating, ventilation, and lighting modeling, Ener-
gyPlus [44] is used, which is a dynamic energy simulation tool for modeling the energy
consumption of the whole building. Natural ventilation systems, multiple-zone airflow,
and thermal comfort can be modeled in this software. Then, the values of the design
variables are updated by the IBOA algorithm according to the achieved results, and for the
evaluation of the life cycle cost and emissions of the updated design, another simulation is
carried out. The highest number of iterations for the IBOA algorithm is considered to be
equal to 150. We continued the process of simulation until reaching this amount.

In this study, to estimate foundation CO2 emissions, the following steps have been
conducted:

- Identifying emission sources: identifying the activities related to the foundation that
contributes to CO2 emissions.

- Gathering data: the data on the energy consumption of foundation, transportation,
and waste generation have been collected.

- Determining emission factors: emission factors are conversion factors that relate the
quantity of a specific activity to the amount of CO2 emitted. The reliable source for
emission factors was the U.S. Environmental Protection Agency (EPA) [45].

- Calculating emissions: the data collected in step 2 are multiplied by the appropriate
emission factors from step 3 to calculate emissions for each activity.

- Aggregating emissions: the emissions from all activities are summed up to obtain the
total CO2 emissions of the foundation to estimate the foundation’s carbon footprint.
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2.4. Case Study

A single-family house located in Atlanta, a city in Georgia, USA, was selected to be
studied in this study. The climate of Georgia is humid and subtropical, with most of the
state having short, mild winters and long, hot summers. The average temperatures for the
mountain region in January and July are 39 ◦F (4 ◦C) and 78 ◦F (26 ◦C), respectively. Winter
in Georgia is characterized by mild temperatures and little snowfall around the state, with
the potential for snow and ice increasing in the northern parts of the state. Summer daytime
temperatures in Georgia often exceed 95 ◦F (35 ◦C). Figure 6 shows the design of this house.
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Figure 6. The plan of the single-family house (zone A: living and zone B: garage).

The area of the house is equal to 190 m2. The space of the house is divided into three
zones: case (I): living space (conditioned), case (II): garage (unconditioned), and case: (III)
attic (unconditioned). The ASHRAE standard [46] is used for the estimation of internal heat
gains generated by the activity of occupants as metabolic heat, by utilization of electrical
devices, or by thermal emission of artificial lighting [47]. These values are calculated
monthly. For space heating and cooling, an air source heat pump ventilation system has
been utilized. The cooling and heating indoor temperatures are designed to be equal to
26 ◦C and 22 ◦C, respectively.

Demographic statistics for Atlanta, including variables such as age, gender, place of
residence, and level of education are reported in Table 5.

Table 5. The demographic statistics table.

Variable Category 1 Category 2 Category 3 Category 4 Category 5

Age group 0–17 years 18–24 years 25–34 years 35–44 years 45+ years

Gender Male Female Non-
binary/Other - -

Place of
Residence Downtown Midtown Buckhead Westside East Atlanta

Level of
Education

High School
or Less Some College Bachelor’s

Degree
Master’s
Degree

Doctorate or
Higher

This table provides a breakdown of the population in Atlanta based on different
demographic variables. The categories for each variable are listed in the table, allowing us
to organize and analyze the data effectively.

The major differences that contribute to variations in CO2 emissions in Atlanta can be
attributed to several factors including: (a) Energy sources: the primary source of electricity
generation can significantly impact CO2 emissions. Buildings that rely heavily on fossil fuel-
based power plants, such as coal or natural gas, tend to have higher emissions compared
with those with a greater share of renewable energy sources like solar, wind, or hydroelectric
power. (b) Industrial activities: energy-intensive buildings have higher CO2 emissions.
(c) Transportation: the transportation sector is a major contributor to CO2 emissions.
(d) Building efficiency: the energy efficiency of residential buildings plays a significant
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role in CO2 emissions. Buildings with older infrastructure, inadequate insulation, and
inefficient heating, ventilation, and air conditioning (HVAC) systems have higher emissions
compared with buildings with newer and more energy-efficient structures. (e) Waste
management: the handling and treatment of waste also contributes to CO2 emissions.
Buildings with inefficient waste management practices may experience higher emissions
compared with buildings that prioritize recycling, composting, and energy recovery from
waste. (f) Urban planning and land use: the layout and design of a city affect transportation
patterns and energy consumption. Cities with well-planned public transportation systems,
mixed land-use zoning that reduces the need for long commutes, and infrastructure that
promotes active modes of transportation like walking and cycling tend to have lower CO2
emissions. (g) Climate and weather patterns: climate conditions affect energy demand for
heating or cooling, as well as the prevalence of certain industries. For example, cities in
Georgia with warmer climates have higher energy demands for air conditioning, while
cities with colder climates have higher heating-related emissions.

These factors, among others, contribute to variations in CO2 emissions between build-
ings in Atlanta. It is important to note that the specific characteristics and policies of
each building can further influence emissions, making it necessary to assess the unique
circumstances of a particular building when estimating and comparing CO2 emissions. The
factors mentioned refer to CO2 emissions during the operational stage. These factors are
commonly associated with the direct emissions resulting from activities within the city, such
as energy consumption, industrial processes, and transportation activities. However, when
assessing CO2 emissions comprehensively, it is important to consider emissions across
different stages of the life cycle of the building. This approach is known as a life-cycle
assessment (LCA).

A life-cycle assessment takes into account the emissions related to various stages,
including: (a) Extraction and production of raw materials: this stage involves the extraction
and processing of materials used for infrastructure and buildings. Emissions can result
from mining, manufacturing, and transportation of these materials. (b) Construction and
infrastructure development: the construction stage includes emissions related to the fabrica-
tion, transportation, and assembly of materials, as well as the energy consumption during
the construction process. (c) Operation and maintenance: as mentioned earlier, this stage
focuses on the emissions resulting from day-to-day activities, such as energy consumption,
transportation, and waste management. (d) End of life and disposal: this stage involves
the decommissioning, demolition, and disposal of infrastructure and buildings. Emissions
can arise from activities such as waste disposal, energy-intensive demolition processes,
and the release of stored carbon from materials. By considering the entire life cycle of a
building, including both direct and indirect emissions related to different stages, a more
comprehensive understanding of its carbon footprint can be obtained. This approach helps
to identify opportunities for emission reductions at various stages and informs sustainable
planning and decision-making processes.

3. Results and Discussions

The results of the optimization method are provided in this section. It took 90 s for
each simulation on average on the defined system. The Pareto frontier solution of carbon
dioxide emissions and life-cycle costs is depicted in Figure 7.

A decrease in carbon dioxide emission is obtained by an increase in the LCC, as seen in
this figure. Figure 7 shows the optimum favored solutions for all criteria at lower or higher
levels. As can be observed, point “a” with low cost has a high environment-related effect,
solution “b” gives medium amounts for both LCC and CO2 emission, and solution “c”
with high cost gives a low environment-related effect. When only the minimization of life-
cycle costs is aimed for independently without considering the carbon dioxide emissions
reduction, point “a” can be the optimum solution. But, when the optimization of carbon
dioxide emission is performed independently, point “c” is the proper point. It should be
noticed that the rate of life-cycle costs for carbon dioxide emissions is equal to −0.188 in
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point “c”, considering that this amount is equal to −3.548 in point “a”. This indicates that
the potentiality of point “c” is lower than “a” in reducing carbon dioxide emissions. This
can be the reason that a small increase in life cycle costs can cause a significant decrease in
carbon dioxide emissions.
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As mentioned, the three optimum Pareto solutions are a, b, and c. Va–Vv are the
defined 22 variables. For all three solutions, Va is the Vinyl. For Vb, Plywood with 13 mm,
13 mm, and 10 mm thickness is considered for Pareto optimum solutions a, b, and c,
respectively. Vc is blanket fiberglass-6′′ for solution a and cellular for both solutions b and
c. For Vd, gypsum with 16, 16, and 9.5 mm are used for Pareto optimum solutions a, b,
and c, respectively. Also, Ve is gypsum with 16, 13, and 16 mm. Vf is blanket insulation-6′′,
Rigid fiberglass-3.5′′, and Cellular polyurethane-2′′ for solutions a, b, and c, respectively.
For Vg, gypsum 9.5 mm, wood ceiling, and gypsum 13 mm are used for solutions a, b, and
c, respectively. Vh is concrete 150, 50, and 100 mm for Pareto optimum solutions a, b, and c,
respectively. Also, for Vi, concrete with 100, 50, and 50 mm are considered. Vj is defined as
carpet, carpet, and wood subfloor, respectively, for solutions a, b, and c, respectively. The
membrane is used for all solutions for Vk. The applied materials for Vl are plywood with
10, 13, and 16 mm. Vm is vinyl for solutions a and c, and wood for solution b. Variable Vn is
defined as plywood with thicknesses of 10, 16, and 10 mm, respectively, for solutions a, b,
and c. Fiberglass insulation-8.8′′ and 13′′ are used for solutions a, and b, for variable Vo,
and c is mineral wool insulation-13′′. The materials for Vp are gypsum with thicknesses
of 16, 9.5, and 13 mm. Also, Vq is gypsum with thicknesses of 13, 9.5, and 9.5 mm. All
solutions are plywood 10 mm for Vr. Vs is a steel door, which is the same for all three
solutions. For Vt, gypsum with 13, 16, and 13 mm thicknesses, respectively, for a, b, and c is
considered. For Vu, Ref A Clear Lo 6 mm is used for all solutions. Vv is the air gap of 8, 13,
and 13 mm. These materials are utilized in the envelope of the house in all cases. Emissions
equal 157,917, 152,781, and 146,803 kg for solutions a, b, and c, respectively. The value of
the life-cycle costs are 48,329$, 54,058$, and 67,180$, respectively, for solutions a, b, and c.

The overall GWPs for all cases, including (I), (II), and (III), are stated in Table 6,
which contains all the global warming potential gases released into the surroundings while
extracting the raw materials and processing them; manufacturing and transporting them;
constructing the building in the before-use step; the maintenance in the use step; and the
life-cycle demolition and transportation to recycle or disposal sites in the after-use step.

A comparison among all cases shows that the overall GWP for case (I), the maximum
one, is equal to 157,667 kg of CO2-eq. The carbon dioxide emission of the before-use step is
equal to 20,360 kg, which is 12.9% of the overall life cycle. This amount for the use step
is equal to 137,118 kg (almost 87% of the life cycle), and for the after-use step, it is equal
to 189 kg, which is about 0.12% and insignificant. But, the minimum emission belongs to
case (III) among three cases. The value of the carbon dioxide emission for case (III) is equal
to 17,050 kg in the before-use step, which is 11.6% of the overall life cycle. In comparison
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with case (I), this amount is 23% lower. The emission of the use step is equal to 130,122 kg,
which is almost 88.4% of the overall life cycle (4.5% lower than case (I)).

Table 6. Life cycle global warming potential.

CO2 Emission (kg) Thousands Case (I) Case (II) Case (III)

Before-use 20,360 17,050 16,553

Use 137,118 130,122 131,213

After-use 189 71 128

As shown in Table 7, three scenarios for various construction changes have different
life spans for their global warming potential. These variations are related to the foundation,
windows, ceiling, walls, roof, and floor. The global warming potential of the use step has
not been considered in Table 7.

Table 7. The carbon dioxide emissions for various constructions.

CO2 Emission (kg) Case (I) Case (II) Case (III)

Foundation 10,685.07 4828.50 5739.44

Roof 1063.21 1338.49 1701.80

Ceiling 2729.53 3916.61 3972.00

Walls 1658.25 1978.20 1539.41

Floor 3518.69 3519.56 2243.38

Windows 1577.06 1659.29 1618.67

Others 827.52 785.06 788.05

It can be observed from this table that the maximum life span global warming potential
refers to the foundation, due to the materials utilized when constructing it. However, it
should be considered that the emissions value of the foundation is different for all cases.
The emissions value of the foundation for case (I) is 55% more than case (II). Indeed, the
minimum emissions value of the foundation belongs to case (II). In case (I), the higher
thickness of concrete utilized when constructing the foundation is the reason for the
higher value of emissions. The highest values of emissions refer to the ceiling and floor,
respectively, after the foundation, which is because of the high emissions of the utilized
materials in their construction.

Policy Recommendations

The offered optimization method can find the most efficient strategies for a given
case building. The findings from this method have been intended to inform policy makers
about optimum optimization solutions for different building zones. This information can
be utilized as the foundation for developing an optimization technique for a given building.
To allow the decision maker to quickly evaluate the trade-off between the two objectives, a
Pareto front has been plotted herein. According to the preference of the decision makers,
different solutions can be selected among the Pareto optimum solutions a, b, and c. Figure 7
depicts the optimum desired solutions for all criteria at lower or higher levels. A decrease
in carbon dioxide emissions is obtained through an increase in the LCC, as seen in this
figure. As can be observed, point “a” with a low cost has a high environment-related
effect, solution “b” gives medium amounts for both LCC and CO2 emissions, and solution
“c” with a high cost gives a low environment-related effect. When only the minimization
of life-cycle costs is aimed for independently, without considering the carbon dioxide
emissions reduction, point “a” can be the optimum solution. But, when the optimization of
carbon dioxide emissions is performed independently, point “c” is the proper point.
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The data summary is stated in Table 8.

Table 8. Data summary table.

CO2 Emission (kg) Min Average Max

Foundation 4828.50 7084.34 10,685.07

Roof 1063.21 1367.83 1701.80

Ceiling 2729.53 3539.38 3972.00

Walls 1539.41 1725.29 1978.20

Floor 2243.38 3093.88 3519.56

Windows 1577.06 1618.34 1659.29

Others 785.06 800.21 827.52

Furthermore, a comparison of the achieved LCC and the emission results using the
proposed method (Improved Billiard-based Optimization Algorithm (IBOA)), with some
other state-of-the-art methods from the literature including Non-dominated sorting ge-
netic algorithm II (NSGA-II) [18], Grey Wolf Optimizer GWO [36], and genetic algorithm
(GA) [23], has been carried out and the results are reported in Table 9.

Table 9. The results of the comparison of the proposed method with some other state-of-the-art
methods.

Methods IBOA NSGA-II [19] GWO [48] GA [23]

LCC ($) 56,522 61,749 59,887 68,345

Emissions (kg) 152,500 159,442 156,211 161,569

Based on Table 9, a comparison of the results of the proposed method with some other
state-of-the-art methods from the literature showed that the proposed method gives better
results and a minimum value of the LCC and emissions compared with the others.

4. Conclusions

To design buildings with lower emissions and higher energy efficiency, we aimed to
minimize the carbon dioxide equivalent emissions and life-cycle costs (LCC) of buildings
in this paper. A multiple-objective optimization method based on a new metaheuristic
algorithm, called the Improved Billiard-based Optimization Algorithm (IBOA) has been
presented. There are different methods to solve the optimization problems. Based on
the NLP theory, there is not any metaheuristic algorithm that can solve all the problems
accurately. Sometimes, the answer to the basic algorithm is the local optimum. Therefore,
to reach the global optimum, we proposed this algorithm. Moreover, in some cases, the
basic model suffers from premature convergence, which avoids reaching an accurate result.
In this paper, a solution to this problem has been proposed to obtain better convergence
results using the proposed method. The competitive objectives included a decrease in
financial costs, a reduction in environment-related effects, and the optimization of energy
consumption. For the building simulation, the EnergyPlus software was selected. A single-
family house was chosen to test the proposed model, which was in Atlanta, a city in
Georgia, USA. To obtain a balance between the environmental and economic performance
of the building, the set of Pareto optimum solutions that were achieved can be effective
for designers. The suggested optimization method identified the most efficient strategies
for a given case building. The findings from this method have been intended to inform
policy makers about optimum optimization solutions for different building zones. This
information can be utilized as the foundation for developing an optimization technique
for a given building. A comparison of the results of the proposed method with some other



Buildings 2023, 13, 1815 18 of 20

state-of-the-art methods from the literature showed that the proposed method gives better
results and minimum values for the LCC and emissions. For future works, the design of
the optimal envelope of the building for various weather conditions will be attempted.
Furthermore, the impact of various HVAC systems to achieve optimal designs can be
considered. Some variables are effective and commonly used in design practice, but these
are not available in the market (the limitation of this study), which can be considered in the
future direction of research.
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