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Abstract: The use of technology, such as artificial intelligence (AI), in production processes has been
optimizing several industrial realities. In civil construction, AI can be used in different applications,
one of which is building inspection. One of the difficulties in developing this type of study is the low
number of public image databases that represent more general aspects of building wear. In view of
this, the main objective of this research was to set up a public database of images of cracks in mortar
coating, considering different types of surface finish—smooth type, scrapped type, and rough type.
A database was created with 33,088 images that went through a systematic labeling process based on
classes defined in the study. Network training was carried out through transfer learning using the
VGG16 in different groupings of finishes. It was found that the training accuracy varies according
to surface finish and data balancing. The finish of the scrapped type was the one that presented the
lowest accuracy. The database presented several types of noise and was unbalanced in all categories
defined in the labeling. In this way, it was possible to create a database that represented possible
situations to be found in real inspections.

Keywords: artificial intelligence; mortar coating; public database; artificial neural networks; transfer
learning; convolutional neural network

1. Introduction

Technology use in production processes, such as advanced robotic incorporation and
systems integration, is modernizing several industrial realities. In view of this scenario,
it is considered that the fourth industrial revolution is taking place, a concept called
industry 4.0 [1]. Among the innovations used in the development of products and services
in industry 4.0, there is artificial intelligence (AI). This technology aims to develop the
autonomy of machines and computational systems so that they simulate human reasoning,
especially in decision-making. In this way, it is possible to optimize long-scale repetitive
processes and activities, which would require human analysis [2,3].

In civil construction, there are already studies with the objective of applying AI to
different approaches, ranging from project production to building operation [4–7].

One of the realities in which the application of AI in civil construction is feasible
is the building inspection process. The issue is that buildings suffer wear and loss of
performance throughout their useful life, thus requiring periodic assessments that are
carried out through services such as inspections, surveys, and expertise. These, on the other
hand, tend to generate a large number of images that must be cataloged and classified [8,9].
Garcia Sobrinho et al. [10] carried out a study based on building inspection in which they
generated 4481 images that had to be classified manually, an activity that could have been
undertaken by a network trained to classify images into categories.

Visualizing the optimization of this type of service, it is possible to train a neural
network to catalog the problems that could be found in buildings. One of the types of
networks most used in image classification is the convolutional neural network (CNN).
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One of the important points in applying a CNN to a classification problem is to teach
it to correctly identify the image classes. For this, one must have a representative database
with a lot of images and with a balance between the number of images of each class. One
of the most used databases for image recognition applications is ImageNet. It contains
over 14 million images divided into over 20,000 categories, all in the public domain [11].
However, for some specific problems that are objects of scientific investigation, the current
public databases do not usually have information of sufficient scale or representativeness.
Given this situation, some authors, such as Silva et al. in [12], Katija et al. in [13], and
Leenhardt in [14], conducted studies with a focus on elaborating public image databases for
research and AI applications. Researchers in some areas of engineering often find it difficult
not having public sources of data for classification studies. Furthermore, even when a
specific database for a given application exists, they tend to be small when compared to
those used for training the current CNNs. To work around this situation, it is possible to
use learning transfer.

Researchers are making an effort to train classifier networks for different civil con-
struction problems. However, most of these studies work with homogeneous materials
such as concrete and paving. Not all materials used in civil construction have surfaces with
a homogeneous appearance, as is the case with facade coatings [15–18].

Facades are elements of buildings that are exposed to environmental weather con-
ditions such as insolation, drying, and wetting cycles. Therefore, periodic inspections
and maintenance are necessary in these regions of the building. Facades can be made of
different materials; one of the most used for finishing is mortar coating. This type of finish
can be applied in several ways, by varying the thickness of its components and type of
texture, for example. This can result in different characteristics of the surface finish of
coatings [19–21].

The most used surface finish is smooth. In this type of coating, leveling and straighten-
ing are carried out on the surface, obtaining a smooth appearance of the coating. Another
possible texture is a scrapped finish. For its execution, ground rock grains, derived from a
selective grinding process by color and granulometry, are added to the mortar. This results
in a grooved appearance of the finish. The rough cast finish is another type of finalization
of the mortar coating. It can be executed by spraying mortar or with a texture roller. Its
visual finish gives a rough appearance where it is applied.

Regarding the categorization of defects in mortar coating using CNN, Lee et al. [22]
used Faster R-CNN to detect multi-class defects in facades with mortar cladding. The
average accuracy achieved by the authors was 62.7%. Guo et al. [23] performed the
classification of defects in mortar coating from an unbalanced data set, using a VGG16.
To deal with the unbalanced dataset, the authors used meta-learning. They obtained an
accuracy of 82.86%. Guo et al. [24] proposed a semi-supervised learning based on ResNet
101 and an uncertainty filter for the classification of defects in facades, achieving an accuracy
of 84.36%.

However, these studies only addressed the smooth coating with a paint finish. They
did not consider different types of surface finish of coating, which reduces the capacity of
networks to generalize.

Cracks are common problems in mortar coverings in buildings. From the visual
analysis of this type of discontinuity, it is already possible to arbitrate important information
about the problem, such as, for example, what caused the crack or its severity. Regarding
this type of defect, studies related to the detection of cracks in concrete already show good
results. Chow et al. [25] elaborated a pipeline with artificial intelligence for image-based
inspection of concrete structures. The authors obtained an average accuracy of 95.6% in
the test set. Ali et al. [26] evaluated the performance of CNN-based deep crack location
and detection techniques for concrete structures. In the detection method proposed by
the authors, they achieved 96.7% accuracy. Islam et al. [27] developed a CNN approach
based on transfer learning models using data augmentation and transformation for crack
detection in concrete. The best research results were achieved using VGG16 and AlexNet,
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both with 99.9% accuracy. Chaiysarn et al. [28] carried out integrated crack detection,
from CNN-FCN, at pixel level via photogrammetric mapping of the 3D texture of concrete
structures. The authors achieved 99.8% accuracy.

The surface of mortar coatings is more heterogeneous when compared to that of
reinforced concrete, which is not so explored in the literature. These are intended for
multi-class classification of defects and do not consider different types of surface finish.
Another point is that, in the case of concrete, there are already public databases on problems
in this type of structure, which may justify the incidence of more research on this topic and
better results in assertiveness metrics when compared with studies of this type on mortar
coating. Thus, it is possible to verify a research gap in relation to the application of CNN
for the classification of mortar coatings with different types of surface finishes. The absence
of public databases of images of this type of material may be a reason for the low incidence
of studies on this subject.

Therefore, the main objective of the present study was to assemble a public database
of cracks in mortar coating considering some different types of surface finish: smooth coat
finish, rough cast finish, and scrapped finish. This database is publicly available and, as
far as we know, it is the first of its kind. An application of the database is also presented.
Images in the database were classified with a pre-trained VGG16 network. Different subsets
of the database were used to investigate how representative the individuals in the database
are, so most of the peculiarities of the application domain are covered.

Convolutional Neural Network

CNN is a neural network architecture that is widely applied in image recognition.
It is basically divided into convolutional layers, pooling layers, and densely connected
layers. In convolutional layers, a group of pixels is assigned to a neuron, and this is carried
out for all pixels in the image. Based on this configuration, filters are applied to these
clusters in order to extract the most relevant features from the image. In this way, in
the convolution process, feature maps are generated in every image, through which it
is possible to identify important information for the classification process, such as edges
and geometries, considering the dependence and positioning of the pixels. In the pooling
process, the dimensionality of the image is reduced. After the process of following the
feature maps in the convolution layer, this information can be simplified, which reduces the
amount of weights to be learned and can avoid overfitting. The last layers are the densely
connected ones, in which the image classification process takes place based on information
on the variant of characteristics defined in the convolutional and pooling layers [29,30].

One relevant factor for network performance is the database that will be used in the
training process. The database is usually divided into three groups: training, validation,
and testing. In the training group, one keeps the images that will be used to teach the
network which class should be assigned to each image. The validation group is used to
verify if the network is really learning during the training phase or it is simply memorizing
the training group. Finally, in the test group are the images that will be used to verify the
ability of the network to succeed, i.e., to check whether it is capable of correctly classifying
an individual never seen before. The whole database is important for the success of training.
The database must be large enough for the network to be able to generalize and cover as
much as possible the aspect of the desired classification. Some networks like AlexNet and
GoogleNet were trained with millions of images, for example. Another important point to
be considered is the balance between classes. If some class has many more images than
others, the network can present a tendency to adjust the weights to favor the dominant
class [29,31].

To work around this situation, it is possible to use learning transfer. In this process,
the convolution layers of already-trained networks are frozen and the fully connected layer
is changed. In this case, it is understood that the features extracted in the convolution
process do not usually vary much between different objects. Thus, a network trained to
extract features from millions of images has great generalization capacity. So, when using



Buildings 2023, 13, 1872 4 of 32

pre-trained networks, one enjoys the feature extraction capably and just has to train the
network to classify the individuals in the database in question. This type of approach has
been applied in classification studies and obtained good results [32,33].

2. Materials and Methods

This research was carried out in five main stages: the delimitation of the environment
and the collection procedure; the pre-processing of the images; data labeling; the analysis
of the number of images and the database balancing; and, finally, the training of neural
networks from the transfer of learning using the VGG16. The flowchart of the steps can be
seen in Figure 1.
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Figure 1. Flowchart of the steps taken.

The process of delimitation of the environment, collection of images, and pre-processing
will be explained in the methodology. The other processes will be described in this section;
however, more detail will be given in the sections on the results and the discussion. This
setting was made because the process and decision-making in the assembly of the database
were important parts of the research objectives.

2.1. Delimitation of the Environment and Collection Procedure

The data collection environment defined for this study was one of the units of the
Federal University of Uberlândia (UFU), called Campus Santa Mônica. This campus is
located in the city of Uberlândia—MG in Brazil. Currently, it has 73 blocks named by letters
and numbers. The blocks are administrative classifications of buildings, or a set of them,
defined by the university. They serve various purposes, such as classrooms, laboratories,
community centers, university restaurants, and test sheds, among other features.

The buildings that make up the collection environment are diverse. They vary in
relation to their formats, sizes, and constituent materials. In Figure 2, it is possible to
observe four buildings with different compositions of materials on their facades.

On an initial visit to UFU, 43 units were identified with their facades finished with
mortar. Other structures with mortar coating were also observed, such as retaining walls,
ramp walls, stair walls, and low walls.

From the cataloging of constructions, inspections were carried out to survey the
database. Some criteria were established to standardize, as far as possible, the acquisition
of images. The first point was the inclusion and exclusion criteria for the façades. Only the
facades of buildings that had some direct contact with the environmental weather were
considered. In this way, only images of the elements that were directly exposed to the sun
or protected with short sections of awnings or roof eaves were obtained. Walls that were in
the center of the buildings were not considered, even if positioned on the outside, or with
protection from long spans of coverage or upper floors. In Figure 3, it is possible to observe
examples of closures that were or were not part of the database.
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Figure 3. Example of faces of buildings considered or not in the data collection. (a,b) Walls with short
coverage protections, considered in database protection; (c,d) External walls protected by large areas
of roofs or upper floors, not considered in the assembly of the database.

Walls, low walls, and any other type of construction that had the type of coating
studied and that was exposed to the environment were included in the database. In the
preliminary treatment of the data, the images of the buildings were associated with the



Buildings 2023, 13, 1872 6 of 32

nomenclature of their respective blocks. Buildings considered as annexes, when they were
included in the same block as the main building, were separated into distinct groups.
Images of retaining walls, ramp walls, stair walls, low walls, and other elements were
grouped to the nearest block dataset. An access ramp was classified as a distinct region
from the others, having its own group of data. In the end, 44 groups of images were
obtained, according to the defined regions. Most of them were named after the block they
were obtained from.

The photos were taken using the camera of a cell phone. The device can obtain
48 Mp or 5 Mp images, has a 1

2 ” sensor, aperture size of F 1.8 + F 2.2, and autofocus.
Images were obtained at a resolution of 8000 × 6000 pixels. The distance between the
camera and the photographed objects was approximately 1 m (±0.2 m). This distance was
limited in order to have greater standardization of the images obtained and for them to be
closer to the structural performance criteria of facades of the Brazilian standard [34]. The
distance between the operator and the mortar coverings was controlled by means of a laser
tape measurement.

The camera was kept parallel to the inspected object. For this, horizontal angulations
between the camera and the coating were avoided and little vertical angulation was allowed.
Instruments were not used to measure the angles between the camera plane and the coating.
The control in question was carried out by the sensitivity of the operator regarding the
positioning of the camera. In Figure 4, it is possible to verify what was considered as
horizontal and vertical angulation in this study.
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Figure 4. Angular variations between the camera and the mortar coating. (a) Camera plane parallel
to the casing plane; (b) Rotation that generates horizontal angular variation between the camera and
the coating occurring around the y-axis; (c) Rotation that generates the vertical angular variation
between the camera and the casing occurring around the x-axis.

Finally, there were 4092 images in the 44 specified clusters. In Table 1, it is possible to
verify the number of images for each grouping. These images underwent pre-processing
and were classified.

Table 1. Number of images per grouping.

Grouping N. of Images Grouping N. of Images Grouping N. of Images Grouping N. of Images

1C 4 1V 3 3Z 9 5OA 55
1D 15 1X 46 5B 96 5OB 183
1E 94 3C 47 5D 26 5P 10



Buildings 2023, 13, 1872 7 of 32

Table 1. Cont.

Grouping N. of Images Grouping N. of Images Grouping N. of Images Grouping N. of Images

1EA 162 3E 256 5DA 24 5RA 101
1I 49 3J 84 5F 167 5RB 176
1K 38 3K 60 5G 96 5T 91
1M 160 3KA 90 5H 54 5U 46
1N 112 3L 43 5I 88 5V 29
1P 20 3O 92 5J 77 R 186
1Q 99 3P 388 5K 128
1S 142 3Q 228 5L 92

Total 4.091

2.2. Pre-Processing of Images

In pre-processing, the photos were resized and cropped into image patches. Resizing
was carried out with the aim of optimizing training since the original size of the images
was too large. The usual size of the images that are generally used in the training of
current networks is 224 × 224 pixels, based on the dimensions present in the ImageNet
database, which is much smaller than the original size of the images obtained. The division
does not affect the semantics of what is presented in the image; on the contrary, it is even
advantageous as it generates a greater number of images in the database.

The resizing process was carried out using the Image Resizer tool for Windows. The
photos were reduced from the size of 8000 × 6000 pixels to 2000 × 1500 pixels. This
dimension was chosen so that patches smaller than 500 × 500 pixels could be cut. Thus,
each photo generated a total of 12 image patches.

Dividing images into patches is a method commonly used in classification studies
of problems in buildings, as can be seen in the studies of Lee et al. [22], Guo et al. [23],
Guo et al. [24], and Chow et al. [25]. The size of 500 × 500 pixels was initially chosen based
on the study of Guo et al. [23]. Image division was performed using the PhotoScape v3.7
program. In Figure 5, it is possible to visualize the pre-processing carried out.
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After pre-processing, the database was left with a total of 49,092 patches of 500 × 500
pixels images.

2.3. Data Labeling

Data labeling followed six steps: noise elimination; division of images between differ-
ent types of surface finish; division of the images into those with or without noise; division
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of the images into those with or without cracks; division of images with cracks according
to the level of visibility of the problem; and naming the image according to all divisions
performed. In Figure 6, it is possible to verify the flowchart of the data rotation process
carried out.
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Figure 6. Data labeling procedure.

In the noise elimination process, the patches for which the main information was not
the mortar coating or that did not have the finish were removed from the bank. After this
step, the bank had a total of 33,088 image patches.

In the division in relation to the type of surface finish, the data were grouped into
three types of mortar coating texture: smooth coat finish, rough cast finish, and scrapped
finish. In Figure 7 it is possible to verify examples of the three main types defined.
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In the third step, image patches were divided into noiseless and noisy images. In
general, every image that had some information that was not related to the coating was
considered as having noise. Then, the data were classified between the coatings that
contained cracks and those that did not.

The last grouping process was about the visibility of the cracks. It was observed that,
in some images, the discontinuities were more visible while in others they were difficult
to identify. Thus, the patches were identified according to three levels of identification in
relation to the cracks: high, medium, and low. Finally, the images were named using a code
developed for the database in question. The detailed decision-making process during data
labeling will be explained in Section 3.1. In Figure 8, it is possible to see a flowchart of the
data classification procedure.

2.4. Analysis of the Number of Classes and the Balance of the Database

With the database divided and classified, the quantity of each category was tabulated
and analyzed using spreadsheets.

To verify the balance of the database, a ratio between the number of images in each of
the classes that were compared was used. The equation of the respective relationship can
be seen below.

Relationship between the amount of image of each class (Rc) =
M−
M+

. (1)

In this case, M− is the number of images of class with the smallest amount in com-
parison and M+ is the number of images in the class with the largest amount of data. In
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this way, there is always a ratio greater than 0 and less than or equal to 1. This means that,
when the ratio between the classes in a comparison is closer to or equal to 1, we have a
database that is well or completely balanced. On the other hand, the smaller the ratio, the
more unbalanced the analyzed situation.

Based on this parameter and data tabulation, the following relationships were analyzed:

• Between the images containing cracks or not of the total dataset and of the separate
surface finishes;

• Among the images containing cracks or not considering the situations of having noise
or not;

• Among the images containing cracks or not considering the types of finishes and the
presence of noise;

• The number of images with cracks considered with high, medium or low visibility
according to each type of surface finish.

In this way, points that can influence the assertiveness-ability metrics of training the
database were created.
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2.5. Training of CNNs from Transfer of Learning

The last stage of the investigation aimed to compare some assertiveness metrics of
networks trained with different image clusters. The focus of this part was to test whether
the type of finish has any influence on assertiveness during training on the network and,
from this, raise points that can be the basis of research that uses the database elaborated in
this study. For this, the VGG16 was used, based on transfer of learning.

The transfer learning process was carried out by removing the last layer of the network,
which had 1000 classes, and replacing it with one with two output classes. A new layer was
created to replace the hidden layer of the network so that the pre-trained model of VGG16
could classify the presence or absence of cracks in the mortar coating. The network was
trained in 14 epochs and with a learning rate of 0.001. The entire process was carried out in
the Google Colab Pro+ environment using the Python language and the Pytorch library. In
the execution environment, an A100 GPU and high RAM were used.

In the pre-processing of data at the input of the network, the patches were resized to
a size of 224 × 224 pixels, which corresponds to the dimensions of the images used for
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training the VGG16. The inputs were transformed to the given Pytorch type using the
transforms.ToTensor function and normalized using the transforms.Normalize function,
which uses the standard deviation and the mean of the RGB channels. The values of the
standard deviations and averages used in the normalization correspond to the ImageNet
database, being, in each RGB channel, (0.485; 0.456; 0.406) for the averages and (0.229; 0.224;
0.225) for the standard deviations.

The images were divided into datasets for training and validation. The metric used
for comparison was accuracy. The accuracy curves and the loss function in relation to the
number of epochs were also verified. The accuracy is the metric most used to evaluate the
performance of AI training models; it indicates the percentage of correct answers in the
network obtained from Equation (2). Accuracy indicates the percentage of images that the
network classified correctly out of the total number of images.

A =
V = TP + TN

TP + TN + FP + FN
. (2)

In this case, the letter A corresponds to accuracy. TP is the number of images in the
positive class that the network managed to get right and FP is the number of positive
images that the network missed. TN is the number of images in the negative class that
were classified correctly and FN is the number of this class that were classified wrongly.

Initially, tests were carried out with a small group of 446 images of the smooth surface
finish, without noise, and in the proportions of 50% of images containing cracks and 50%
without discontinuities. Two tests were performed, one with the manual selection of images
from the training and the validation groups and the other with this division being randomly
generated from the splitfolders library. In the tests, the image patches were organized in
the proportions of 80% for the training set and 20% for the validation set.

From these tests, the use of the splitfolders library was defined to split the training
and validation sets of the analysis groups. The proportions were 70% for training and 30%
for validation. For comparisons, the database was divided into two main groups. One of
them contained all the images, generated in unbalanced data sets; this group was identified
with the letter A. In the other grouping, the data were balanced from the minority class.
That is, the classes that had more images were reduced for an amount of data from the
class with the lowest value. This process was carried out through the splitfolder library.
The balanced group was identified by the letter B.

Within groups A and B, four different approaches were performed for each one of
them. The four different types of data organization were:

• A dataset containing all images, identified by the number 1;
• A dataset containing only images with a smooth surface finish, identified by the

number 2;
• A data set containing only the images with surface finish of the type scrapped, identi-

fied by the number 3;
• A data set containing only the images with a rough surface finish, identified by the

number 4;

In this way, eight training sessions were carried out. In Table 2, it is possible to verify
the groupings that were performed for the study.

Table 2. Data clusters analyzed.

Grouping According to Data Balancing

Set of Images According to
the Type of Finish

Unbalanced Database
(Group A) Balanced Database (Group B)

All the types—1 A1 B1
Smooth type—2 A2 B2

Scrapped type—3 A3 B3
Rough type—4 A4 B4
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Each of the groups had two classes: the images containing cracks and those without.
The objective of the training was to verify the ability of the networks to classify the presence
or absence of discontinuity in the groupings performed. From this configuration, the
datasets were processed and the assertiveness metrics of the networks analyzed.

3. Results and Discussions

The results are divided into three parts—data labeling, database analysis, and training.

3.1. Data Labeling

Labeling was carried out manually by two civil engineers who are experts in the field.
The division was carried out based on the professionals’ perception.

The first process carried out was the elimination of noise. The initial photographs had
regions that did not contain the studied coating. Therefore, some of the patches had infor-
mation that was not interesting for the database. These patches were therefore excluded.

Two main types of images were identified that were considered to be, exclusively,
noise. In the first type, there were the patches that had no relation to the mortar coating,
such as: background images, floors, frames, vegetation, and other objects. Some examples
of this type of noise can be seen in Figure 9.
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Figure 9. Example of patches with information unrelated to grout coating. (a) Background image;
(b) Glass window part; (c) Air conditioning part; (d) Tree trunk; (e) Vegetation; (f) Floor.

The other type of noise identified was the patches whose main image information was
not the coating. In Figure 10, it is possible to verify some examples of this type of noise.
Patches of images that were repeated were also removed.

After eliminating the noise, the images remained divided according to the three types
of surface finish defined, namely: smooth finish, rough finish, and scrapped finish. Within
each of the finishing categories, it was possible to observe some variability, for example, in
the surface texture. The issues observed will be maintained below.

In coating execution, the finishing process can be applied using different techniques.
This also varies according to the purpose of the building. For example, some buildings
need to have a greater aesthetic performance than others. In this way, the finishing process
tends to be more careful. These variations can be seen in Figure 11. In images (a) and (b) of
the figure, it is possible to verify finishes with a really smooth appearance. In images (c)
and (d), however, local problems can be observed in the execution of the coating. In the
case of patches (e) and (f), there are scratches resulting from the passage of the trowel in
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the leveling process, probably because the finalization was not carried out using a damp
sponge. The possible absence of the last-mentioned executive procedure can also be seen in
(g) and (h). However, the result in this case was a rough look. Finally, the texture of image
(i) may have been executed using a specific technique that was not intended to make the
surface completely smooth.
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Figure 10. Example of patches where grout coating is not the main information. (a) Piping;
(b) Concrete pillar; (c) Grade; (d) Floor and piping; (e) Air conditioning wiring; (f) Window corner
(g) Floor and door; (h) Vegetation; (i) Image Background.

Another variability found in the smooth surface finish was the paint colors. In
Figure 12, it is possible to observe some of these differences. One of the visually veri-
fied points is that painted surfaces usually have a more homogeneous appearance than
unpainted ones. This can be justified because the paint seals the porosity of the mortar,
which reduces the rough appearance of the coating.

Regarding the scrapped type finish, it was also possible to verify different aspects of
the surface texture. Image (a) in Figure 13 shows a more uniform distribution between
orientations of the grooves. In (b), it is possible to observe a smooth region between the
scrapped finish. In the image patch (d), the finish was left with a smooth appearance
in a large part of the image, probably due to some incorrect execution procedure. In
image (d), the grooves orientations are thinner and with a higher density. This contrasts
with image (e), where the grooves are thicker. In the case of (f), the finished appearance
was closer to holes than grooves, which may be the result of problems in dragging the stone
grains in the execution process.
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Figure 11. Different textures in the smooth surface finish; (a,b) Smooth finish; (c,e) Local flaws in
textures; (d,f) Texture with scratches due to the passage of the trowel and possible absence of a
finishing process; (g,h) Texture with roughness due to the possible absence of a finishing process;
(i) Finishing not intended to be completely smooth.
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(d) Yellow; (e) Orange; (f) Rose; (g) Red; (h–j) shades of green; (k) Blue; (l) Black.
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Figure 13. Scrapped surface finish textures; (a) Uniform distribution; (b) With region without grooves;
(c) With part of the smooth area; (d) With thin grooves and with greater density; (e) With thick grooves;
(f) Without adequate dragging of the stone grains, giving an appearance more of holes in the coating.

Regarding the colors of this type of finish, they were between white, gray, blue, and
yellowish tones, not varying much in relation to the colors developed in Figure 13.

In the case of the rough finish, in Figure 14, it is possible to observe differences in
roughness between the images. In the cases of (c) and (d), the roughness is more prominent,
with larger ripples than in images (a) and (b). As for patches (e) and (f), the roughness is
lighter, the result of an application using a textured roller. In images (g) and (h), a finer
roughness texture is observed. Finally, image (i) has a flaw in the application of the rough
surface finish.

Like the scrapped finish, the rough cast finish did not have much variation in terms of
paint colors, which were found in white and in shades of gray and yellowish, similar to
what is shown in Figure 14.

After classification in relation to the types of surface finish, the patches were divided
into groups with or without noise. Unlike the images that were noise, those that were
defined as having noise were those that had the mortar coating as the main information of
the image; however, they also had some other information that was not directly related to
the finish.

An example is the images in which the background appears at the edges, as is the case
with the corners of buildings. This can be seen in Figure 15.

Another situation considered as noise was the encounter between walls, wall and slab,
walls and floor, and surfaces that were misaligned. The main issue of this delimitation is
that these configurations generate lines in the images that, theoretically, can be confused
with geometric fissures in the training of a network, mainly in the vertical and horizontal
directions. In Figure 16 it is possible to verify examples of this situation.

Some images contained corners and parts of frames such as windows and doors. This
type of noise appears in Figure 17.

The presence of devices and elements of hydraulic, electrical, logic, and air condition-
ing installations was another type of noise found next to the coverings. Examples of this
type can be seen in Figure 18.
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A noise that appeared frequently was the incidence of vegetation. This can be seen in
the patches in Figure 19.

Another type of noise considered was shadows that outlined images on the coating
surfaces and intense light variations, which impaired the visualization of the finish. Ex-
amples of this type can be seen in Figure 20. Focus oscillations in the images were not
considered with noise.

Drawings, symbols, or letters resulting from painting or graffiti on the coating were
also classified as noise. Figure 21 shows examples of these.
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Figure 21. Drawings, symbols or letters made on the mortar coating; (a,b) Graffiti; (c) Letter painting;
(d) Drawing painting.

Finally, any patches with objects other than the cladding were placed in the class
having noise. Figure 22 shows some types of images with these settings.
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Figure 22. Images with objects; (a) Papers and adhesive tape nailed to the coating; (b) Handrail part
of a ramp; (c) Bench support; (d) Miscellaneous objects.

Pathological manifestations or defects arising from natural wear and tear or the use
and operation of buildings were not considered noise. It was considered that the network
should be able to classify cracks correctly even with this type of information. Some
pathological manifestations found can be seen in Figure 23.
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Figure 23. Pathological manifestations; (a) Paint displacement; (b) Paint blistering; (c) Bubbles in the
paint; (d) Disaggregation of the coating; (e) Impact damage; (f) Humidity; (g) Moss proliferation;
(h) Dirt from rainwater runoff; (i) Intense biological proliferation.
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It was possible to observe several types of pathological manifestations in the database.
Studies like Lee et al. [22], Guo et al. [23], and Guo et al. [24] aimed to classify these types
of defects in facades from a CNN multi-class approach. In this way, it is observed that the
elaborated database can undergo a labeling process considering the defects as classes and
be used in classification problems of this type.

Following this labeling step, the images were separated into those with or without
cracks. It was observed that, in some images, the discontinuities were difficult to identify
or opened up room for doubt. Thus, it was established that any image that suggested the
presence of a crack would be included in the crack class. Examples of cracking by each
type of surface finish can be seen in Figure 24.
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Figure 24. Cracks by type of finish; (a) Smooth finish without cracks; (b–d) Smooth finish with cracks;
(e) Scrapped finish without cracks; (f–h) Scrapped finish with cracks; (i) Rough cast finish without
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It was possible to observe that the cracks presented different types of configuration, as
can be seen in Figure 24. This feature is known to be important for the visual inspection
of this type of discontinuity. Figure 25 presents examples of different configurations of
cracks found.

From the configuration of the cracks, it is possible to arbitrate the possible causes of
their occurrence. For example, horizontal cracks tend to occur in connections between
structure and masonry, cracks inclined at 45◦ can indicate structural settlement or the
absence of lintel and slat in windows. In the case of the mapped cracks, these tend to be
associated with problems of performance or coating fatigue. In this way, the database can
also be labeled in relation to crack configurations and applied for this purpose.

Due to the criterion of including all images that raised doubts in the group of patches
with cracks, this class was divided according to visibility levels: High, medium, and low.
Thus, it is possible to group the database according to the visibility of the cracks, for
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example, remove images with low visibility to test a network training. This part of the
labeling can be seen in Figure 26.
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The last procedure performed in the rotation was naming the images. For this, a
codification was created using letters that were:

Regarding the presence or absence of cracks:

• F: Images with fissures;
• N: Images without cracking.

Regarding the presence of noise:

• R: Images with noise;
• S: Images without noise;

As for the visibility of the crack, when it was in the image:

• A: High visibility;
• M: Medium visibility;
• B: Low visibility.

Regarding the type of surface finish:

• L: Images with a smooth surface finish;
• G: Images with a scrapped surface finish;
• C: Images with rough cast surface finish;

The name of the group used to obtain the images, according to Table 1, was followed
by a number to differentiate images with the same classifications.

Thus, the name of the image corresponded to the sequence of specific codes. In
Figure 27, it is possible to observe two examples of image encoding.
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It was possible to verify variability within the defined categories during the rotation
process. In the surface finish, the three types presented different textures in their images,
generated in different topographical aspects. In situations where this feature is important,
this setting can have an influence. For example, image (c) of Figure 13, in which the coating
with a scrapped finish has a large smooth part, can be confused by a network as belonging
to a classification of smooth coating.

The database presented various types of noises. Some of them generate lines in the
images and shapes that may resemble cracks in the process of feature extraction, such as the
encounter between walls and the incidence of shadows. Another point is that some noises
appear frequently related to cracks. This was possible to observe during the labeling process
when there was part of the floor, since many of the images with this type of noise were
concomitant with cracks. This situation was also verified when there were pathological
manifestations. Some types of problems were associated with the incidence of fissures.

The cracks showed different sizes and configurations. In some images, the disconti-
nuities were difficult to detect, raising doubts even among professionals responsible for
manual labeling.

The database elaborated in this research represents a real situation of problems within
a delimited universe. Therefore, finding solutions to work with data configuration and
obtaining good assertiveness results can result in networks with greater generalization ca-
pacity, in relation to the investigated problem, and that are more suitable for real situations.
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Thus, the data labeling process was completed.

3.2. Analysis of the Number of Data in the Classes and the Balance of the Database

In this part of the research, the data were tabulated and, based on this, comparisons
were made between the number of images of the analyzed classes and groups. For this, the
Rm relation was used, which was defined in Section 2.1 of the methodology.

Table 3 shows the number of images, divided into those with or without cracks, for
each type of finish and for the entire database.

Table 3. Number of images per surface finish.

Surface Finishing With Cracks No Cracks Rm = M−
M+

Smooth 11,648 11,147 0.957
Scrapped 985 4739 0.208

Rough 1140 3429 0.332

Total 13,773 19,315 0.713

It is possible to verify in Table 3 that the smooth finish dataset is almost completely
balanced, having a ratio of 0.957. The others have an unbalanced configuration. The
scrapped type has the greatest difference between the number of images in the compared
classes, with a ratio of 0.208. The bank considering all the finishes together was also
unbalanced; however, with a ratio value of 0.713, it was higher than the groups of scrapped
and rough type coatings.

Table 4 shows the number of images with or without noise, in relation to the presence
of cracks, considering the entire database.

Table 4. Number of images in relation to noise.

With Cracks No Cracks Rm = M−
M+

With noise 4867 3779 0.776
Without noise 8906 15,536 0.573

It is observed that the images are also not balanced regarding the presence of noise.
With this situation in mind, the data were organized by surface finish, noise, and the
presence or absence of cracks. This can be seen in Table 5.

Table 5. Number of images in relation to surface finish and noise.

No Cracks With Cracks

Surface Finishing Without Noise With Noise Rm = M−
M+ Without Noise With Noise Rm = M−

M+

Smooth 8973 2174 0.242 7462 4186 0.561
Scrapped 3887 852 0.219 673 312 0.464

Rough 2676 753 0.281 771 369 0.479

Thus, it is possible to perceive that the amount of noise present in the images also varies
within each surface finish grouping. This was verified because in all the configurations
in Table 5 the relations have values between 0.6 and 0.2. It is assumed that, if noise is an
important factor for the assertiveness of the network, even when balancing the bank in
relation to the presence or absence of cracks, noise may affect the training performance.

In Table 6, it is possible to verify the number of images containing cracks according to
the visibility classes. Next to each value, the percentage of images in relation to the total
number of images with cracks for each surface finish is listed.
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Table 6. Number of images in relation to the level of visibility of the cracks.

Number of Images (Percentage *)

High Average Low Total

Smooth 1839 (16%) 5668 (49%) 4141 (36%) 11,648 (100%)
Scrapped 123 (12%) 309 (31%) 553 (56%) 985 (100%)

Rough 367 (32%) 518 (45%) 255 (22%) 1140 (100%)
* Percentage between the number of images in relation to the level of visibility and the total number of images
with cracks in each surface finish.

It appears that the scrapped type finish has the most images in which the cracks are
difficult to detect, representing 56% of the cracks in this grouping. The smooth finish comes
next, with 36% of images with low visibility. The rough type was the finish with fewer
types of these images.

The database showed an imbalance in all categories delimited in the labeling, that
is, in relation to surface finish, presence of noise, presence of cracks, and visibility of
discontinuities. In general, there was a greater number of images without the incidence
of cracks than those with the problem. The rough database was the one with the lowest
number of images. On the other hand, the scrapped type had the greatest imbalance in the
category associated with the presence or absence of cracks. The smooth coating was the
finish that had the highest volume of data and the most balanced relationship between the
incidence of discontinuities in their images that contained cracks or not.

With the dataset developed in this study, it was possible to verify the statements of
Lee et al. [22], Guo et al. [23], and Guo et al. [24] about mortar coating generating databases
with a lot of variability and that are unbalanced, mainly in comparison with concrete and
pavement. The situations raised in the labeling process correspond to scenarios that can
be found in real inspections. Therefore, the elaborated database has the potential to be
worked on according to different approaches of computer vision, as it is able to optimize
the generalization capacity of networks.

3.3. Training of VGG16 from Transfer of Learning

Initially, training was carried out with a small group that was manually selected and
balanced between images with or without cracks. The division of patches for training and
validation was performed in two ways, by manual selection and by randomly using the
splitfolders library. The training graphs can be seen in Figure 28.

It is observed that training using random selection was more regular than manual
selection. This can be seen in image (c) with the validation error decaying along with
training, which is the ideal situation in the process. Manual selection can generate a
tendency in the choice of images, which would harm the network performance and the
representation between the division of categories. Thus, it was defined that the other
groupings and divisions would be random and carried out using the splitfolders library.

From this, the majority classes of group B had their quantities of images reduced to
the value of the minority class. In sequence, group A and B were divided into training and
validation sets with proportions of 70% and 30%, respectively. The data measures used in
training can be seen in Table 7.

In the reduction process, the library ended up reducing groups B1 and B2 below
the minority class; however, it allowed for the balancing of the data. The experiments
continued with the groups in Table 4.

In Figure 29, it is possible to verify the training of A1 and B1. The charts for each group
were plotted with different cores to facilitate identification. This procedure was repeated in
the other graphs.
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Table 7. Number of images after balancing and split between training and validation.

Groupings With Cracks No Cracks Rm = M−
M+ Total Training (70%) Validation (30%)

Group A1 13,773 19,315 0.713 33,088 23,144 9944
Group A2 11,648 11,147 0.957 22,795 15,938 6857
Group A3 985 4739 0.208 5724 4002 1722
Group A4 1140 3429 0.332 4569 3194 1375
Group B1 11,761 11,756 1.000 23,517 16,460 7057
Group B2 9636 9621 0.998 19,257 13,471 5786
Group B3 985 990 0.995 1975 1381 594
Group B4 1140 1145 0.996 2285 1598 687Buildings 2023, 13, x FOR PEER REVIEW 27 of 37 
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Figure 28. Graphs of loss function and accuracy in test training; (a) Group epoch loss function with
manual selection; (b) Group epoch accuracy with manual selection; (c) Epoch loss function of the
group with random selection; (d) Accuracy by group epochs with random selection.

It is possible to verify that the graphs related to the training of groups A1 and B1
almost did not vary. The accuracy value of group B2 was in a slightly lower range than
that of group A1, being close to and below 85%. The accuracy of group A1 was, for almost
all training, above and close to 85%. Regarding the loss function, the validation error in
both groups decreases to a certain point and then starts to increase. This occurs because the
network stopped learning and from that point on it starts to adjust its own training error,
which can lead to overfitting. One way to avoid this would be to use early stopping to stop
training as soon as the network is no longer learning.

Figure 30 shows the graphs referring to the training of the groups containing only the
smooth type coating.
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In the case of the smooth type coating, there was almost no variation between the A2
and B2 groups. The graphs of the loss and accuracy functions show the same behavior in
both situations with accuracy being slightly above 85% during training. It turns out that
the A2 group was already well balanced. Its Rm ratio was 0.957, very close to 1. In this way,
the balancing process by the minority class caused almost no changes.

Another observed point is that the results of groups A2 and B2 are also similar to those
of groups A1 and B1. This can be explained by the fact that the smooth type coating is the
surface finish with the highest number in the database. It represents a total of 22,795 images
in a universe of 33,088. In this way, it is possible that the smooth finish generates a tendency
of the configurations in the networks trained with the whole database.

Figure 31 shows the data referring to the groupings of the scrapped type finish.

Buildings 2023, 13, x FOR PEER REVIEW 30 of 37 
 

 

Figure 31. Figure 25. Graphs of the loss function and accuracy of groups containing only the 

scrapped coating; (a) Epoch loss function of group A3 (unbalanced); (b) Accuracy by epochs of 

group A3 (unbalanced); (c) Epoch loss function of group B3 (balanced); (d) Accuracy by epochs of 

group B3 (balanced). 

In the case of scrapped finish, there was a difference between groups A3 and B3. The 

accuracy of group A3 was higher than that of group B3. While the A3 reached results close 

to 90%, the B3 group did not reach 80%. This difference can be explained by the imbalance 

of data. In the case of A3, its database has 4739 images without cracks against 985 images 

with cracks. In this way, the network can specialize in correcting images that do not have 

a crack. Thus, it will end up having better accuracy, as the volume of images that do not 

have cracks is much greater than those that do. In this way, the network will have more 

hits, even if it fails to classify the images with cracks. This situation is problematic, because 

the network ends up not having the ability to generalize. In this way, we have a weak 

classification model. A suitable process for evaluating this would be to also have a test 

group with images that were not used during training.  

Another point is that the scrapped type finish has the highest number of images with 

low visibility, corresponding to 56% of the total number of images with clefts in the group. 

The data referring to the training of the rough type finish can be seen in Figure 32. 

Figure 31. Graphs of the loss function and accuracy of groups containing only the scrapped coating;
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(c) Epoch loss function of group B3 (balanced); (d) Accuracy by epochs of group B3 (balanced).

In the case of scrapped finish, there was a difference between groups A3 and B3. The
accuracy of group A3 was higher than that of group B3. While the A3 reached results close
to 90%, the B3 group did not reach 80%. This difference can be explained by the imbalance
of data. In the case of A3, its database has 4739 images without cracks against 985 images
with cracks. In this way, the network can specialize in correcting images that do not have
a crack. Thus, it will end up having better accuracy, as the volume of images that do not
have cracks is much greater than those that do. In this way, the network will have more
hits, even if it fails to classify the images with cracks. This situation is problematic, because
the network ends up not having the ability to generalize. In this way, we have a weak
classification model. A suitable process for evaluating this would be to also have a test
group with images that were not used during training.
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Another point is that the scrapped type finish has the highest number of images with
low visibility, corresponding to 56% of the total number of images with clefts in the group.

The data referring to the training of the rough type finish can be seen in Figure 32.
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The rough cast finish group also had a difference in accuracy between the A4 and B4
groups. In this case, the accuracy of the A4 group was above 90% while that of the B4 was
below this value. The same condition of data imbalance can be observed in the scrapped
group, although with a smaller variation in accuracy between A4 and B4. In this case, the
A4 had a total of 1140 images with cracks and 3429 without discontinuities.

Regarding training, the loss function graph showed the same behavior for all groups.
The error decreases to a certain point and then starts to increase. This indicates that
overfitting is taking place. Thus, the data presented cannot be used as a criterion with
which to evaluate the performance of the VGG16 for the elaborated database; however,
they serve the purpose of the research to compare the different groupings and raise points
that can be investigated. The overfitting problem could be minimized using tools such as
early stopping and the dropout rate.

In this way, differences were observed between the training of the different groups. In
Figure 33, the best accuracies of each group were plotted.
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In Figure 33, it is possible to evaluate all required situations more clearly. The first
point is that almost all balanced groups had lower accuracy than the unbalanced ones, to
a greater or lesser extent. Groups A2 and B2 had almost no variation in terms of better
accuracy. Groups A1 and B1 had similar values to groups A2 and B2. Groups A3 and B3
had the greatest variation in accuracy between them, with A3 also corresponding to the
most unbalanced database. Group A4 was the most accurate value, however, it was also
unbalanced. In this case, the accuracy of group B4 was lower than that of group A4, but
with a smaller variation than that which occurred between groups A3 and B3. The accuracy
of group B4 was the best among the balanced groups and was also next to groups A1, B1,
A2 and B2. This may indicate that the ability to identify cracks in a roughened surface
finish is close to identifying in a smooth.

The scrapped type finishing was the one that presented the greatest differences be-
tween the training of groups A and B. In this case, it was a more unbalanced surface
finishing type, which may explain the accuracy of 89.55% in group A3. This is because the
network may be more accurate in the images of the class that do not contain a crack, which
would increase the accuracy of the network, considering that the volume of images in this
category is much greater than in the other. A tool that can help to evaluate this scenario
would be the confusion matrix and the verification of the accuracy in each of the classes.

The accuracy of the B3 group was the lowest among all the trainings, 79.97%. This
issue can be justified by the complexity of identifying cracks in the scrapped finish. The
grooves for this type of finish are practically traces, which can be resemble to some types of
fissures. This can be observed in the labeling of the data, in view of the large number of
low visibility images within the group.

The A4 group of the rough class had the highest value among the accuracies—92.95%.
However, it was also unbalanced, therefore, the same observations made for the surface
finish of the scrapped type can also be applied to the rough cast finish, in this case. Group
B4 had the best accuracy in relation to the balanced groupings, with 87.48%. This value
was close to those obtained in the smooth type finish, which may indicate that the difficulty
of identifying cracks is similar between these two types of finishes. In theory, the surface
of the rough cast finish has a much rougher appearance than the smooth one; however, it
does not have much information that can be confused with cracks, as is the case with the
scrapped type. Another point is that, in the smooth finish, it is possible to verify that some
textures also have a less uniform appearance, as seen in Figure 11.
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The smooth type finish had similar results between the accuracy of groups A1 and
B1. This can be explained by the fact that the A1 group was already well-balanced, with
a variation of 501 images between the classes in a universe of 22,795. The surface of the
smooth type would be the one that most resembled the surface of concrete; however, the
results accuracies of A1 and B1 were 86.65% and 86.36%, respectively, which is below those
of concrete studies like Chow et al. [25], Ali et al. [26], Islam et al. [27], and Chaiysarn
et al. [28]. This may indicate that the application of computer vision in mortar coating
images is actually more complex than in the case of concrete.

The groupings that contained all surface finishes had close values between unbalanced
and balanced. A1 had an accuracy of 87.49% and B2 of 85.54%. These values were close to
those of the A2 and B2 groups. As most of the images in the database were of the smooth
type coating, it is possible that the network tended to hit this type of coating. This could be
evaluated using the confusion matrix.

Figure 34 shows the training times in relation to each group.
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It is possible to observe that the training time varies between groups. This is justifiable
because the groupings have different amounts of data. In view of this situation, the training
time was plotted in relation to the number of images used to carry out the process. This
can be seen in Figure 35.
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It was verified that the training time increases according to the number of images. By
adding a polynomial trend line, it was possible to obtain a coefficient of determination (R2)
of 0.9279.

Thus, it was possible to observe several relevant points to be investigated using the
database proposed from AI approaches.

4. Conclusions

With this study, it was possible to verify issues that have not yet been addressed in the
literature, such as the influence of the surface finish of a mortar coating on the detection of
cracks. For this purpose, transfer learning was applied to the VGG16 network in order to
train a classifier.

This study also presented a new public database with cracks images in mortar coating
with different types of surface finishes. Several types of noise were observed in the database,
such as the presence of background in the images, vegetation, encounters between elements,
windows, doors, electrical and hydrosanitary installations, shadows, graffiti, and various
objects. The surface finishes showed variability within each type as in relation to their
textures and colors.

The images in the database present cracks with different types of configurations and
levels of visibility. In addition, the database is unbalanced in all classes delimited in the
labeling process. The scrapped group was the most unbalanced in relation to the presence of
cracks and was also the one that presented more images in which it was difficult to identify
the discontinuities. Because of this, overfitting was observed in all training sessions.

Groups A1, A2, B1, B2, and B4 showed close accuracy values ranging between 85.5%
and 87.5%. The rough and scrapped finishes were the ones that showed the greatest
difference between the accuracy values of the balanced and unbalanced groups. The group
with the balanced scrapped coating, B3, had the lowest accuracy value, with 79.9%.

One of the main limitations of the research was that the training of the VGG16 was
carried out without a test group and the analysis was carried out based on the training
accuracy. The most appropriate approach was to use the trained network to classify
images from a group that was not used during the training stage, which would be the
test group. Another issue is that only the accuracy metric was analyzed; in order to
have richer discussions, it would be necessary to evaluate other assertiveness metrics.
However, the training served its purpose of raising possible points to be studied with the
proposed database.

Thus, it is possible to conclude that the type of mortar coating influences the training
performance of a CNN. The proposed database has 33,088 images and important character-
istics in relation to the possible variability to be found in inspections of facades. Therefore,
it presents potential for further civil and computer vision applications.

The database developed in this study can be accessed at the link available in the
Data Availability Statement at the end of the article or in [35]. An explanation of how the
database was divided into the folders within the link can be found in Appendix A.
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Appendix A

The database was divided into training, validation, and test groups in the proportions:
70% for training, 20% for validation, and 10% for testing. This configuration is the most
appropriate, as it makes it possible to test the network on a database that was not used
in training.

To obtain the proportions of 70% for training and 30% for validation used in this article,
just group the validation and test folders.

In the database link, you can find two folders called: All_Database and Split_Database.
The All_Database folder contains the database with all the images, divided into

training, validation, and test groups.
In the Split_Database folder, the database is divided into the following folders:

• CR—Which contains the images of the surface finish of the rough type with noise;
• CS—Which contains the images of the surface finish of the rough type without noise;
• GR—Which contains the images of the surface finish of the type scrapped with noises
• GS—Which contains the images of the surface finish of the type scrapped without noise;
• LR—Which contains the surface finish images of the smooth type with noise;
• LS—Which contains the images of the surface finish of the smooth type without noise.

In this way, it is possible to carry out different combinations by joining the respective
folders, such as, for example, grouping the CS and CR folders to have a set that only has the
slate type finish. All folders are divided between training, validation, and testing groups,
in the specified proportions.
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