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Abstract: Construction faces many safety accidents with urbanization, particularly in hoisting.
However, there is a lack of systematic review studies in this area. This paper explored the factors
and methods of risk assessment in hoisting for industrial building system (IBS) construction. Firstly,
bibliometric analysis revealed that future research will focus on “ergonomics”, “machine learning”,
“computer simulation”, and “wearable sensors”. Secondly, the previous 80 factors contributing to
hoisting risks were summarized from a “human–equipment–management–material–environment”
perspective, which can serve as a reference point for managers. Finally, we discussed, in-depth, the
application of artificial neural networks (ANNs) and digital twins (DT). ANNs have improved the
efficiency and accuracy of risk assessment. Still, they require high-quality and significant data, which
traditional methods do not provide, resulting in the low accuracy of risk simulation results. DT
data are emerging as an alternative, enabling stakeholders to visualize and analyze the construction
process. However, DT’s interactivity, high cost, and information security need further improvement.
Based on the discussion and analysis, the risk control model created in this paper guides the direction
for future research.

Keywords: hoisting; risk assessment; systematic review; digital twins; artificial neural network;
bibliometric analysis

1. Introduction

Construction is still considered one of the most hazardous industries, with safety
accidents being a primary concern for many years [1,2]. These accidents have severe
implications that cannot be ignored [3,4]. In Malaysia alone, there were 148 construc-
tion accidents in 2022, resulting in 59 fatalities [5]. Even in economically developed Eu-
ropean countries, construction still causes many casualties. For instance, in Germany,
115,739 people were injured due to construction accidents in 2020, according to the ILO [6].

In the construction industry, hoisting accidents are an unfortunately common occur-
rence. Studies conducted by Shao (2019) and Simutenda (2022) have shown that a significant
proportion of safety incidents can be attributed to hoisting [7,8]. This is particularly true
for equipment such as tower and truck cranes, which are critical in transporting loads
in high-rise construction projects. Hoisting machinery is a fundamental part of modern
construction sites [9–11]. However, using such enormous equipment also has inherent
risks, as Xu et al. and Grant and Hinze highlighted [12,13]. Project teams must conduct
practical risk assessments during the hoisting process to mitigate these risks. Unfortunately,
as noted by Esmaeili (2015) and Kargar (2022), many teams only become aware of the
dangers once an accident has occurred [14,15]. Therefore, identifying and evaluating the
risks associated with hoisting is essential. By doing so, management can take the necessary
steps to ensure a safe and secure work environment. Recent research by Wan (2022) and
Pan (2021) has emphasized the importance of conducting thorough risk assessments during
hoisting [16,17].
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Research in this field currently faces an issue with incomplete indicator systems.
Most articles only include small-scale indicators, and there is significant variation in
the elements used [18–21]. This highlights the urgent need to generalize risk factors.
While various studies use different assessment methods, there is a lack of comparison
between them [22–25]. In fact, the niche area of hoisting in IBS construction has only
attracted the interest of researchers in recent years. As a result, there are only a handful
of review articles in this area. The uniqueness of this paper lies in the fact that, firstly,
we have combined a systematic review approach with bibliometrics, which offers new
ideas in terms of methodology compared to traditional reviews. Secondly, this paper
uses Bibliomatrix® software to visualize content such as keywords and co-authors to
uncover research trends and topical themes. This new software, based on the R language,
is powerful but complex to use and, therefore, currently underused, making this paper
somewhat pioneering in its technical approach. Finally, our findings interest construction
industry professionals, policymakers, and researchers involved in IBS construction projects.
The identified framework for future research can guide the development of effective safety
protocols and strategies that can contribute to the overall improvement of safety standards
for the hoisting of IBS construction.

The following sections are structured as shown in Figure 1. Section 2 covers the
research material and methodology, including an introduction to the systematic review and
bibliometric approaches. Section 3 provides an overview of the results of the bibliometric
and inductive analyses, mainly covering risk factors and assessment methods. Section 4
provides a framework discussion on the application and future research directions of ANN
and DT, and Section 5 concludes with a summary and limitations.

Buildings 2023, 13, x 2 of 26 
 

and Pan (2021) has emphasized the importance of conducting thorough risk assessments 
during hoisting [16,17]. 

Research in this field currently faces an issue with incomplete indicator systems. 
Most articles only include small-scale indicators, and there is significant variation in the 
elements used [18–21]. This highlights the urgent need to generalize risk factors. While 
various studies use different assessment methods, there is a lack of comparison between 
them [22–25]. In fact, the niche area of hoisting in IBS construction has only a racted the 
interest of researchers in recent years. As a result, there are only a handful of review arti-
cles in this area. The uniqueness of this paper lies in the fact that, firstly, we have combined 
a systematic review approach with bibliometrics, which offers new ideas in terms of meth-
odology compared to traditional reviews. Secondly, this paper uses Bibliomatrix® soft-
ware to visualize content such as keywords and co-authors to uncover research trends 
and topical themes. This new software, based on the R language, is powerful but complex 
to use and, therefore, currently underused, making this paper somewhat pioneering in its 
technical approach. Finally, our findings interest construction industry professionals, pol-
icymakers, and researchers involved in IBS construction projects. The identified frame-
work for future research can guide the development of effective safety protocols and strat-
egies that can contribute to the overall improvement of safety standards for the hoisting 
of IBS construction. 

The following sections are structured as shown in Figure 1. Section 2 covers the re-
search material and methodology, including an introduction to the systematic review and 
bibliometric approaches. Section 3 provides an overview of the results of the bibliometric 
and inductive analyses, mainly covering risk factors and assessment methods. Section 4 
provides a framework discussion on the application and future research directions of 
ANN and DT, and Section 5 concludes with a summary and limitations. 

 
Figure 1. Research framework. 

2. Materials and Methods 
2.1. Materials 

The PRISMA protocol (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) was used in this literature review. The PRISMA guidelines outline the necessary 
components of a systematic review or meta-analysis report, including the research question, 
search strategy, study selection criteria, data extraction methods, data analysis, and conclu-
sions [26]. Following these guidelines ensures that the research process is transparent and 
comprehensive, essential in assessing the validity and replicability of studies [27–29]. 

Figure 2 illustrates the PRISMA method, which utilizes the comprehensive civil en-
gineering literature available on the Web of Science (WoS) and Scopus databases. While 
both databases offer vast literature, WoS provides more refined articles, and Scopus pro-
vides a broader range of topics [30,31]. To demonstrate, we used WoS’s search process 
and entered keywords such as “hoisting”, “safety”, “risk assessment”, “risk evaluation”, 
and “crane” to perform a combined topic search, which yielded 597 records. We filtered 
the search results by specifying the fields of specialization as “public environmental 

Figure 1. Research framework.

2. Materials and Methods
2.1. Materials

The PRISMA protocol (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) was used in this literature review. The PRISMA guidelines outline the necessary
components of a systematic review or meta-analysis report, including the research question,
search strategy, study selection criteria, data extraction methods, data analysis, and conclu-
sions [26]. Following these guidelines ensures that the research process is transparent and
comprehensive, essential in assessing the validity and replicability of studies [27–29].

Figure 2 illustrates the PRISMA method, which utilizes the comprehensive civil engi-
neering literature available on the Web of Science (WoS) and Scopus databases. While both
databases offer vast literature, WoS provides more refined articles, and Scopus provides a
broader range of topics [30,31]. To demonstrate, we used WoS’s search process and entered
keywords such as “hoisting”, “safety”, “risk assessment”, “risk evaluation”, and “crane”
to perform a combined topic search, which yielded 597 records. We filtered the search
results by specifying the fields of specialization as “public environmental occupational
health”, “engineering civil”, “engineering multidisciplinary”, and “construction building
technology”, resulting in 231 records. After narrowing down the search results to only
records in English, we were left with 226 records. Peer-reviewed articles undergo rigorous
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evaluation processes by field experts, ensuring the reliability and quality of the research.
They provide the most up-to-date research findings and are more likely to reflect the cur-
rent state of knowledge in the field. Furthermore, journal articles offer more detailed and
in-depth analyses of specific research questions or topics, presenting empirical evidence,
methods, results, and discussion more comprehensively, which makes them suitable for
rigorous literature reviews. Therefore, we identified only 136 peer-reviewed articles as the
dataset. Similarly, we obtained 342 articles from Scopus, and after a manual review of the
full text by three experts, we identified 197 records that met the criteria.
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2.2. Methods

Bibliometric analysis is a technique that originated from Nalimov and Mulchenko’s
(1971) book on the progression of science as an information process. This approach employs
statistical methods to investigate the influence of scientific publications, encompassing
author distribution, citations, keywords, and publications [32,33]. To monitor the devel-
opment of the field more impartially, the researcher usually entails utilizing bibliometric
databases such as Web of Science, Scopus, or Google Scholar, as they contain extensive
metadata on scientific publications [34,35].

Numerous tools are available for conducting bibliometric analysis, including VOSviewer®,
Gephi®, CiteSpace®, SciMAT®, Bibliomatrix®, and HistCite®. Each tool has its own strengths
and weaknesses, as highlighted in recent studies [36–38]. For this study’s bibliographic data
analysis, Bibliomatrix® was selected due to its rich features and reliable data visualization
capabilities [39–41]. In the construction field, recent literature reviews have focused on topics
such as BIM collaboration and risk [42], construction waste [43], wood waste from construc-
tion [44], and stakeholder relationships in off-site construction [45]. By using Bibliomatrix®,
researchers can conduct co-word analysis and co-citation network analysis to visualize the
field’s research evolution [46–48].
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Our team also has conducted an inductive analysis of recent high-quality papers by
creating concise summaries of key findings. The analysis focused on two main aspects—risk
factors and assessment methods. Qualitative content analysis can be inductive or deductive;
we used the former. We extracted specific factors from previous studies to establish a formal
IBS hoisting risk control model, which aims to clarify and create more cohesion in the field
of knowledge.

3. Results
3.1. Annual Publication and Main Sources

Annual publication volume is often used to gauge the level of productivity within a
specific field, indicating its research intensity [49]. Figure 3 displays the yearly publication
count in this area from 1994 to 2023. Between 1992 and 2012, the number of publications
remained low, with a high of only 9, indicating that the topic needed to receive more
attention during that period. However, after 2012, there was a significant surge in published
articles, reaching 21 in 2022, indicating that the topic is now a thriving academic area.
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Figure 3. The number of annual publications.

MeanTCperYear is a metric measuring the total publications and average total ci-
tations per year. It provides valuable insights into the impact of publication [50]. To
calculate MeanTCperYear, we divide the total citations by the years between the current
and publication years. Total citations refer to the number of citations a research paper or
publication receives, while the current year represents the current year, and the publication
year denotes the year the paper was published. For example, if a paper has received
100 citations since its publication five years ago, the average total citations per year would
be 100/5 = 20 citations per year. Figure 4 displays the MeanTCperYear values in this
field from 1992 to 2023. From 1992 to 2011, it remained below 2.5, fluctuating consistently.
After 2013, there were two significant swings, with a peak of 4.74 in 2017. However, in
the last five years, it has steadily declined from 4.74 to 1.41, indicating a need for more
influential and high-quality articles in the field as it is inversely proportional to the number
of published articles.

For the convenience of readers, Table 1 displays the top 10 primary sources related
to this field. Notably, “Applied Ergonomics” dominates the category of occupational
health journals with 35 sources. “Safety Science” and “Sensors” are closely behind, with
22 and 9 sources, respectively. This information can aid readers in quickly identifying
relevant sources.
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Table 1. Top 10 main sources.

Sources Articles

Applied Ergonomics 35
Safety Science 22

Sensors 9
International Journal of Occupational Safety and Ergonomics 7

Journal of Biomechanics 5
Journal of Construction Engineering and Management 5

Mathematical Problems in Engineering 4
Safety and Health at Work 4

Automation in Construction 3
IEEE Transactions on Human-Machine Systems 3

Table 2 indicates the top three institutions as follows: Vanderbilt University (United
States), Hong Kong Polytechnic University (China), and Southwest Petroleum University
(China). In terms of authors, the top three are N. Arjmand, Z. Liu, and ON. Aneziris.

Table 2. Top 10 institutions and authors of publications.

Institution Number Author Number

Vanderbilt University 11 Arjmand, N. 5
Hong Kong Polytechnic University 6 Liu, Z. 5

Southwest Petroleum University 6 Aneziris, ON. 4
Shanghai Jiao Tong University 5 Li, L. 4

Sharif University of Technology 5 Lu, ML. 4
University of Belgrade 5 Papazoglou, IA. 4

Beijing University of Technology 4 Shirazi-Adl, A. 4
Purdue University 4 Bloswick, DS. 3

University of Alberta 4 Drinkaus, P. 3
Universiti Sains Malaysia 4 Gallagher, S. 3

3.2. National Co-Authorship

In Figure 5 from Bibliomatrix®, the frequency of collaboration between countries is
visualized; the connection line’s thickness reflects the cooperation’s strength. The darker
the color of the country, the higher the number of publications (Grey means there are no
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articles that meet the screening criteria). The collaboration frequency of Iran and Canada is
the highest at 4, while the United Kingdom and Italy have the second-highest rating at 3.
Partnerships between other countries such as Iran and Germany or Canada and the United
States also hold significant importance.
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Figure 7 from Bibliomatrix® shows the changes in lead authors in a particular field
over time. The nodes in the graph represent authors, and the lines connecting them
indicate citation relationships. The graph shows the radial network, suggesting the field is
expanding gradually. Notably, articles by Nurse Ca, Zhou G, Hu S, and Sadeghi H in 2023
are worth referencing for interested readers.
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3.3. Topic Trends

Figure 8 displays the development of critical keywords. The present focus of evalua-
tion centers around “crane operations” [52–55]. Analyzing “accidents” remains the domi-
nant method [56]. “Machine learning” is gradually replacing traditional approaches [57–59].
“Wearable sensors” is increasingly apparent in addressing human risks [60–62], which can
monitor the factors that may impact operation [63,64]. “Manual material handling” poses
various risks, and it is vital to include it in a hoisting risk assessment. “Musculoskeletal
disorder” is an injury or illness that affects the musculoskeletal system, and occurs due to
repetitive or awkward movements, constant poor posture, or physical exertion, leading to
pain, discomfort, and functional limitations [65,66]. “Backache” is one of the most preva-
lent types of work-related musculoskeletal disorders (WMSDs) and a risk factor [67,68].
Therefore, it is essential to provide “ergonomics” equipment and “personnel training” to
promote correct lifting techniques [69,70].
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3.4. Hoisting Risk Factors

The risks associated with hoisting in construction are multifaceted and intercon-
nected [52,71,72]. Zavadskas (2010) examined the interests, objectives, and factors influenc-
ing construction efficiency [73]. Song (2022) identified the external environment, organiza-
tional factors, preconditions that trigger accidents, and unsafe leadership behaviors as the
main factors impacting safety in assembly building construction [25]. Wang (2022) stressed
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the importance of scaffolding, footings, and formwork support systems [74]. Wang (2022)
classified risk factors based on the Wuli–Shili–Renli (WSR) system and found that risk
probabilities show seasonal and dynamic trends, requiring targeted measures to prevent
and neutralize different risk sources at other points in time [16]. Ajith (2019) used hazard
identification and risk assessment (HIRA) techniques to prioritize risks on construction
sites and found that crane operations, working at height, and drilling were the top three
high-risk tasks [75]. Shapira (2009) identified the main factors affecting safety in the tower
crane environment, including crowded conditions, overlapping work areas, and time,
budget, and labor constraints [76]. Umar (2020) found that management commitment,
training, employee engagement, behavior, communication, accountability, fairness, and
leadership were the most prevalent safety climate factors [77]. Jamalluddin (2022) found
that design, management, financial, safety, and logistical factors were significant risk factors
that must be considered when implementing IBS construction [78]. Amin (2019) identified
UV exposure and mobile equipment risks as the primary risks for IBS construction sites [79].
Ismail (2012) found that personal awareness and communication significantly impacted
the implementation of safety management systems on construction sites [80]. Wuni (2019)
identified critical risk factors (CRFs) in modular integrated build (MiC) applications, in-
cluding stakeholder fragmentation, high initial capital costs, poor supply chain integration,
delayed delivery of modular components, and inadequate government support and regula-
tion [81]. Finally, Construction site layout plans (CSLP) are crucial to prefabricated building
project management, especially with the prevalence of hoisting operations, emphasizing
the importance of tower cranes and precast supply point locations [82].

Through a thorough review of the literature, we have identified 80 key risk factors
(Table 3). On a human level, the crane operator’s proper training and adherence to safety
procedures are crucial to prevent accidents. Detecting errors related to human factors,
such as distraction, fatigue, or misjudgment, may not always be easy. Regular training,
certification, and monitoring of crane operators and appropriate rest periods can help
reduce this risk. Effective communication between crane operators, fitters, signalers, and
others involved in lifting operations is also essential for safe crane operations. Poor com-
munication can lead to the mishandling of loads or other accidents. Clear communication
protocols, standardized hand signals, and practical communication training can help reduce
this risk. Cranes are complex machines with many mechanical and electrical components
that can fail, leading to equipment failure, structural collapse, or other accidents. Regular
maintenance, inspection, and compliance with the manufacturer’s recommendations for
using and maintaining the equipment can help identify and reduce this risk. Overloading
is another common risk factor in crane operations. It can lead to instability, tipping, or
structural failure. This risk factor is usually detectable and can be mitigated by following
the load capacity limits specified by the crane manufacturer and performing appropriate
load calculations. Rigging, which involves attaching a load to a crane hook using slings,
chains, or other lifting equipment, is critical to prevent loads from becoming unstable or
falling off during lifting operations. Improper rigging can usually be detected by visual
inspection. Proper training and certification of the rigging, inspecting the rigging for dam-
age, and using adequate rigging techniques following industry standards can help reduce
this risk. Environmental factors such as wind, rain, snow, and uneven ground can also
pose risks during crane operations. Wind gusts can cause loads to swing or sway, leading
to accidents. Although weather conditions are usually detectable, sudden changes in the
weather or wind gusts may be difficult to anticipate, making it challenging to reduce the
risk. Monitoring weather conditions and developing appropriate protocols for adverse
weather conditions can help minimize this risk.
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Table 3. The summary of hoisting risk factors.

Classification No. Risk Factors Reference

Human

H1 Crane drivers and signalers need to be qualified to perform specific trades.

[16,21,83–89]

H2 The safety awareness of crane erection and dismantling workers, drivers, and
ground workers were not strong.

H3 Inadequate safety supervision of crane operations by the contractor.

H4 Safety checks on cranes by maintenance staff and drivers needed to be more
thorough.

H5 Workers continued to work when the crane’s position did not match the scope
of work.

H6 The physical condition of the crane driver and ground workers.

H7 The psychological stress of crane drivers and ground workers is brought on by
the construction schedule.

H8 Lack of skills practice for crane drivers and ground workers.
H9 Poor communication between crane drivers and ground workers.

H10 Workers are moving or staying within the hoisting area.
H11 Simultaneous multi-tasking of crane drivers and ground workers.
H12 Low level of site coordination management.
H13 Workers operating against work regulations.
H14 Workers ignore the impact of their surroundings on the work.
H15 Lack of coordination between work types on site.
H16 Inadequate emergency response capability of operators.

Management

MA1 Inadequate technical safety standards for hoisting construction.

[25,83,90–95]

MA2 Inadequate management methods for special operators.
MA3 Lack of registration management and inspection of cranes.

MA4 Inadequate safety program for the assembly, operation, and separation of
cranes.

MA5 Unreasonable construction schedule.
MA6 Lack of safety education and training.
MA7 Authorization of tower cranes for additional services.
MA8 Inadequate site supervision staffing.
MA9 The proportion of personnel participating in safety exits.
MA10 Unreasonable or no specific lifting plan for hoisting operations.
MA11 No safety inspection on entry of materials and machinery.
MA12 No regular safety checks and maintenance.
MA13 Inadequate disclosure of safety techniques.
MA14 Insufficient financial investment in safety measures.
MA15 Unreasonable location of lifting points.
MA16 Inadequate safety monitoring techniques for time-varying structures.
MA17 Inadequate safety accident prevention and emergency response measures.
MA18 Inadequate protective measures around work at height.
MA19 Inadequate safety storage measures for flammable and explosive materials.
MA20 Security measures fee as a percentage of investment.

Equipment

EQ1 Safety defects in imported tower cranes, spreaders, slings, baskets, and hoists.

[55,76,83,85,96–101]

EQ2 No safety protection measures, e.g., scaffolding, slings, and locks.
EQ3 The tower crane hook visualization system is not in use.
EQ4 Safety load indicators and graphic displays of crane operation were not used.
EQ5 Safety monitoring system for collision avoidance on tower cranes not used.
EQ6 Height of the tower crane.
EQ7 Lifting of prefabricated elements without the use of special spreaders and slings.
EQ8 The strength of lifting connections needed to be revised.
EQ9 Actual load factor.
EQ10 Sling angle/◦.
EQ11 The wear rate of lifting equipment.
EQ12 Lifting speed.
EQ13 Lifting acceleration.
EQ14 Overloading of cranes.
EQ15 Long-term operation of equipment leading to the deterioration of parts.
EQ16 The failure rate of lifting machinery.
EQ17 Inadequate stability of temporary support systems.
EQ18 Type of crane machinery.
EQ19 The life cycle of cranes.
EQ20 Cranes’ movement devices.
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Table 3. Cont.

Classification No. Risk Factors Reference

Materials

MA1 Quality changes in precast components due to groundwater on construction
sites.

[83,84,102–106]

MA2 Design and production quality of precast elements.
MA3 Strength of precast elements.
MA4 Component weight.
MA5 Types of components.
MA6 Component materials.
MA7 Dimensions of prefabricated elements.
MA8 Substandard materials and fittings are used for the installation of the elements.
MA9 Unreasonable attachments.

Environment

EN1 Lack of warning signs for isolated areas for tower crane installation,
dismantling, and lifting.

[17,22,25,83,96,107–110]

EN2 Poor ground conditions at the construction site.
EN3 Poor visibility of the construction site.
EN4 Cross-operation of multiple tower cranes.
EN5 Wind speed.
EN6 Adverse weather conditions.
EN7 Inadequate attention to the treatment of surface water.
EN8 Inadequate stacking and protection of prefabricated elements.
EN9 Unreasonable transport routes on site.
EN10 Limited space for cranes.
EN11 Inadequate protection of openings and edges.
EN12 Work platforms for operators are not operable.
EN13 The safe atmosphere on site.

EN14 Dangerous sources, such as live high-voltage power lines and underground gas
pipes around the construction site.

EN15 Relative rate of corrosion.

3.5. Risk Assessment Methods

We summarized the methods used to assess hoisting risk in recent years, as shown
in Table 4. There are many shortcomings in current risk assessment methods for hoisting
construction, mainly including the following reasons: (1) Complexity and uniqueness of
hoisting construction: Hoisting construction involves complex operations, different site
conditions, different equipment, and dynamic interactions between different elements.
Many risk assessment methodologies fail to adequately capture the complexity and unique-
ness of hoisting, resulting in a limited understanding of the associated risks [55,111,112].
(2) Lack of specific guidance and standards: The lack of comprehensive and standard-
ized guidance specific to lifting construction poses a challenge to risk assessors [22,84].
Generic risk assessment methods may not address the specific hazards and complexities
of lifting operations, resulting in the inadequate identification and assessment of risks.
(3) Inadequate consideration of the human element: Hoisting construction relies heavily
on human operators, riggers, and other personnel, who play a key role in ensuring safety.
However, many risk assessment methods tend to focus more on technical aspects and
equipment-related risks, often neglecting the critical human factor [15,23,113]. (4) Lack of
real-time and dynamic analysis: Traditional risk assessment methods often involve static
analysis based on historical data or what-if scenarios. However, hoisting is a dynamic and
evolving process where risks can change rapidly due to factors such as changing site condi-
tions, project progress and human behavior. Failure to incorporate real-time and dynamic
analysis into risk assessment can lead to outdated and ineffective risk mitigation strate-
gies [4,16,24]. (5) Limited stakeholder involvement: Effective risk assessment requires the
active involvement and collaboration of various stakeholders, including project managers,
workers, equipment suppliers and safety professionals. However, some methodologies
may not adequately engage these stakeholders, resulting in a lack of diverse perspectives
and relevant input [100,114,115].
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Table 4. The summary of assessment methods for 23 critical articles.

Source Methodology Framework Contribution Limitations

[55] Analysis of hierarchy process
(AHP); time-varying function

Safety, applicability, and
durability

This evaluation method was the
overall safety evaluation of hydraulic
structures providing a reference basis.

Subjectivity and bias; the
relationship between factors not
considered.

[84] Similarity aggregation method
(SAM); Bayesian networks (BN)

Human factors analysis and
classification system (HFACS)

The project’s overall safety risk
probability level is obtained through
the forward reasoning of BN. The key
risk factors of the project are identified

through reverse logic.

Subjectivity and bias; incomplete
risk factors.

[16]
Two additive Choquet integral

(TACI); decision-making trial and
evaluation laboratory (DEMATEL)

Wuli–Shili–Renli (WSR)
system

A two-stage model for evaluating risk
probabilities considering multiple

correlations and dynamic stochasticity
is constructed from the perspective of

the evolutionary mechanism of
multiple correlations.

Subjectivity and bias.

[24]

Fault tree analysis (FTA); BP
neural network improved by

genetic algorithm; Elman neural
network

Human–environment Informing the application of neural
networks in security assessment.

Need more systematic,
self-correcting indicators; need
more statistical data.

[22]

Decision experimentation and
evaluation laboratory (DEMATEL)

and interpretative structural
modelling (ISM); Bayesian

Networks (BN)

Human–equipment–
components–management–

environment

Real-time information interaction and
risk correlation.

Limited training sample sets; lack
of intelligent decision-making
systems to support lifting safety
risk control. Not available for risk
prediction.

[4] Radial kernel function (RBF);
support vector machine (SVM)

Work breakdown structure;
resource breakdown structure

Real-time prediction of lifting risks and
examination of the spatial and

temporal evolution of risks.

The data can only validate the
framework’s viability, and the
spatiotemporal evolution patterns
only apply to the validation
project. Automatic controls are
inadequate; risks still rely on
manual processing.

[100] Apriori algorithm

Human–equipment–
components–management–

environment; time;
space

Coupling mechanisms between risk
factors.

Inadequate collection of validation
data samples; lack of an intelligent
evaluation system for the rules
mined.

[110] Fault tree analysis (FTA); failure
mode and effects analysis (FMEA). Installation process Measures of risk factor importance. Subjectivity and bias.

[113] Fault tree analysis (FTA); Bayesian
networks (BN) Domino theory Proactive warning. Subjectivity and bias; incomplete

risk factors

[21] Fault tree analysis (FTA) Systems thinking Measures of risk factor importance. subjectivity and bias; incomplete
risk factors.

[115]

Mixed central point triangle
whitening weight function;

analysis of network processes
(ANP)

Human–technology–
components–management–

environment
Measures of risk factor importance. Subjectivity and bias; high

calculation volume.

[116] Structure entropy weight method
Man–material–machine–

method–environment
(4M1E)

Strong operability and wide
application; effectively resolve

conflicting problems of uncertainty;
synthesizing evidence information to

reduce information uncertainty.

Strong dependence on data;
incomprehensible principles; of
computation; ambiguity in
processing; information; difficulty
dealing with high; conflicting
evidence.

[25] Structural equation modelling
(SEM)

Human factors analysis and
classification system (HFACS)

Refinement of the traditional human
factors analysis and classification

system (HFACS) into the
HFACS-assembled building hoisting

(PH) risk model.

Subjectivity and bias; incomplete
risk factors.

[17] Bayesian networks (BN) Systems-theoretic accident
model and process (STAMP)

Models are straightforward and can be
understood visually.

Determining the topology of its
dependencies is complex and
ambiguous.

[109] Finite element method (FEM) Human-machine

A data flow for real-time dynamic
analysis of tower cranes based on the
Internet of Things is proposed, which
summarized the time-series effects of

load excitation, including vertical
lifting, inclined lifting, sudden braking,

and sudden unloading.

Stability analysis only.

[117]

Cloud model
(Expectation–maximization
algorithm, EM); Bayesian

networks (BN)

Human–object–management–
environment

Change the reliance of traditional BN
models on large amounts of training
sample data or subjective assignment
of values, eliminating the influence of
real-time observation data during the
construction process and randomness

of the target safety risk values.

Due to the limited sample data,
the CPT between nodes obtained
using the cloud model-based EM
parameter learning algorithm
differs somewhat from the actual
situation.

[112]

Analytic hierarchy process (AHP);
entropy weight method;

grey-fuzzy integrated evaluation
method

Management–design–
procurement–construction–
economics–policy–nature

Building an improved weighting
algorithm (AHP-EWM).

Subjectivity and bias; lack of data
support.

[20]
A comparative evaluation of case

studies and experimental
economics

hazard and operability
(HAZOP)

Reveals significant unsafe practices in
six phases of lifting operations. Only qualitative analysis.
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Table 4. Cont.

Source Methodology Framework Contribution Limitations

[101] Factor analysis AcciMap

The hierarchy of tower crane safety
systems, the influencing factors,

interactions, critical factors at each
level, and the main dimensions are

revealed.

The findings apply to tower cranes
only.

[118] Frequency analysis Hazard type Most of the accidents occurred during
the evening.

The findings apply to tower cranes
only.

[83] Structural equation modelling
(SEM)

Components–operators–
management–environmental–

technology

An analysis using Pareto’s Law and the
diamond model, which states that 20%
of the key factors affecting safety risk

led to 80% of accidents.

The indicator system is inadequate
and general.

[102] Meta-network analysis Risk events
The method allows for the visual

identification of key risk factors and is
simple to use.

Risk events are incomplete; future
work should use MNA in other
scenarios and add more entities
and relationships to the
meta-network.

[15] Fault tree analysis (FTA) Fault type Filling the gap in safety assessment for
asymmetric tandem lifting (ATL).

The findings apply to mobile
cranes only.

One of the most widely used methods for risk analysis is fault tree analysis (FTA).
This deductive approach involves identifying and examining all potential events or cir-
cumstances that could lead to an undesired outcome, such as a crane accident. A tree
structure is employed to demonstrate the events or conditions resulting in the adverse
effect, assigning each event or situation a probability [56,110]. FTA enables a quantitative
risk assessment by identifying all possible factors and their likelihood [15,24]. However,
FTA necessitates specialized knowledge to estimate probabilities accurately and can be
complicated and time-consuming [119].

A Bayesian network (BN) is a graphical model that displays the probabilistic rela-
tionships between variables, providing a structured method for expressing and modelling
the uncertainty and dependencies between variables related to construction risk [113,120].
Nodes within the network represent variables such as weather conditions, equipment
failure rates, operator capabilities, and load characteristics, with edges capturing prob-
abilistic relationships; this allows for a quantitative representation of the likelihood of
different risk events occurring and their interdependencies [17,84]. Experts can contribute
subjective probabilities, data, and domain-specific knowledge, which can be integrated into
the Bayesian network to update risk assessments. This helps capture the tacit knowledge of
domain experts, which may not be easily quantifiable but can play a crucial role in assessing
the risks of hoisting construction [84,86,121,122]. The Bayesian network can be updated as
new data becomes available during construction, allowing for real-time risk monitoring
and decision-making based on the changing risk landscape. It also enables different risk
scenarios to be modelled and analyzed, empowering construction stakeholders to assess
the likelihood of risk events occurring under different conditions [122–124].

An artificial neural network (ANN) is a computational model inspired by the structure
and function of biological neural networks in the human brain [125,126]. As shown in
Figure 9, a classical artificial neural consists of an input layer, hidden layers, and an output
layer [127,128]. The hidden layer is many processing elements between the output layer
and the input layer, which are interrelated and layered [129,130]. The network learns from
example data by adjusting the strength or weight of the connections between neurons,
enabling it to make predictions or classify based on new inputs [131]. In dealing with risk
assessment, the sources of information are neither complete nor illusory. Decision rules
sometimes contradict each other and sometimes do not exist. This poses a great difficulty
for traditional information processing methods, but neural networks can handle these
problems well and give reasonable recognition and judgments [132,133]. Currently, those
such as BP neural networks are used for risk assessment of many projects such as railroads,
highways, tunnel openings, etc. [134,135].
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Digital twins is a virtual representation or digital copy of a physical object, system,
or process, which combines real-time data, sensor information, and advanced modelling
techniques to create a virtual copy that mimics the behavior and characteristics of its
physical counterpart [136–138]. Digital twins are used in risk assessment because they
provide a powerful tool to simulate and analyze potential risks in a secure and controlled
environment [139–141]. In DT, inspection data are collected in the real world and then
transferred to the simulation environment for further evaluation; the virtual model runs
simulations to obtain the best predictions, enabling it to provide rapid solutions for adapting
natural processes to changing conditions [142,143].

4. Discussion
4.1. Application of ANN and DT

It is important to discuss the prospects and potential challenges for the application of
artificial neural networks and digital twins in hoisting construction risks. The application
of these technologies is improving operational efficiency and safety. For example, artificial
neural networks can help optimize hoisting parameters, such as load capacity and speed,
to minimize risk. Digital twins can identify potential hazards and virtually test different
scenarios before they are executed in an actual construction environment. However, the
application process involves addressing issues such as data availability, model accuracy,
implementation costs and technician requirements. By acknowledging these factors, a
balanced view of the opportunities and limitations of these technologies is provided to
assist project managers with best practices.

The construction site is not random, it is constructed according to the laws of physics,
biology, and sociology, and the mind reflects this structure [144–146]. Artificial neural
networks, as approximators for identifying objective laws, are often criticized for “fitting”
and “black boxes” in the application of risk assessment [147–149]. The three common
cases of model fitting are “ideal fit”, “underfitting”, and “overfitting” [150]. An underfit
model has too few parameters to capture the underlying structure of the observed data and
therefore provides poor predictions or fails to generalize; an overfit model is flexible enough
to adapt and/or remember the structure of the training sample [151]. An ideal-fit model
learns the data’s underlying generative or global structure by exposing some underlying
factors or rules [152]. In contrast to underfitting and overfitting models, ideal fit models
can generalize, which means accurately predicting new observations that were never seen
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during training. Traditionally, experimenters have used highly controlled data to construct
rule-based ideal-fit models in the hope that these models will generalize beyond the training
set into real life [153]. However, the “ideal fit” models thus generated are often heavily noisy.
Over-parameterized models will tend to learn traits specific to the training data and will
not extrapolate beyond that range [154,155]. In the presence of complex non-linearities and
interactions between variables in different parts of the parameter space, extrapolation from
such limited data is bound to fail [156]. In such cases, “direct fit” based on big data may be a
good option. A “direct fit” is not an “intuitive fit”, and allows full regularization only in the
interpolation region, provided that the variability in the data is not caused by random noise,
to obtain as good or better predictions than an ideal fit model’s performance [157]. Direct-
fit models regularize the process to avoid excessive overfitting and optimize alignment
with the training data structure [158]. This regularization can crucially be achieved using
generic local computations and does not require any explicit model of the underlying
characteristics of the data [159–161]. Critics often derogate over-parameterized direct-fit
models as “black-box” models: models that give the correct inputs produce the correct
outputs without explaining their inner workings [130]. Instead, we argue that extensive
direct-fit neural network models provide a concise framework for understanding neural
code, emphasizing the close connection between the world’s structure and the brain’s
structure [162]. After all, compared to the billions of years that brain nerves have evolved
in a complex world, ANNs are still in their infancy. However, “direct fitting” relies on the
dense and extensive sampling of the parameter space to obtain reliable interpolations [54].
Thus, the emergence of the “digital twin” is a powerful aid to this idea. In addition,
ANN can be mixed with several meta-heuristics, such as the lion optimization algorithm
(LOA), the social engineering optimizer (SEO), the red deer algorithm (RDA), and the
Levenberg–Marquardt algorithm (LMA) to improve accuracy and speed further [163,164].

Digital twins (DT), on the other hand, use integrated technologies from the Internet of
Things (IoT), building information modelling (BIM) and many sensors so that the system
can collect data throughout the lifting process [165]. Previous research has shown that DT
has many advantages, making it suitable for risk modelling, especially for industrial build-
ing systems (IBS) with complex issues and high prefabrication rates [141,166]. Depending
on the spatial scale, data from DT provides a virtual copy of the physical construction
project compared to other sources and allows stakeholders to visualize and analyze the
construction process [167,168]. In addition, DT is beneficial for data sharing and com-
munication to minimize risks and facilitate collaboration between project stakeholders,
including architects, contractors, engineers, and owners [169]. However, there are some
limitations to using DT in the context of sub-application IBS. Currently, camera positions
and poses need to be calibrated individually, bidirectional interaction capabilities between
virtual and real models must be implemented, and video data structure algorithms are
not integrated. Future work should include the data-driven online updating of 3D scenes,
predictive projection, perception, and analysis of application scenes based on the fusion of
virtual and accurate models [170,171]. The capabilities and applications of the digital twin
are also limited by infrastructure and computing power [172]. DT has limited intelligence
and relies on inherent knowledge rules and independent AI-powered simulations and
predictions to make decisions and forecasts [142,173]. Not all algorithms produce accurate
results, and advanced algorithms should be selected based on their accuracy in producing
the desired results. Table 5 shows various machine learning algorithms that can be used
in DT, including support vector machines (SVM), random forest (RF), k nearest neighbor
(KNN), and convolutional neural networks (CNNs). Implementing DT in construction risk
assessment requires significant investment in technical infrastructure, including sensors,
data collection, and analytical tools, which can be challenging for smaller construction
projects or companies with limited resources, especially for developing countries. Not
all countries can afford DT due to economic constraints, so the high cost and difficulty
of handling massive DT datasets may be why DT is not used in these countries [168].
Another challenge in using DT is the ample data storage required due to the high density



Buildings 2023, 13, 1853 15 of 24

of real-time data; processing multidimensional data requires a long computation time [174].
As data are collected from multiple stakeholders with different data quality standards,
DT needs to improve its information processing regarding complex logical relationships
between objects, threats, and security rules [175,176]. DT relies on data communication and
storage and is vulnerable to cyber threats. Protecting sensitive data from cyber-attacks and
ensuring data privacy may be a challenge for the construction industry, where cybersecurity
measures may need to be better developed [177,178].

Table 5. Application of machine learning algorithms.

Algorithm Strengths Limitations Reference

Linear regression
Simple and interpretable.
It can be used for both regression and
classification tasks.

Assumes linear relationship between
features and target.
Sensitive to outliers.
Limited capacity for capturing complex
patterns.

[179–181]

Logistic regression Simple and interpretable.
Suitable for binary classification tasks.

Assumes a linear relationship between
features and log-odds.
Limited capacity for capturing complex
patterns.
Not suitable for multi-class classification
tasks without modification.

[151,182,183]

Decision trees

Can capture non-linear relationships.
Interpretable and can be visualized.
Can handle both categorical and numerical
data.

Prone to overfitting.
Can be sensitive to small changes in data.
Lack of robustness to outliers.

[184–186]

Random forests
Can handle large datasets.
Can capture non-linear relationships.
Robust to outliers and noise.

Can be computationally expensive.
Prone to overfitting if not tuned properly.
Lack of interpretability compared to
individual decision trees.

[187,188]

Support vector machines

Effective for high-dimensional data.
Robust to outliers.
Can handle both linear and non-linear
relationships.

Can be computationally expensive.
Requires careful tuning of hyperparameters.
Limited interpretability.

[189–191]

K nearest neighbors

Simple and easy to implement.
Can be used for both classification and
regression tasks.
Robust to outliers.

Sensitive to data scaling and dimensionality.
Can be slow with large datasets.
Prone to overfitting with small datasets.

[192–194]

K means clustering
Simple and easy to implement.
Can handle large datasets.
Can identify patterns in unlabeled data.

Requires pre-specification of the number of
clusters.
Sensitive to initialization.
May converge to local optima.

[195–197]

Principal component
analysis (PCA)

Effective for dimensionality reduction.
It can be used for feature extraction.
Can handle large datasets.

Assumes linear relationships between
features.
It may lose the interpretability of original
features.
Requires computation of eigenvalues and
eigenvectors.

[198,199]

Gradient boosting methods
(e.g., XGBoost, LightGBM)

High accuracy and predictive power.
Can handle complex patterns and
interactions.
Robust to outliers.

It can be computationally expensive.
Prone to overfitting if not tuned properly.
Lack of interpretability compared to
individual decision trees.

[200–202]

Convolutional neural
networks (CNNs)

Excellent for image and video data.
Can automatically learn hierarchical
representations.
State-of-the-art performance in many
computer vision tasks.

Require large amounts of data and
computing power.
Prone to overfitting with small datasets.
Interpretability can be challenging.

[203–205]

4.2. Future Research Directions

Future research can concentrate on critical areas to enhance hoisting construction risk
assessment. Firstly, developing advanced risk assessment models that integrate artificial
intelligence, machine learning, and data analytics to leverage real-time data from differ-
ent sources can improve the accuracy and timeliness of identifying and mitigating risks.
Secondly, exploring the potential of BIM in risk assessment can provide a comprehensive
digital representation of the construction project to identify and analyze potential risks
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during the design phase. Additionally, considering the impact of human behavior, commu-
nication, and organizational culture on hoisting construction safety, research efforts can
integrate human factors and organizational aspects into risk assessment methodologies.
Lastly, researching the effectiveness of novel risk mitigation strategies, such as autonomous
systems, robotics, and sensor technologies, can enhance safety during lifting operations.
These research directions can significantly improve risk assessment in hoisting construc-
tion, leading to safer and more efficient construction practices. As a result, we propose the
hoisting risk control model shown in Figure 10.
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5. Conclusions

Hoisting risk assessment has garnered significant attention due to the high occurrence
of construction accidents, particularly in Australia, China, the USA, and Europe. Accurate
and valid risk factors are important input parameters for risk modelling and assessment.
The performance of risk models is highly dependent on the comprehensiveness of the
risk factors, especially in small-scale risk modelling studies. Simulation results from
risk models show differences in assessing the impact and likelihood of risk when using
detailed risk factors, demonstrating that risk factors significantly impact the risk assessment
outcome. The 80 risk factors in this study inform future models. Furthermore, the constant
updating of risk models explains the interest in exploring new techniques to produce
accurate assessment results. In this review, the modeling results of numerous hoisting
risk studies show that DT can provide real-time and precise sensing data to improve the
inputs to risk models, enabling risk model results to be more specific. However, data and
interaction integration issues, high costs, and information security continue to limit the
development of the DT. The human factors involved in hoisting are only captured by sensor
data, resulting in too quantitative model parameters. Furthermore, integrating ANNs and
other assessment methods or theoretical frameworks is a promising approach to addressing
the problems associated with the inadequate representation of multidimensional non-linear
data. Thus, research on extending risk data collection systems and more accurate deep
learning algorithms can be foreseen in the upcoming applications of hoisting risk.
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