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Abstract: To investigate the wind-induced response and equivalent wind load of a super-tall building,
an aeroelastic model of the building was designed to measure aerodynamic interference in wind tun-
nel tests. Experiments on pressure and vibration measurements were conducted in both uniform and
turbulent wind fields, and the displacement response and surface wind pressure at different locations
of the model were recorded. The displacement time-history response spectrum and aerodynamic
spectrum in both fields were compared and analyzed. The research showed that the mean displace-
ment responses of the model in the across-wind and along-wind directions gradually increased with
velocity under different wind attack angles. The mean displacement response of torsion moment in a
uniform wind field changed very little, and the mean and fluctuating wind pressures in each layer
were significantly stratified, making it is easy to generate a coupled vortex-induced resonance. On the
other hand, the mean displacement response of torsion moment in a turbulent field increased with
wind velocity. Strong turbulence made the fluctuating wind pressure at the top and bottom of the
model slightly more significant than in a uniform field. The resistance of super-tall buildings came
from turbulence excitation in the along-wind direction and the self-excited resistance generated by
the across-wind direction. The test methods and main research conclusions may provide a reference
for glass curtain walls and the structural wind-resistant design of super-tall buildings.

Keywords: super-tall building; aerodynamic model; wind tunnel test; wind-induced aeroelastic
effects; vortex-induced resonance

1. Introduction

With the development of lightweight and high-strength materials and advancements in
construction technology, super-tall buildings have become taller and more flexible, leading
to increased aerodynamic and elastic effects [1,2]. Especially in complex wind fields, the role
of wind loads on structural safety and comfort design is becoming increasingly evident [3,4].
The directions of wind-induced vibration of super-tall buildings are illustrated in Figure 1,
and these can be broadly categorized into three types: across-wind, along-wind, and
torsional [5–7]. Across-wind vibration occurs when a building is exposed to strong, steady
winds perpendicular to its main axis, resulting in lateral forces that can cause the building
to sway from side to side [8]. Along-wind vibration occurs when a building experiences
lateral oscillations parallel to the direction of the prevailing wind, which can be attributed
to wind buffeting [9]. Torsional vibration is caused by the twisting torque along the
building’s vertical axis caused by non-uniform wind load distribution [10]. Therefore, wind
tunnel tests on building structures are critical for assessing a building’s structural integrity
and aerodynamic performance, especially in regions prone to high winds and extreme
weather [11–13]. Subjecting scale models to simulated wind conditions in a controlled
environment can accurately predict a building’s structural response and optimize its design
to ensure the safety and stability [14,15].
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When air flows around a blunt body, vortices alternate shedding from the front and
back of the structure, generating pulsating loads in the across-wind direction. When a
vortex occurs on one side of the structure, the wind velocity on the other side increases
while the wind pressure decreases, resulting in a lateral thrust action on the side where the
vortex is. When vortices alternately appear on both sides of the structure, a harmonic across-
wind load with the same frequency as the vortices is formed, leading to vortex-induced
vibration in the structure [16–18]. Super-tall buildings are flexible structures that deform
under across-wind lift forces. The additional self-excited aerodynamic pressure caused
by structural deformation further induces structural deformation [19,20]. This trend may
become smaller, eventually reaching a dynamic equilibrium state. Currently, the frequency
of alternate shedding of vortices is consistent with the frequency of across-wind vibration,
leading to the vortex-induced resonance of super-tall buildings [21–23]. Additionally, as
the wind velocity increases, it may also diverge causing structural damage, a phenomenon
known as galloping. The interaction among aerodynamic, inertial, and elastic forces creates
wind field coupling, known as the aeroelastic effect.
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aerodynamic interference effects on a super-tall building. Rizzo [28] discussed the acqui-
sition time dependence of the individual values and of the wind-induced floor accelera-
tion correlation coefficient between both the different building levels and wind directions. 
Su et al. [29] studied the aeroelastic responses and designed wind loads of twin super-tall 
reinforced concrete chimneys through wind tunnel tests. The results from rigid and aero-
elastic model tests were analyzed and compared with the codes. 

This paper analyzed the influence of aeroelasticity on surface wind load and wind-
induced dynamic response under different wind fields by simultaneously measuring 
pressure and vibration on the aeroelastic model. An aeroelastic model of building struc-
tures for wind tunnel tests was designed, and the pressure and vibration measurements 
were conducted in both uniform and turbulent wind fields. Based on the results, the dis-
placement response of the model and the variation of the surface wind load distribution 
with wind velocity were analyzed. The displacement time-history response spectrum and 
aerodynamic spectrum under two wind fields were compared and discussed. Compared 
with the related work, this study more comprehensively reflected the wind load and 
wind-induced response of super-tall buildings with aerodynamic interference. 
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Aeroelastic-model wind tunnel testing is a conventional and effective research method
in structural wind engineering [8,24–26]. The advantages of a rigid model are its simplicity
and cost-effectiveness, but unlike an aeroelastic model it lacks the ability to accurately cap-
ture aeroelastic phenomena and dynamic interactions between aerodynamics and structural
flexibility. The aeroelastic model is non-constrained, which means it can generate structural
vibration from external excitation and comprehensively reflect the interaction between
super-tall buildings and the wind and feedback aerodynamic effects. Huang et al. [27] con-
ducted a series of wind tunnel tests for aeroelastic model vibration measurement and rigid
model pressure measurement to investigate the aeroelastic and aerodynamic interference
effects on a super-tall building. Rizzo [28] discussed the acquisition time dependence of
the individual values and of the wind-induced floor acceleration correlation coefficient
between both the different building levels and wind directions. Su et al. [29] studied
the aeroelastic responses and designed wind loads of twin super-tall reinforced concrete
chimneys through wind tunnel tests. The results from rigid and aeroelastic model tests
were analyzed and compared with the codes.

This paper analyzed the influence of aeroelasticity on surface wind load and wind-
induced dynamic response under different wind fields by simultaneously measuring
pressure and vibration on the aeroelastic model. An aeroelastic model of building struc-
tures for wind tunnel tests was designed, and the pressure and vibration measurements
were conducted in both uniform and turbulent wind fields. Based on the results, the
displacement response of the model and the variation of the surface wind load distribution
with wind velocity were analyzed. The displacement time-history response spectrum
and aerodynamic spectrum under two wind fields were compared and discussed. Com-
pared with the related work, this study more comprehensively reflected the wind load and
wind-induced response of super-tall buildings with aerodynamic interference.
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2. Test Methods
2.1. Wind Field Parameters

Wind-tunnel testing was conducted in two wind field environments: uniform flow
and turbulent flow. The wind tunnel laboratory is a closed-port backflow-type boundary
layer wind tunnel with dimensions of 3.0 m in width, 3.0 m in height, and 15.0 m in length.
The turntable diameter was 2.5 m, and the wind velocity of the test section was adjusted
in the range of 5.0 to 94.0 m/s. The geometrical scale of the flow field simulation was
1:350. The designed turbulent wind field used an urban area with dense building clusters
as the simulated environment (terrain C). For turbulence generation, a passive turbulence
generation device was assembled with spires, roughness elements, and vertical grids to
simulate the atmospheric boundary layer. The wind tunnel testing model and turbulent
wind field simulation parameters are shown in Figures 2 and 3, respectively.
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2.2. Validation of Wind Fields

In uniform wind fields, the inflow wind velocities for experimental comparative
studies were controlled at 8.5 and 10 m/s, respectively. Before the experiment, the inflow
uniformity in the open test section of the wind tunnel was measured and calibrated so that
the wind velocity was uniform at the inlet of the tunnel. It should be noted that due to
the influence of the boundary layer of the wind tunnel, uniformity of the average wind
velocity and turbulence intensity was poor below a height of 0.3 m. In turbulent wind
fields, the selected reference height Hg was 1.2 m. The mean wind velocity and turbulence
intensity profile are shown in Figure 4, where z is the height from the ground; Uz is the
ratio of wind velocity at different heights to the wind velocity at the reference height; and
Iu is the along-wind direction turbulence intensity. The test values were close to the code
values in the “Load Code for the Design of Building Structures” (GB 50009-2019), and had
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good wind field simulation effects [30]. The comparison results of the fluctuating wind
velocity spectrum at the height of the reference point obtained from the test with other
wind velocity spectra are shown in Figure 5: Su denotes the wind velocity spectrum, and
u* denotes the root-mean-square value of the fluctuating wind velocity. As can be seen,
there was a good match between the measured velocity spectrum of the wind field and the
Karma spectrum, which again indicated that this experiment simulated the atmospheric
boundary layer of terrain C well.
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2.3. Measurement Equipment

During the test, the surface wind pressure and displacement response of the model
measurement points were measured simultaneously. A dynamic multi-hole pressure probe
was used for atmospheric boundary layer simulation commissioning, wind velocity calibra-
tion, and wake testing as shown in Figure 6a. The probe had a wind velocity measurement
range of 2–100 m/s, and the frequency response range was 0–2 kHz. The measurement
accuracy reached ±0.5 m/s when the turbulence intensity did not exceed 30%, and the
tilt angle measurement accuracy was ±1◦. To measure the wind pressure time-history at
each layer pressure measurement point, an electronic-scanned pressure sensor shown in
Figure 6b was used. The sensor had a maximum frequency of 625 Hz and a measurement
accuracy of ±0.05% FS. The number of pressure measurement channels was selected ac-
cording to the number of measurement points on the model surface. Additionally, a laser
distance sensor shown in Figure 6c was used to measure the displacement response. This
sensor had a reference distance of 300 mm, a measurement distance range of 160–450 mm,
and a linearity of ±0.25% FS. All sensors used in the test met accuracy requirements. The
mean displacement/wind pressure calculation was performed by adding up all the dis-
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placement/wind pressure recorded at each measurement point on the top layer of the
model and then dividing it by the total number of measurement points on that layer.
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2.4. Aeroelastic Model

The dynamic response of tall buildings in the across-wind, along-wind, and torsional
directions were directly measured using aeroelastic models. The aeroelastic model structure
diagram of a single super-tall building installed in the wind tunnel testing section is shown
in Figure 7a. The total height was approximately 1.4 m, enabling simultaneous vibration
monitoring and wind pressure monitoring. The model was designed and fabricated using
ANSYS based on the similarity principle. The model skeleton consisted of I-beam core
bars and aluminum alloy support spacers to simulate structural stiffness. The outer coat is
composed of 2 mm thick Plexiglas panels, divided into 7 layers with a 2 mm space between
adjacent layers and securely fastened to the support spacers by flat-head screws. Lead
counterweights were adjusted to control the model’s mass and mass moment of inertia,
ensuring similarity with the prototype and meeting test design requirements. The wind
tunnel’s blockage rate caused by the model was about 2.5%, making the blockage effect
negligible.

Three measurement sections were arranged at 1.40, 1.05 and 0.75 m heights of the
aeroelastic model, and three laser displacement sensors were arranged for each measure-
ment section. The arrangement is shown in Figure 7b,c. Measure the linear displacement
along two orthogonal horizontal cross axes and the torsional displacement around the
longitudinal axis (i.e., 2 sensors on the x-axis and 1 sensor on the y-axis). The displacement
signal was sampled at 625 Hz, and each signal channel contained 20,478 discrete units of
data, which were collected synchronously through 9 channels. In addition, 120 pressure
measurement points were laid out for simultaneous wind pressure measurement with a
sampling frequency of 625 Hz and a sampling time of 32 s. The designed test wind velocity
was 2–16 m/s, and the wind angles were 0◦, 45◦, 75◦ and 90◦.

Buildings 2023, 13, x FOR PEER REVIEW 6 of 14 
 

   
(a) (b) (c) 

Figure 7. Measurement point arrangement of the aeroelastic model. (a) Structure diagram; (b) Lat-
eral measuring points at different heights; (c) Profile measuring points. 

3. Analysis of Displacement Response under Different Wind Attack Angles 
3.1. Mean Displacement Response Analysis 

The mean displacement responses of a single super-tall building in uniform and tur-
bulent flows under different wind attack angles are given in Figures 8 and 9, respectively. 
The U on the horizontal axis represents the wind velocity, and the Dx-mean, Dy-mean, and Dθ-

mean on the vertical axis represent the mean displacement in x direction, mean displacement 
in y direction, and torsion moment, respectively. It is clear that in both types of wind fields, 
the mean displacement responses of the model in across-wind and along-wind directions 
gradually increased with wind velocity under different wind attack angles. In the uniform 
wind field, there was little difference in the mean displacement response of the torsion 
moment under different angles. Turbulence caused asymmetric loads on the building sur-
faces, so in the turbulent wind field, the mean displacement response of the torsion mo-
ment was greatly affected by the wind attack angles and increased with wind velocity. In 
addition, at a wind attack angle of 45°, the mean displacement of wind velocity measured 
from high to low increased slightly more than that measured from low to high. The anal-
ysis suggested that there was a wind velocity locking interval for building structure vi-
bration. Specifically, the velocity from high to low made the structure vibrate at the upper 
limit of the critical interval with a larger mean displacement response; the velocity from 
low to high made the building vibrate at the lower limit of the critical interval with a 
smaller mean displacement response.  

   
(a) (b) (c) 

Figure 8. Mean displacement and torsion under different wind attack angles in a uniform wind field. 
(a) Displacement in y direction; (b) Displacement in x direction; (c) Torsion moment. 

Figure 7. Measurement point arrangement of the aeroelastic model. (a) Structure diagram; (b) Lateral
measuring points at different heights; (c) Profile measuring points.



Buildings 2023, 13, 1871 6 of 14

3. Analysis of Displacement Response under Different Wind Attack Angles
3.1. Mean Displacement Response Analysis

The mean displacement responses of a single super-tall building in uniform and turbu-
lent flows under different wind attack angles are given in Figures 8 and 9, respectively. The
U on the horizontal axis represents the wind velocity, and the Dx-mean, Dy-mean, and Dθ-mean
on the vertical axis represent the mean displacement in x direction, mean displacement in
y direction, and torsion moment, respectively. It is clear that in both types of wind fields,
the mean displacement responses of the model in across-wind and along-wind directions
gradually increased with wind velocity under different wind attack angles. In the uniform
wind field, there was little difference in the mean displacement response of the torsion
moment under different angles. Turbulence caused asymmetric loads on the building
surfaces, so in the turbulent wind field, the mean displacement response of the torsion
moment was greatly affected by the wind attack angles and increased with wind velocity. In
addition, at a wind attack angle of 45◦, the mean displacement of wind velocity measured
from high to low increased slightly more than that measured from low to high. The analysis
suggested that there was a wind velocity locking interval for building structure vibration.
Specifically, the velocity from high to low made the structure vibrate at the upper limit
of the critical interval with a larger mean displacement response; the velocity from low
to high made the building vibrate at the lower limit of the critical interval with a smaller
mean displacement response.
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3.2. Fluctuating Displacement Response Analysis

Figures 10 and 11 show the comparison of the fluctuating displacement response of a
super-tall building in uniform and turbulent wind fields under different wind attack angles.
The Dx-rms, Dy-rms, and Dθ-rms on the vertical axis represent the fluctuating displacement
in x direction, fluctuating displacement in y direction, and torsion moment, respectively.
Under the action of 0◦ and 90◦ wind attack angles in the uniform flow field, the fluctuating
displacement response of the building structure in the theoretical critical wind velocity
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interval produced obvious spikes, indicating that a coupled vortex-induced vibration (VIV)
in three directions occurred at this time. Under the action of 45◦ and 75◦ wind attack angles,
the fluctuating displacement response did not produced obvious spikes, and wind velocity
variances were slight, indicating that the incoming wind direction had a great influence on
the building structure. Therefore, the maximum local incoming wind direction should be
fully considered when siting the building, which can avoid vortex-induced vibrations of
the building structure.
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In the turbulent wind field, the spikes of the curve disappeared, and no significant
vortex-excited resonance occurred. In other words, the turbulence intensity suppressed
strong regular vortex shedding formation. In general, the fluctuating displacement response
in turbulent wind fields with different wind attack angles did not exceed a 0◦ wind attack
angle. In the wind field with significant turbulence, the fluctuating displacement response
still maintained a considerable value even if the critical wind velocity interval was exceeded.

3.3. Displacement Time-History Response Spectrum Analysis

The vibration response of the 0◦ wind attack angle was selected for analysis, and the
wind velocities selected were 8.5 and 10 m/s. The displacement time-history response
spectrum of the 0◦ wind attack angle in three directions for these two wind velocities are
presented in Figures 12 and 13. The n on the horizontal axis is the natural frequency, and
the Sx(n), Sy(n) and Sz(n) on the vertical axis are the across-wind, along-wind, and torsion
moment direction displacement time-history response power spectrum density function.

When the wind velocity was 8.5 m/s, the vortex-induced vibration frequency in the
turbulent wind field in the three directions was slightly increased than that of the uniform
flow, and the peak of the corresponding displacement time-history response spectrum was
slightly reduced, while the energy contained in the low- and high-frequency structural
vibration increased. For the across-wind direction in a uniform flow field, the structure
twice had a smaller spectral peak at the first-order vibration frequency, indicating that
the across-wind displacement response also contained the displacement response due
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to higher order frequencies. For the along-wind direction in a uniform flow field, the
displacement time-history response spectrum also has a small spike at the second order
vibration frequency of the structure, which was due to the energy transfer caused by the
effect of bending-torsion coupling. For the torsion moment direction in the uniform flow
field, a larger spectrum peak was at the first-order natural frequency (across-wind direction)
of the structure, and a smaller peak appeared near the natural frequency (third order) of the
torsion moment. Two times the natural frequency (first order) of the across-wind direction
of the structure appeared when the structure was dominated by the first order across-wind
vibration [31]. The torsional response of the aeroelastic model included turbulent excitation,
asymmetrical distribution of lateral wind loads, and torsional angles from moments due to
self-excited forces generated by a cross-wind translational motion.

When the wind velocity was 10 m/s, the response spectrum change pattern was like
that for 8.5 m/s, but the difference was a larger contribution of a long-wind direction
vibration to the structure. In the turbulent wind field, the displacement time-history
response spectrum peak in all three directions was significantly larger than for the uniform
wind field, and the first-order vibration frequency was unchanged. From the above analysis,
the presence of turbulence increased the small-scale vortex clusters, leading to a surge of
energy vibrations in the fluctuating response spectrum of the structure, which had a certain
suppression effect on the across-wind vortex-induced vibration.
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4. Wind Load Characteristics
4.1. Surface Wind Pressure

To further analyze the distribution of wind loads on the surface of the aeroelastic
model under different wind fields and wind velocity conditions, the wind pressure at
wind velocities of 8.5 and 10 m/s with a 0◦ wind attack angle were selected. Additionally,
wind pressure at a wind velocity of 6 m/s before the vortex-induced vibration was also
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considered. The wind pressure coefficient time-history range Ci,j for the i-th measurement
point on the j-th layer of the aeroelastic model surface was defined as:

Ci,j =
pi,j − p∞

1/2ρU2
g

, (1)

where pi,j is the wind pressure time-history range at the i-th measurement point on the j-th
layer of the model surface; p∞ is the incoming static pressure; ρ and Ug are the air density
and the incoming wind velocity at the reference point, respectively.

The distribution of the mean and fluctuating wind pressure coefficients on the building
surface in the uniform and turbulent wind fields are presented in Figures 14–17. The Cp-mean
and Cp-rms represent the mean wind pressure coefficient and the fluctuating wind pressure
coefficient, respectively. In the uniform wind field, both the mean and the fluctuating
wind pressures of each layer exhibited distinct layering. The trends of the surface wind
pressure distribution curves in different wind fields and at different wind velocities showed
relatively similar patterns.
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When the wind velocity was 8.5 m/s, the lateral wind pressure was consistent with
that of the windward and leeward sides at the position below the fifth floor measurement
point (below 85% of the building height). Only at the top of the building near the free
end, was the side wind pressure of the turbulent wind field slightly less than that of the
uniform flow field, which may have been due to the end effect. In the turbulent wind
field, the fluctuating wind pressure on the windward and sidewind sides was greater than
for the uniform flow field, and the fluctuating wind pressure on the leeward side was
greater than the uniform flow field on the top and bottom floors. In the uniform wind
field, the fluctuating wind pressure on the leeward side gradually increased with building
height. The possible reason is that, at the time, the building structure had an across-wind
vortex-excited resonance, which meant that the structure had a larger equal amplitude
lateral vibration, which in turn affected the side separation and back tail flow, making
the back vortex shedding intensity larger. Since the presence of turbulence intensity just
suppresses the occurrence of vortex-excited resonance, the fluctuating wind pressure at the
back of the model in the turbulent wind field was smaller than that in uniform wind field.
Since the end effect existed at the top of the model, which also had the largest vibration
amplitude, the turbulence intensity was larger. The bottom was still the area of the greatest
turbulence in the whole model. Therefore, the stronger turbulence made the fluctuating
wind pressure at the top and bottom of the turbulent wind field slightly larger than for the
uniform flow field.

When the wind velocity was 10 m/s, the mean and fluctuating wind pressure stratifi-
cation of the model in the uniform wind field was more obvious and showed a difference in
height. When vortex-induced vibration occurred in the across-wind direction, the building
structure underwent large equal-amplitude lateral vibration, which affected the separation
of the lateral airflow at different heights, as well as the properties and strength of the
backside wake shedding, thus leading to a large difference in the mean and fluctuating
wind pressures at each level, thereby showing a certain aeroelastic effect. In the turbulent
wind field, the mean and the fluctuating wind pressures changed very little as velocity
increased, indicating that high turbulence intensity had a certain inhibitory effect on the
aeroelastic effect.

4.2. Comparative Analysis of Aerodynamic Spectrum

The fluctuating wind pressure spectrum reflected the contribution pattern of turbulent
fluctuating excitation formed by the mutual coupling between wind and structure to the
fluctuating energy of the wind load on the building surface. Current research on the
wind load characteristics of super-tall buildings is based mostly on the fluctuating wind
pressure spectrum of the rigid-body pressure measurement model, displacement response
spectrum, and torsion spectrum of a single-degree-of-freedom pendulum aeroelastic model.
However, only some scholars have studied the fluctuating aerodynamic spectrum with
a multi-degree-of-freedom aeroelastic model. The applicability of aeroelastic models lies
in their ability to capture the dynamic interactions between aerodynamics and structural
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flexibility, offering more accurate predictions of aeroelastic phenomena compared to wind
tunnel pressure tests on rigid models.

In this section, the fluctuation lift force, drag force and torsion spectra were obtained
by integration and spectrum transformation of the time-history wind pressure based on
the multi-degree-of-freedom aeroelastic model. To further analyze the differences in wind
pressure exhibited by each layer at different heights when the vortex-excited resonance
occurred in the across-wind direction (U = 8.5 m/s), the selected study areas were layer 2
near the bottom of the model, layer 4 located at 2/3 of the height, and layer 5 near the top of
the model. This also corresponded to the lower, middle, and upper directions of the super-
tall building. The distribution of the layer fluctuating aerodynamic power spectrum density
in different wind field types is given in Figures 18 and 19. In figures, Sx(n), Sy(n), and Sz(n)
on the vertical axis are the fluctuating aerodynamic power spectral density functions for
each layer in the across-wind, along-wind, and torsion moment directions, and n on the
horizontal axis is the natural frequency.
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For the across-wind direction, the peak frequency at different heights was consistent,
indicating that the periodic strength of vortex shedding was the same at different heights,
without showing height differences, and independent of the type of flow field. However,
the spectrum peaks at different heights showed variability. In the uniform wind field, vortex
shedding frequency was equal in magnitude to the natural frequency of the structure, and
the structure underwent vortex-excited resonance. In the turbulent wind field, vortex
shedding frequency increased slightly over the natural frequency of the structure. For
the across-wind aerodynamic power spectrum, in addition to the peak at the across-wind
natural frequency, there was a small peak at two times the first order (across-wind) natural
frequency. This indicated that the across-wind lift of the structure came from the first order
frequency, and the effect of the high order frequency on it could not be neglected. This
phenomenon did not occur in the turbulent wind fields.
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The alone-wind aerodynamic power spectrum density distribution in the uniform
flow field showed two spectral peaks: the smaller one near the second-order (alone-wind
direction) natural frequency of the structure and the other near twice the first order (across-
wind direction) natural frequency of the structure. From the fluctuating wind velocity
variation diagram, the vibration of the structure is currently dominated by a cross-wind
vortex excitation vibration, and a smaller resonance occurred in the alone-wind direction.
Therefore, the resistance of the super-tall building came not only from the turbulent excita-
tion in the alone-wind direction, but also from the self-excited resistance generated by the
across-wind advection. The high turbulence intensity eliminated the narrow-band peak
of the alone-wind aerodynamic power spectrum, which in turn broadened the frequency
band.

The density distribution of the torsion moment aerodynamic power spectrum in the
uniform flow field showed two spectral peaks: the larger one near the first order (across-
wind direction) and the other one near the third order (torsion moment) natural frequency
of the structure. However, the spectral peaks were small and narrow, indicating that the
structure was dominated by a cross-wind vibration. The dynamic torsions of the aeroelastic
model included not only the torsions formed by turbulent excitation and asymmetrical
distribution of lateral wind loads, but also the self-excited moments induced by horizontal
vibrations in the across-wind direction and the self-excited torsions generated by the joint
action with torsional motion. In turbulent wind fields, the spectral peaks near the natural
frequency of the structure twisted to broaden or even disappear.

5. Conclusions

This paper discussed the displacement response and wind load characteristics of an
aeroelastic model of super-tall buildings and came to the following conclusions:

(1) The fluctuating displacement responses at different wind attack angles did not
exceed 0◦ of wind attack. At the 0◦ and 90◦ angles, the building structure in a uniform
flow field underwent torsional bending coupled with vortex-excited resonance in three
directions. At a wind attack angle of 45◦, there was a wind velocity locking interval for
building structure vibration. The change of velocity from high to low caused the mean
displacement response to increase, and the change of from low to high caused it to decrease.

(2) In wind fields with high turbulence intensity, the fluctuating displacement response
was greater, and the turbulence intensity suppressed the formation of strong regular vortex
shedding. The incoming wind direction had a significant effect on the building structure,
which means that the maximum local wind velocity from the incoming wind direction
should be carefully considered when siting the building, as it can prevent vortex-excited
resonance.

(3) The effect of higher-order frequencies on the across-wind vibration of super-tall
building structures cannot be ignored. The presence of turbulence intensity caused an
increase in small-scale vortex clusters, leading to a surge of energy vibrations contained in
the fluctuation response spectrum of the structure, which had a suppressive effect on the
across-wind vortex-induced vibration.

(4) In a uniform wind field, there is great variability in the mean and fluctuating wind
pressures at different heights on the model surface. The building structure experienced large
equal-amplitude lateral vibrations during across-wind vortex-excited resonance, which, in
turn, affected the separation of lateral airflow at different heights and the properties and
intensity of backside wake shedding.

(5) The vortex shedding frequency corresponding to the main peak value of the
generalized aerodynamic spectrum increased in the supercritical wind velocity region,
reflecting the influence of structural vibration on the aerodynamic load on the building
surface. This effect is a concrete manifestation of the feedback effect of fluid-solid coupling.
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