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Abstract: Non-linear finite element analysis (NLFEA) has been frequently used to assess the ultimate
capacity of reinforced concrete (RC) structures under the most complex conditions. Nevertheless,
the guidelines using such methods to evaluate RC corbels are limited. In addition, the influence
of material modeling options regarding the behavior of such members was not investigated until
now. This paper proposes to present a framework for the NLFEAs of RC corbels using the Concrete
Damaged Plasticity (CDP) model. the influence of several modeling choices related to this constitutive
model also is discussed in detail, including the assumed stress–strain behavior in compression and
tension and the parameters related to the yield criterion and flow rule. For this, a first set of test
results was used to validate the proposed approach to the NLFEA. Afterwards, the sensibility of the
numerical results for several modeling choices was investigated. In the end, the proposed framework
for the NLFEA was checked against a database of 36 test results from the literature. The mean ratio
between the predicted and experimental test results was 1.015 with a coefficient of variation of only
8.57%. The governing failure mechanism of the tests was predicted correctly in approximately 88% of
the simulations. In summary, the proposed approach allows for predicting the ultimate capacity and
failure mechanism of RC corbels accurately.

Keywords: reinforced concrete corbels; non-linear finite element analysis; concrete damaged plasticity
model; numerical modeling

1. Introduction

The use of non-linear finite element analysis (NLFEA) has increased in the last years to
assess the ultimate capacity of reinforced concrete (RC) structures under the most complex
boundary conditions, and existing structures are preliminary rated as resistance-deficient
in most conservative analytical calculations [1–3]. In other words, NLFEA is frequently
employed to consider the several non-linearities of a given problem and sometimes hidden
capacities not directly addressed in the analytical calculation models. RC corbels are one of
these members that sometimes require evaluation via NLFEA. Figure 1 depicts a reinforced
concrete corbel and some of the associated definitions. Particularly, reinforced concrete
corbels are structural members that frequently attract greater attention in the design and
assessment of existing structures due to the different possible failure mechanisms [4,5]:
(i) yielding of the primary/main reinforcement (Figure 2a); crushing of the inclined com-
pression strut (Figure 2b,c); and (ii) sliding shear at the column–corbel interface (Figure 2d).

Although the number of studies related to the non-linear finite element analysis of RC
corbels increased in the last years [6–10], the following limitations can be identified.

• Firstly, most previous studies were conducted using material constitutive models other
than the Concrete Damaged Plasticity model (CDP), such as the total strain fixed or
rotating cracking models. Therefore, it is unclear if modeling choices validated from
other material models could be extended to the CDP model.
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In addition to that, the influence of different modeling choices regarding the stress–strain
behavior model and damage evolution models assumed for the concrete was not discussed
in the publications [11,12].

• In the same way, the influence of considering the elastic modulus degradation (damage
evolution) in the ultimate capacity of RC corbels or not is generally not addressed. In
fact, the proposed modeling approaches in the literature were frequently validated
against specific experimental programs or a specific failure mechanism. Therefore, it
is unclear if the presented modeling choices can be directly extended to simulate other
RC corbels under the most complex boundary conditions, for which the governing
failure mechanism may differ from that observed in the calibration process.
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This paper intends to discuss the influence of some modeling choices related to
concrete behavior in the ultimate capacity and failure mechanism of RC corbels. Herein, the
influence of the following parameters is investigated in detail: (i) the stress–strain behavior
in compression; (ii) the stress–strain behavior in tension; (iii) the damage evolution laws
in tension and compression; (iv) the plasticity parameters of the constitutive model; and
(v) the mesh size. In the end, the proposed modeling approach is extended to a database
of 36 test results from different references. Therefore, this paper presents a modeling
approach validated against a comprehensive range of test results, including different
failure mechanisms.

Firstly, we review the different modeling choices that need to be defined in the Concrete
Damaged Plasticity model regarding concrete modeling (Section 2). After that, the control
tests from the literature used in the sensitivity analyses are described (Section 3). The
proposed modeling approach is described in Section 4 and validated for the first group
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of test results in Section 5 regarding the load-deflection graphs, ultimate capacity, and
cracking pattern (failure mechanism). In Section 6, a sensitivity study is presented to show
how some modeling choices from the concrete influence the structural behavior of the
evaluated corbels, highlighting some recommendations for the NLFEA of such members.
In Section 7, the level of accuracy of the proposed modeling approach using CDP is verified
against 36 test results from the literature.

2. Background of the Concrete Damaged Plasticity Model

The Concrete Damaged Plasticity model (CDP) was the constitutive model adopted
in this study to represent concrete behavior. In practice, CDP combines the damage and
plasticity theories and is grounded on three main aspects:

(i) Stress–strain behavior models (including damage evolution): models that express the
behavior of the yield criterion with the evolution of plastic deformation (uniaxial and
triaxial behavior).

(ii) Yield criterion: indicates (through the stress tensor) the stress level at which the
plastification or yielding of the material will occur (the geometric representation of
this is commonly called a failure surface);

(iii) Plastic flow/flow rule: the law that defines the evolution of plastic strains according
to the stress level after the yield criterion is achieved.

2.1. Stress–Strain Behavior Models: Hardening/Softening Law

The Concrete Damaged Plasticity (CDP) model available in Abaqus 6.14 © software
was used in this study. This model combines the theory of plasticity and the mechanics of
continuous damage; it was proposed by Lubliner et al. [13] and incorporates modifications
proposed by Lee and Fenves [14]. In uniaxial loads, the stress–strain relationship of concrete
can be represented by Figure 3a for tensile stresses and Figure 3b for compressive stresses.
The solid line represents monotonic loading, and the dashed line represents unloading or
cyclic loading.
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In a monotonic tensile load, a linear elastic regime can be considered until the ultimate
failure stress (σtu), which is caused by cracks in the material. In the plastic regime, the
opening of these cracks causes a decrease in stress with increasing deformation, character-
izing the softening curve (Figure 3a). For compressive loading, the linear regime can be
considered up to the stress σc0 and, with the propagation of microcracks already present in
the concrete, there is a decrease in the modulus of elasticity up to the ultimate stress (σcu)
of failure, characterizing the hardening curve (hardening) in plastic regime. Then, as in
tension, there is a reduction in stress with increasing deformation (softening) due to the
increase and propagation of cracks (Figure 3b).
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For unloading or cyclic loads, when considering only the theory of plasticity, elastic
return is observed (ε0t

el and ε0c
el, Figure 3) with the same initial modulus of elasticity E0

and irreversible or residual strains, defined here as inelastic strains (εt
in and εc

in in tension
and compression, respectively). With the introduction of the mechanics of the damage, it is
possible to consider the elastic stiffness degradation through the parcel (1 − dc or 1 − dt)
that multiplies the initial modulus of elasticity E0; dc and dt are the damage variables that
vary from 0 (no degradation) to 1 (completely degraded), and the indices t and c correspond
to tensile and compressive stresses, respectively. In the material, this degradation occurs
due to the accentuated level of cracks present in the concrete plastic stage.

With this, the stress–strain relationship of a uniaxial loading for CDP can be written as [15]:

σt = (1− dt)E0(εt − ε
pl
t ) (1)

σc = (1− dc)E0(εc − ε
pl
c ) (2)

For a bi/triaxial state, the stress–strain relationship is given as:

σ = (1− d)Del
0 : (ε− εpl) (3)

where D0
el is the elastic stiffness tensor, σ is the stress tensor, ε is the strain tensor, and d is

the scalar damage variable with the same function as the uniaxial case (but now defined
together with a multiaxial weight factor).

2.2. Yield Criterion

In CDP, the yield criterion developed by Lubliner et al. [13] with modifications by
Lee and Fenves [14] is given as the function F. In terms of effective stresses, the yield
criterion takes the following form [16]:

1
1− α

(√
3J2 + αI1 + β〈σmax〉 − γ〈σmax〉

)
= c (4)

with:
I1 = σ1 + σ2 + σ3 (5)

J2 = −(1/6)
[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(6)

where α, β, and γ are material parameters that can be calculated as:

α =
(σbu/σcu)− 1

2(σbu/σcu)− 1
; β =

σcu

σtu
(1− α)− (1 + α); γ =

3(1− Kc)

2Kc − 1
(7)

〈·〉 is the Macauley bracket used to distinguish when σmax > 0 or σmax < 0 and is
given as the following expression.: 〈x〉 = 1

2 (|x|+x); that is, when σmax > 0, the Macauley
bracket returns the value of x, and for σmax < 0, the Macauley bracket returns a null value;

σbu and σcu are the equibiaxial compressive yield stress and uniaxial compressive yield
stress, respectively; σtu is the uniaxial tensile yield stress and σmax is the maximum effective
principal stress. The effective stress σ for tensile and compressive stresses is calculated as:

σt =
σt

(1− dt)
and σc =

σc

(1− dc)
(8)

Kc is the ratio of the tensile to the compressive meridian and defines the shape of the
yield surface in the deviatory plane [11]. In the case of a tensile stress state (σmax > 0),
equation F becomes:

1
1− α

(√
3J2 + αI1 + βσmax

)
= c (9)
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For a biaxial compressive stress state (σmax = 0), the yield function becomes:

1
1− α

(√
3J2 + αI1

)
= c (10)

In a triaxial compressive stress state (σmax <0), the yield function is:

1
1− α

(√
3J2 + αI1 + γσmax

)
= c (11)

Figure 4 shows the geometric representation of the yield criterion (failure surface) in
the plane state of stresses (Figure 4a) and in the deviatoric place (Figure 4b).
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2.3. Plastic Flow Rule

The plastic flow or flow rule is given as the function G, also called the plastic potential.
In CDP, the plastic potential is assumed in a non-associative form, i.e., G 6= F. The plastic
potential G adopted in CDP is the hyperbolic Drucker–Prager function:

G =

√
(eσt0 tan ψ)2 + q2 − p tan ψ (12)

where p and q are the equivalent effective stresses and hydrostatic stresses, respectively; e is
the eccentricity that defines the rate at which the function approaches the asymptote; σt0
is the uniaxial tensile stress; and ψ is the dilation angle measured in the p-q plane at high
confining pressures (Figure 4c).

2.4. Summary of Input Parameters Required in CDP

In summary, the elastic and plastic input parameters needed to define the constitutive
Concrete Damaged Plasticity (CDP) model are:

• Ec—concrete elastic modulus and ν—Poisson coefficient;
• σt × εt

in and σc × εc
in: uniaxial stress—inelastic strain relationship of concrete in

tension and compression;
• dt × εt

in and dc × εc
in: damage—inelastic strain relationship of concrete to tension

and compression;
• σbu/σcu: ratio between biaxial and uniaxial compressive yield strengths;
• Kc—shape factor and e—eccentricity;
• ψ—dilation angle and µ—viscosity.

The uniaxial stress–strain relationships, including the damage evolution laws, can be
obtained experimentally from instrumented uniaxial static and cyclic tests. On the other
hand, measuring other parameters such as σbu/σcu, ψ, and Kc requires using biaxial and
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triaxial characterization tests to be determined more precisely [12,16,17]. As most of these
parameters are not determined in ordinary characterization tests (in practice, only the
compressive and splitting tensile strengths are measured in regular tests), the parameters
from CDP are frequently determined based on analytical expressions from the literature
or calibration studies of the numerical models. Nevertheless, it is important to highlight
that these parameters have a physical meaning and, hence, calibration studies should be
performed carefully to avoid unrealistic values of parameters. The parameter of CDP that
is defined only numerically is the viscosity, which serves to overcome convergence issues
from quasi-brittle materials. However, using inappropriate values for this parameter may
lead to undesirable material behavior changes in the numerical simulations, as will be
shown in the following sections.

3. Control Tests for Modeling

The experimental models chosen for calibrating the numerical models were those
documented by Wilson et al. [4]. In this study, four double corbels identified as C0, C1, C2,
and C3 (shown in Figure 5) that were designed using the strut-and-tie model (STM) and
the empirical method recommended by ACI 318:2014 [18] were tested.
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The adopted geometry was the same for all corbels as follows: internal height or corbel
height (hint) of 610 mm, external height (hext) of 305 mm, corbel width (bw) of 356 mm,
corbel length (c) of 508 mm, and extended column height (bcol) of 305 mm.

Based on the design created by Wilson et al. [4], the primary/tie reinforcement was
the same for all corbels, resulting in 4 bars with a diameter of 25.4 mm (Bar M) and effective
depth (d) of 559 mm. This reinforcement was anchored at its end through welded transverse
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bars of the same diameter (W Bar). As for the horizontal secondary reinforcement, in the
C0 and C2 brackets, the same quantity and arrangement were used, with 4 bars in the form
of horizontal stirrups with a diameter of 12.7 mm arranged in the first 2/3 of the effective
depth from the tie reinforcement (Bars S and S1).

For the C1 corbel, crack control reinforcement was employed (secondary reinforce-
ment) with 3 bars in the form of horizontal stirrups with a diameter of 12.7 mm evenly
distributed along the height of the corbel (Bars S, S2, and S3). As for the C3 corbel, no
secondary reinforcement was used. In the columns, 4 bars with a diameter of 28.58 mm (Bar
C) and horizontal stirrups with a diameter of 12.7 mm (Bar T) were assembled to prevent
premature failure of the columns. Finally, a framing reinforcement (Bar F) was placed along
the chamfer to ensure the reinforcements’ positions.

Each corbel was instrumented with electrical resistance strain gauges in all reinforce-
ments of the tie to monitor the evolution of reinforcement strains during the test; for the
braces C0, C1, and C2, the secondary reinforcements were instrumented alternately. The
positions of the extensometers/strain gauges coincided with the interface between the
corbel and the columns. Four linear potentiometers (LPs) were also applied to measure the
specimen deformation under loading at the load application point and at the corbel ends
(cantilever tips). The displacement used in the load × displacement graphs reported in the
results consisted of the displacement measured at the end of the corbel while subtracting
the portion of the displacement measured at the point of application of load on the column
in order to obtain only the vertical displacement of the corbel.

Regarding the materials’ proportions, Wilson et al. [4] described the mix used for
concrete, including the additions and additives, and highlighted the use of coarse aggregate
of limestone origin (limestone) with a maximum diameter of 25 mm.

A series of cylindrical specimens (100 × 200 mm) were cast to measure the mechani-
cal properties of the concrete. The cylinders were tested following the respective ASTM
standards [19–21] to determine the concrete compressive strength at 28 days (f cm,28), com-
pressive strength (fcm), modulus of elasticity (Ec), and splitting tensile strength (or diametral
compression strength (ftm,sp)) at the time of testing of each specimen. The mechanical prop-
erties of the steel used in the primary reinforcement (ties) and secondary reinforcements
were also measured using the ASTM code provisions [22], with fym and fut being the re-
inforcement yield strength and reinforcement ultimate strengths, respectively. Table 1
presents the average values measured for each property.

Table 1. Summary of measured mechanical properties of the concrete and reinforcing bars from
Wilson et al. [4].

Proprieties (MPa) Test Method C0 C1 C2 C3

Concrete

fcm,28 (MPa) ASTM C39 [19] 31.72 44.82

fcm (MPa) ASTM C39 [19] 36.54 44.82 46.88 38.61

Ec (MPa) ASTM C469 [20] 33,784 43,436 44,816 34,474

ftm,sp (MPa) ASTM C496 [21] 3.79 4.21 4.41 4.55

ϕ 12.7 mm
fym (MPa)

ASTM A370 [22]

478 463

fum (MPa) 683 661

ϕ 25.4 mm
fym (MPa) 506 487

fum (MPa) 701 685

ϕ 28.58 mm
fym (MPa) 510 496

fum (MPa) 741 729

The corbels were tested in the inverted configuration of their typical operation in
a structure, as shown in Figure 5. The load was applied through a hydraulic ram with
a capacity of 3560 kN at a rate of 2.67 kN per second to simulate a quasi-static loading
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protocol and avoid dynamic effects. Nevertheless, this loading protocol did not allow us
to evaluate the post-peak stage of the load-deflection graphs. In the numerical models
(Section 4), displacement-controlled loading was applied to track the load-deflection graph
after the maximum capacity. In practice, differences between the loading using a load-
controlled and displacement-controlled load are negligible in this case (two-dimensional,
statically determined loads). Nevertheless, attention to this aspect should be given when
the cracking pattern and load distribution change according to the loading protocol, such as
in testing slab–column connections [23] and when the loading rate may introduce dynamic
effects. The corbels were supported on one side by a roller support and on the other side by
a hinged support through a metal plate measuring 203 × 356 mm. Load cells were installed
on the supports to measure reaction forces.

For the C0 corbel, the center of the supports was placed at a distance of 368 mm
from the face of the column, resulting in a ratio a/d = 0.66. For corbels C1, C2, and C3, a
distance of 343 mm was used, resulting in corbels with a ratio a/d = 0.59. Test results will
be presented together with numerical simulation results.

4. Proposed Modeling Approach
4.1. Overview and Boundary Conditions

The numerical modeling was carried out using Abaqus/CAE software version 6.14.
Next, the parameters related to the modeling of corbel C2 were described in more detail. In
the modeling of the corbels, two symmetry planes were considered, as sketched in Figure 6,
by simulating only a quarter of the corbel. This approach had the main benefit of reducing
the number of finite elements used in the model, thus ensuring a lower processing time for
the simulation.
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Figure 6b shows the three-dimensional modeling of a quarter of the corbel tested by
Wilson et al. [4] along with cuts in the geometry to assist the automatic mesh generation.
Due to symmetry, the width of the corbel and column resulted in 178 mm. To avoid stress
concentration at the point of load application, a steel plate with the same dimensions in the
plane as the support of the experimental model was modeled, and because the thickness of
the support was not informed, a value of 50 mm was adopted.

The reinforcement bars were modeled according to the geometry adopted by Wilson et al. [4]
and the symmetry planes, resulting in two bars for tie reinforcement, one longitudinal bar
for the column, and modeling only one-quarter of the stirrups and secondary reinforcement
as shown in Figure 6c.

Figure 6d shows the reference point where the force was applied through the displace-
ment control (RP-1). This point was coupled to the surface of the plate through the coupling
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tool available in Abaqus, causing the degrees of freedom of the nodes of this surface to be
connected with the point RP-1. This surface had the same width as the plate in the z-axis
direction and a length of 40 mm in the x-axis direction. In addition, Figure 6d shows the
plate’s lower surface attached to the corbel’s upper face using the tie interaction, where the
nodes of the finite elements of both faces were connected. Finally, the reinforcements were
embedded in the geometry of the corbel using an embedded tool while considering perfect
adhesion and no sliding between the steel and the concrete. In general, this approach is a
simplification that tends to increase the stiffness of the load-deflection response but does
not significantly influence the governing failure mechanism and ultimate capacity of the
numerical models. In practice, this occurs because the reinforcement sliding is limited
when anchorage failure is not the governing failure mechanism of the tests.

The displacement in x and the rotations around the y-axis and z-axis were constrained
in the YZ plane to apply the model symmetries, as shown in Figure 7a. In the XY plane, the
displacement in z and the rotations in relation to x and y were constrained (Figure 7b). The
displacements on the y-axis on its lower face were constrained to simulate the support at
the base of the column, as shown in Figure 7c. As previously stated, the force was applied
through displacement control at the RP-1 point, imposing a displacement of −6.5 mm in
the y-direction.
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4.2. Concrete Modeling

The uniaxial stress–strain behavior of concrete in compression was considered, as
illustrated in Figure 8a, and could be divided into three segments. The first segment was
linear with a secant modulus of elasticity Ec up to the stress σc0, which was considered
40% of the ultimate stress (σcu) as recommended by the fib Model Code 2010 [24]. The
second segment (hardening) was ascending and characterized by a non-linear behavior up
to the ultimate stress (σcu) with the corresponding strain εc1. The ultimate stress (σcu = fcm)
adopted was the same measured by Wilson et al. [4], and the strain εc1 was estimated by
using the EN 1992-1-1:2004 expression [25] as shown in the expression (10).

εc1 =
0.7 fcm

0.31

1000
≤ 0.0028 (13)

The third segment (softening) was descending and non-linear and considered a resid-
ual stress of 5 MPa, as Syroka et al. [10] recommended to avoid numerical instability or
convergence problems.

The hardening and softening segments (stages 2 and 3) were modeled according to
Krätzig and Pölling [26]:

Stage 2 in compression : σc(εc) = fcm

[
Eciεc/ fcm − (εc/εc1)

2

1 + (Eciεc/ fcm − 2)εc/εc1

]
(14)
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Stage 3 in compression : σc(εc) =

(
2 + γc fcmεc1

2 fcm
− γcεc +

γcεc
2

2εc1

)−1

(15)

γc =
π2 fcmεc1

2
[

Gch
ld
− 0.5 fcm

(
εcm(1− b) + b fcm

Ec

)]2 (16)

The value of bc = 0.7 was assumed in the calculations. The crushing energy Gch was
calculated according to Oller [27]:

Gch =

(
fcm

ftm

)
· G f (17)

The stress–strain behavior in tension was modeled according to Hordijk [28] (Figure 8b):

σt(w) = ftm

{[
1 +

(
c1

w
wc

)3
]

e−c2
w

wc − w
wc

(
1 + c3

1
)
e−c2

}
with : c1 = 3; c2 = 6.93; wc = 5.14GF/ ftm

(18)

Therefore, the tensile behavior was grounded in stress–crack-opening relationships,
the fracture energy Gf, and the finite element size leq. The fracture energy Gf was determined
according to fib Model Code 1990 expressions [29]. The stress–crack-opening relationship
σt × w was transformed to the stress–strain behavior σt × εt using the same approach from
Genikomsou and Polak [11] (Figure 8c).

εt = εtu + w/ld (19)

The damage evolution parameters in compression and tension were determined
according to the simplified expressions presented by Yu et al. [30].

Some of the parameters that defined the yield surface and plastic flow rule in CDP were
determined based on a calibration study, and others were determined using experimentally
based values from the literature. The following parameter values were used: eccentricity
of the potential plastic surface, e = 0.1 [15]; dilatancy angle, ψ = 42 (calibrated); the ratio
between the biaxial and uniaxial compressive strengths, σb0/σc0 = 1.16 [31,32]; the ratio
of second stress invariants on the tensile and compressive meridians, Kc = 0.667 [15,33];
and the viscosity parameter µ, between 0 and 10−5. The finite element size varied between
20 mm and 25 mm between different numerical models. Nevertheless, a specific mesh
study was performed to support this choice that will be shown in the following sections.
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4.3. Reinforcement Material Model

The constitutive model adopted for steel bars was the simplified model from the
fib Model Code 2010 [24], for which an elastoplastic model with linear hardening was
assumed. A class A steel with an fu/fy ratio of 1.1, ultimate strain (εs,u) of 2.5%, and
modulus of elasticity (Es) of 200 GPa was adopted. In simulations performed with and
without the hardening stage, the results were similar (even when failure was governed by
the primary reinforcement yielding) due to the slight hardening adopted in this model.
Despite this small influence, a slight hardening was advantageous, as it avoided numerical
issues associated with zero stiffness in numerical model processing [34].

4.4. Mesh

The geometry of the corbels and the steel plate were meshed with three-dimensional
solid finite elements. For the corbels, the finite elements C3D8 (solid with six faces) and
C3D6 (solid with five faces in the shape of a triangular prism or wedge) were used; for
the steel plate, only the element C3D8 was applied. Elements C3D8 and C3D6 consisted
of three-dimensional elements with eight and six nodes, respectively, and three degrees
of freedom of translation per node, resulting in elements with a linear approximation for
displacements. The C3D8 element was used in almost all of the corbels. After a mesh
sensitivity study, the average element size chosen was leq = 20 mm.

The reinforcements were meshed with one-dimensional truss finite elements with two
nodes using a linear approximation of the displacements. For the reinforcement of the
column and the constructive reinforcement of the corbels, the truss finite element T3D2
was adopted, in which each node had three translational degrees of freedom. As for the
primary and secondary reinforcements, the beam element B31 was adopted, in which each
node had six degrees of freedom (three for translation and three for rotation).

4.5. Solution Procedure and Load Application

The simulations were performed using the ABAQUS/Standard package [15], in which
the Newton–Raphson algorithm was applied as the solution procedure. The automatic
increment size definition from ABAQUS was applied, which allowed for a decrease in the
processing time when convergence was achieved smoothly. Similar to other studies, the
load and boundary conditions were applied in different steps [35]: (i) in the first step, only
the boundary conditions were applied; and (ii) in the second step, the vertical displacement
was applied at the loading plate (Figure 6d). Unlike what is commonly applied in steel
structures [35], the initial geometry defects were not considered in the simulations.

5. Validation of the Modeling Approach

Figures 9–12 shows the comparison between the experimental results reported by
Wilson et al. [4] and the numerical results using the proposed modeling approach for
corbels C0, C1, C2, and C3, respectively.

Part (a) of each figure shows the load× displacement behavior of the tests and numeri-
cal models, in which the following aspects can be highlighted: (i) the load corresponding to
the first observation of cracks in the corbel; (ii) the point at which the reinforcing bars started
to yield in one or more bars of the tie (primary reinforcement); (iii) the point where all the
tie bars had yielded; and (iv) the point where the corbel reached the ultimate load (peak
value). In the numerical models, notably, the interval between the yield point of the first
reinforcement and the yield point of all reinforcements in the tie was much smaller when
compared to the experimentally tested corbels. This behavior occurred due to the ideal
loading conditions (perfect symmetry) and homogeneous material property distribution
assumed in the numerical models, which in practice are not fully true in real structures.

Part (b) of Figures 9–12 shows a 3D perspective view of the corbel, illustrating the
reinforcement bars and the isovalue surface of the maximum plastic deformations at the
instant of ultimate load. In practice, this view illustrates the inner cracking pattern at the
corbels. Part (c) of Figures 9–12 corresponds to the maximum plastic deformations on the
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outer face of the corbel and part (d) to the tensile damage dt (also at the instant of ultimate
load). In general, there was a close correlation between the regions of maximum plastic
strains and tensile damage. Part (e) of Figures 9–12 shows the cracking pattern of the corbel
tested after failure along with information on the cracking pattern evolution.
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Figure 9. Comparison between experimental and numerical results for corbel C0: (a) load-deflection
response; (b) sketch of the distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains; (d) distribution of tensile damage in the
corbel and (e) in the experiment (north face).
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Figure 10. Comparison between experimental and numerical results for corbel C1: (a) load-deflection
response; (b) sketch of the distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains; (d) distribution of tensile damage in the
corbel and (e) in the experiment (north face).
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Figure 11. Comparison between experimental and numerical results for corbel C2: (a) load-deflection
response; (b) sketch of the distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains; (d) distribution of tensile damage in the
corbel and (e) in the experiment (north face).
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Figure 12. Comparison between experimental and numerical results for corbel C3: (a) load-deflection
response; (b) sketch of the distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains; (d) distribution of tensile damage in the
corbel and (e) in the experiment (north face).

5.1. Load × Displacement Graphs

The first linear stage characterized the load × displacement graphs of the numerical
models. Next, after the development of concrete plastic strains (cracking) in the upper
region between the corbel and the column, the slope of the load-deflection graph decreased
until the beginning of the cracks in the region of the strut. At this point, a new change in
the slope of the graph occurred, and the specimen failed with a gradual stiffness decrease.
In general, the numerical model graphs were mostly similar to the experimental ones. The
main difference between the experimental and numerical graphs was the higher stiffness of
the numerical curves compared to the experimental ones, a typical characteristic in studies
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using CDP [11,36]. In general, these differences can be related mainly to not considering
support accommodations during the loading and also to considering the perfect bond
between the concrete and the reinforcement. In corbel C3 (in which the experimental and
numerical graphs deviated more), the linear potentiometer that measured the displacements
in the support region presented a malfunction, according to Wilson et al. [4]. Thus, the
displacement of the experimental curve of the corbel C3 represented the displacement of
the corbel end by adding the deformations arising from the support points.

5.2. Cracking Pattern

Regarding the cracking pattern, the experiments and numerical models provided
similar results.

Both cracks started in the upper region between the corbel and the column under
similar loads (green dots in the load × displacement graphs); With the load increase, a
second crack arose between the column and the support plate. This crack was relatively
smaller in numerical models of corbels C1, C2, and C3. In the C0 corbel, the extension of
this crack was more similar to that observed in the experiment.

With the load increase, the third crack appeared in the central region of the strut. Note
that on the south face of corbel C0, the crack appeared between loads of 779 and 890 kN,
which was the range in which the drop in stiffness appeared in the load × displacement
plot of the numerical model. In the experimental corbel C2, the crack appeared between
loads of 557 and 778 kN, while in the numerical model, the crack began to appear at a
higher load of around 950 kN.

Finally, the failure of the corbels was characterized by a brittle mechanism similar to
shear and punching shear failures [37–40] and triggered by the propagation of the third
crack, which started in the lateral region of the support plate and extended to the inferior
region close to the column (crossing the strut region). According to Wilson et al. [4], corbels
C0 and C2, which presented higher ratios of secondary reinforcement, had smaller crack
openings than the others, which agreed with the lower values of plastic strains in the
simulations of these corbels at failure.

5.3. Stresses in the Reinforcing Bars

Wilson et al. [4] explained that all tested corbels presented primary reinforcement yield-
ing at the failure onset except for corbel C0. It can be observed in the load × displacement
plot that for corbels C1 and C2, the beginning of the reinforcement yielding in the numerical
model matched the beginning of the reinforcement yielding in the test. For corbel C3, the be-
ginning of the reinforcement yielding in the numerical model occurred at a load level 12.8%
lower than the experimental one. Nevertheless, in both cases, the reinforcement-yielding
loads corresponded to approximately 85% of the respective failure loads. According to
reference [4], the primary reinforcement (tie) tensile stress for corbel C0 was between
455 and 483 MPa at failure. This stress level corresponded to between 90% and 95% of the
reinforcement yield strength, showing that this reinforcement was on the verge of yielding
at the failure. In the numerical model of C0, the primary reinforcement (tie) showed a small
reinforcement yield before failure that started at a load level of 1368.5 kN, corresponding to
94% of the failure load.

Table 2 presents the ultimate capacity achieved in the experiments (FEXP) and in the
finite element models (FFEM). In general, the finite element models closely predicted the
ultimate capacities for the C0, C1, and C2 corbels, with a maximum difference of 3.01%. The
larger deviation occurred for the simulation of the corbel C3, which presented an ultimate
load of 12.77% below the experimental one. The average ratio between the tested and
predicted resistances was 0.97 with a coefficient of variation equal to 6.79%. Therefore, the
level of accuracy was considered satisfactory compared to that in other publications related
to the NLFEA of corbels using different constitutive models [5,6].
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Table 2. Comparison between experimental and predicted ultimate loads with the FEM.

Corbel FEXP (kN) FFEM (kN) FFEM/FEXP Error

C0 1426.23 1458.01 1.02 2.22%
C1 1677.65 1627.23 0.97 3.01%
C2 1784.45 1778.17 1.00 0.35%
C3 1544.15 1346.93 0.87 12.77%

AVG 0.97
COV (%) 6.79%

6. Sensibility Study
6.1. Stress–Strain Behavior in Tensile

Figure 13 shows different stress–strain behavior models in tension. In this case, the
fracture energy Gf was determined according to the fib Model Code 1990 [29]. It was
observed that the models by Genikomsou and Polak [11] and the fib Model Code 2010 [24]
were bilinear, and those by Hordijk [28] and Guo [41] were exponential. The models from
the fib Model Code 2010 [24], Genikomsou and Polak [11], and Hordijk [28] are based on the
concept of fracture energy and showed similar plots. Nevertheless, Guo’s model [41], with
αt calculated according to the author’s formulation (αt,calc = 4.92), resulted in a sharp drop in
the softening stage compared to the other models. For illustration purposes, using αt = 0.3,
the softening stage decreased more smoothly, resulting in higher residual tensile stresses.
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Figure 14 shows the effects of different stress–strain behavior models in tension on the
numerical results regarding the load × displacement response and cracking pattern. The
results from Guo’s [41] model with αt,calc = 4.92 are not presented due to the convergence
issues caused by the sudden drop in the residual tensile strength (softening stage), which
aborted the processing even at the beginning of the analysis. Herein, the results presented
for the Guo models are the ones with the manually altered value of αt = 0.3. Regarding
the load × displacement plots, all the tested models presented a similar behavior until
the ultimate load; after the peak, the bilinear models presented a more accentuated drop
when compared to the exponential ones. In general, the similar peak loads achieved
could be expected since the residual tensile strength was similar for all tested models
(see Figure 15). Nevertheless, when using higher values of αt, it is expected that a more
significant difference would appear in the simulations.

Regarding the cracking pattern indicated by the maximum plastic strains, the models
based on the concept of fracture energy showed similar patterns throughout the analysis
(Figure 14a–c). These models began to develop tensile plastic strains (cracking) at the
interface between the corbel and the column, and with the load increase, an inclined main
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plastification appeared in the central region of the strut. When using the model by Guo [41],
nevertheless, the behavior differed through the development of two main cracks within the
strut zone with smaller values of plastic strains.
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response and cracking pattern of the FEM of corbel C2 [11,24,26,28–30,41].

The use of models based on the concept of fracture energy is widely employed in
numerical simulations found in the literature [11,12,36,42–44] because it decreases the mesh
dependence of the results [12]. In fact, in tests performed with Guo’s model [41] that
varied the mesh discretizations, the numerical results presented larger changes. Therefore,
the tensile stress–strain behavior model of concrete in tension was modeled according to
Hordijk [28] in the next analyses.
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Figure 15. Stress–strain behavior in compression according to different analytical models using data
from corbel C2 [24–27,29,36,41,45,46].

6.2. Stress–Strain Behavior in Compression

Figure 15 illustrates the five models presented to describe the stress–strain behavior
in compression using the concrete properties of corbel C2 [24,26,41,45,46]. In general, the
plots of the models differed only slightly in the second section (the hardening branch).
On the other hand, the models showed significantly different results in the third stretch
(the softening stage). The fib Model Code 2010 formulation [24] provided a parabolic
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behavior that caused the curve to fall more sharply when compared to the other models.
The formulations by Feenstra and Borst [45] and Krätzig and Pölling [26] presented higher
residual compressive strength due to considering the finite element size ld and crushing
energy concepts in the expressions. For Guo’s [41] model, the parameters αa = 2.5 and
αd = 0.2 were used for comparison.

Figure 16 shows the effect of different stress–strain behavior models in compression on
the load × displacement response and cracking pattern of the FEM of corbel C2. Regarding
the load × displacement response, similar results were observed up to a load of 1500 kN.
After this loading stage, larger differences between the models could be observed. Using
the fib Model Code 2010 expressions [24], the corbel failed at a load level well below the
experimental in a brittle way. The other tested models resulted in higher resistance capacity
with a more ductile failure mechanism. Regarding the cracking pattern, all models showed
plastic strains in similar regions, starting with the deformations at the interface between
the corbel and the column and a main crack in the central region of the strut. Figure 16c
shows that the model by Feenstra and Borst [45] presented larger tensile plastic strains
when compared to the fib Model Code model 2010 [24].
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response and cracking pattern of the FEM of corbel C2 [24,26,28–30,41,45,46].

The differences in the numerical results and cracking patterns were directly related to
the third section of each analytical model used. In other words, the lower rate of residual
strength decrease in the constitutive model tended to increase the ultimate capacity of
the corbels since it hampered premature compression failures at the nodes and struts.
In the same way, analytical models with a higher residual compressive strength (larger
area below the curve in the softening stage) tended to increase the deformation capacity
(ductility) at failure.

6.3. Damage Evolution Laws

As previously explained, the scalar damage parameters in tension (dt) and compression
(dc) acted on decreasing the elastic modulus E in the stress–strain graphs and varied from
0 to 1 (0 when the material was intact and 1 when the material was fully damaged). In CDP,
the damage variables were inputted through the inelastic strains × damage relationship
(εc

in × dc and εt
in × dt). The evolution of the scalar damage variables according to the

inelastic strain could be determined according to different models (Table 3).
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Table 3. Analytical models to describe the evolution of tensile and compressive damage parameters.

Reference
Damage Evolution Models

Tensile Compressive

Birtel and Mark [42]
dt = 1− σt Ec

−1

ε
pl
t (1/bt−1)+σt Ec−1

with: ε
pl
t = btε

in
t ; bt = 0.1

dc = 1− σc Ec
−1

ε
pl
c (1/bc−1)+σc Ec−1

with: ε
pl
c = bcεin

c ; bc = 0.7

Yu et al. [30] dt = 1− σt
ftm

for εt ≥ εtu dc = 1− σc
fcm

for εc ≥ εc1

Alfarah et al. [44]

dt = 1− [2(1 + at) exp(−btε
in
t )−

at exp(−2btε
in
t )]/(2 + at)

With: bt =
σt0 ld
GF

(
1 + at

2
)
;

at = 2
(

ftm
σt0

)
− 1 + 2

√(
ftm
σt0

)2
−
(

ftm
σt0

)
dc = 1− [2(1 + ac) exp(−bcεin

c )−
ac exp(−2bcεin

c )]/(2 + ac)

With: bc =
σc0 ld
Gch

(
1 + ac

2
)
;

ac = 2
(

fcm
σc0

)
− 1 + 2

√(
fcm
σc0

)2
−
(

fcm
σc0

)
As shown in Table 3, the model by Yu et al. [30] is a simpler formulation in which

the damage is considered only in the softening stage (after reaching the peak compressive
and tensile strengths). The models by Birtel and Mark [42] and Alfarah et al. [44] consider
the damage evolution after the elastic stage and are experimentally calibrated models; the
model by Alfarah et al. [44] is the most refined one as it takes into account the fracture and
crushing energies and the size of the finite element.

Figure 17 shows the damage evolution according to different models presented in
Table 3. In general, the model by Birtel and Mark [42] damaged the material at a faster
rate, both in tension and compression, when compared to the other two models. For tensile
damage (Figure 17a), the models by Yu et al. [30] and Alfarah et al. [44] had a similar
evolution up to a dt = 0.6, and after this, the model by Alfarah et al. [44] showed larger
damage values. It is noteworthy here that as the tensile behavior of concrete was considered
linear until failure, σt0 in the expressions by Alfarah et al. [44] was assumed to be equal
to ftm (thus, at = 1.0). In compression, these two damage models showed similar damage
evolution rates, differing only in the damage onset point.
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(b) compression [26,27,29,30,42,44] (fcm = 46,88 MPa; εc1 → calculated based on [25]).

Despite the elastic modulus degradation having a clear impact on the simulations of
cyclic tests, its influence on the results of static tests is unclear [11]. In practice, damage
occurs both in static and cyclic tests because it is a physical characteristic of concrete
after cracking. In addition, considering the damage parameters changes the proportion
between the inelastic and plastic concrete strains (Section 2.1). Therefore, it could influence
the numerical results due to changes in the magnitude of plastic strains. Lastly, the
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redistribution of stresses and forces occurs in numerical models (even in static tests [47,48])
in a way in which the consideration of damage parameters could better simulate load relief
in some regions in static tests. Because of this, some tests were conducted to investigate
the influence of including or not including the damage parameters in the simulations
of the corbels.

Some convergence issues appeared in the attempt to simulate corbels using the tensile
damage evolution models by Birtel and Mark [42] and Alfarah et al. [44]. Using the model
by Birtel and Mark [42], some simulations aborted shortly after the linear stage of the
load × displacement graph (when the first flexural cracks arose). On the other hand, the
simulations were aborted in the model by Alfarah et al. [44] before reaching the peak load.
This occurred because these tensile damage models decreased the elastic modulus faster,
hampering the numerical convergence. At this point, this problem occurred even when
using higher values of viscoplastic regularization (µ values). Based on this, the model by
Yu et al. [30] was chosen to be used in the reference modeling approach.

Figure 18 shows the FEM response of corbel C2 when varying only the compressive
damage evolution models (the same model by Yu et al. [30] was used to describe the concrete
tensile damage evolution). The load × deformation response using the model by Birtel and
Mark [42] resulted in the lower predicted ultimate load (73% of the experimental one). The
other two models provided similar predictions, diverging only when close to failure. In
the end, the model by Alfarah et al. [44] resulted in a lower predicted capacity than when
using the model by Yu et al. [30]. Therefore, models with higher damage evolution rates in
compression (see Figure 17b) resulted in lower ultimate capacities of the corbel.
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Regarding the cracking pattern (see Figure 18a–c), the simulations using the models by
Alfarah et al. [44] and Yu et al. [30] presented similar patterns. Nevertheless, the simulation
using the model by Birtel and Mark [42] in compression showed lower plastic strains
at the interface between the corbel and the column (lower crack openings), suggesting
that the failure was triggered by the larger damage in the strut region, as confirmed in
Figure 18d–f. Clearly, the compression strut was more damaged when using the model by
Birtel and Mark [42] when compared to the other models.

Without including the damage parameters in the numerical analysis, the CDP model
behaved just like a plastic model; that is, the plastic and inelastic strains became equal
(εpl = εin). Figure 19 shows the numerical response of the corbel C2 with and without the
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damage parameters (both in tension and in compression) to examine the effects that the
damage parameters caused in the numerical results of the static tests.
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Figure 19 shows that damage parameters began to influence the numerical response at
a load of 800 kN due to the concrete in some regions of the corbel remaining at the elastic
stage and showing little or no damage. When damage parameters were applied only in
compression (dc), a similar response to that in the previous analysis was observed; that is,
the damage increased at the strut region, resulting in a lower ultimate capacity of the nu-
merical models. When only tensile damage (dt) was considered, an increase in stiffness and
ultimate load of the corbel was observed, as identified by Genikomsou and Polak [11] for
slab–column connections failing in punching. Finally, when the tensile (dt) and compressive
(dc) damage models were considered in the FEM, a combination of results was observed. In
other words, an increase in stiffness due to dt and a decrease in ultimate capacity due to dc
took place.

6.4. Yield Criterion Parameters—σb0/σc0 and Kc

The parameter σb0/σc0, as previously explained, is the ratio between the equibiaxial
and uniaxial compressive yield stress of concrete in compression. Experimental values of
this parameter range from 1.10 to 1.16 [13], with 1.16 as the default value in ABAQUS.

Figure 20 shows the influence of varying the parameter σb0/σc0 from 1.0 to 1.2 in the
numerical results for corbel C2. In practice, the load × displacement graphs were quite
similar up to a load of 1400 kN. Increasing the ratio σb0/σc0 increased the ultimate capacity
of the corbel slightly. In practice, no significative differences could be identified regarding
the cracking pattern varying this parameter.

The Kc parameter determines the shape of the yield surface in the deviatoric stress
plane under a triaxial stress state and must assume values between 0.5 and 1.0. According
to Lubliner et al. [13], this parameter can be assumed as constant, and values from 0.64 to
0.8 can be observed experimentally. The value used by Lubliner et al. [13] and applied as
the default in Abaqus© is 0.667.

Figure 21 shows the influence of the Kc value on the numerical response of corbel C2.
In general, a similar load × displacement behavior was observed up to a load of 1250 kN
for all curves. Nevertheless, with the increase in the load, lower values of Kc resulted in
higher ultimate loads. Regarding the cracking pattern, higher values of Kc resulted in a
higher concentration of tensile plastic deformations in the bottom region of the strut (nodal
zone). This may explain the lower ultimate capacities of the corbels when Kc was increased.
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6.5. Plastic Flow Rule Parameters—e and ψ

The parameter e (eccentricity) defines the rate at which the potential function G
(Drucker–Prager hyperbolic form) approaches the asymptote. By default, e = 0.1 is fre-
quently adopted. If e = 0, the plastic potential would tend to be a straight line at the
meridional plane (place p-q).

Figure 22 shows the influence of varying the eccentricity from 0.05 to 0.2 in the
numerical results for corbel C2. In general, Figure 22 demonstrates that this parameter had
a negligible influence on the global behavior of the corbel (load × displacement graphs
and on the cracking pattern). In practice, only a small increase in ultimate capacity was
observed as the eccentricity value increased.

The dilation angle (ψ) is the angle measured in the p-q plane at high confinement
pressures (triaxial tests), as explained earlier. In CDP, this angle must assume a value
greater than zero and less than arctg (3/2); that is, 0◦ < ψ < 56.31◦. The Abaqus software
does not provide any standard value for this parameter, which must be calibrated the
according to the concrete used in the absence of experimental results of triaxial tests.

A widely used approach used to calibrate the dilation angle is to simulate the tested
specimens with varied values of dilation angle and when comparing the tested and pre-
dicted results, choose the value that best fits the experimental curve, as conducted in
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Genikomsou and Polak [11] (the value ranged between 30◦ and 42◦), Earij et al. [49] (the
value varied between 20◦ and 50◦), and Nana et al. [36] (the value varied between 30◦ and
45◦). Nevertheless, smaller values between 13◦ and 15◦ are also commonly found in the
literature, such as in Alfarah et al. [44].

Buildings 2023, 12, x FOR PEER REVIEW 24 of 36 
 

 

Figure 22. Influence of eccentricity (e) on load × displacement behavior and cracking pattern of cor-
bel C2 [26,28–30]. 

Figure 23 shows the numerical results of corbel C2 when varying the dilation angle 
from 30° to 45°. The changes in the load × displacement curve occurred only after a load 
of 700 kN, at which plastification began in the central region of the strut as characterized 
by the first load drop in the graph. In general, higher values of dilation angle increased 
the load at which the plastification of the strut started and the ultimate capacity of the 
corbel. Comparing the cracking pattern of the numerical models showed that increasing 
the dilation angle from 30° to around 39° increased the region of plastic strains (indicating 
the wider influence zone of the strut) and higher plastic strains at the interface between 
the column and the corbel (the primary reinforcement zone). The best fit between the ex-
perimental and numerical load × displacement graph was achieved with a dilation angle 
of 42 degrees. 

 

Figure 23. Influence of dilation angle (ψ) on the load × displacement behavior and cracking pattern 
of corbel C2 [26,28–30]. 

6.6. Viscoplastic Regularization Parameter—µ 
The viscosity (µ) is the numerical parameter related to time relaxation in the visco-

plastic system used in the CDP model to overcome numerical convergence issues. In CDP, 

Figure 22. Influence of eccentricity (e) on load × displacement behavior and cracking pattern of
corbel C2 [26,28–30].

Figure 23 shows the numerical results of corbel C2 when varying the dilation angle
from 30◦ to 45◦. The changes in the load × displacement curve occurred only after a load
of 700 kN, at which plastification began in the central region of the strut as characterized
by the first load drop in the graph. In general, higher values of dilation angle increased
the load at which the plastification of the strut started and the ultimate capacity of the
corbel. Comparing the cracking pattern of the numerical models showed that increasing
the dilation angle from 30◦ to around 39◦ increased the region of plastic strains (indicating
the wider influence zone of the strut) and higher plastic strains at the interface between
the column and the corbel (the primary reinforcement zone). The best fit between the
experimental and numerical load × displacement graph was achieved with a dilation angle
of 42 degrees.
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6.6. Viscoplastic Regularization Parameter—µ

The viscosity (µ) is the numerical parameter related to time relaxation in the viscoplas-
tic system used in the CDP model to overcome numerical convergence issues. In CDP,
the viscosity value must be greater than or equal to zero. When µ = 0, no viscoplastic
regularization is considered. In the literature, viscosity values are frequently found between
10−3 [50], 10−4 [51], and 10−5 [12,43]. The default value considered for CDP is 0. In this
work, viscosity values ranging from 0.01 to 0 were applied to investigate the influence of
this parameter on the corbels.

Figure 24 shows the influence of varying the viscosity parameter in the numerical
results for corbel C2. The load-displacement behavior and the cracking pattern using
the viscosities 0, 10−6, and 10−5 were coincident (the cracking pattern with µ = 10−6 was
omitted in Figure 24).
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Figure 24. Influence of viscosity (µ) on the load vs. displacement behavior and cracking pattern of
corbel C2 [26,29].

Increasing the viscosity µ to values≥ 10−4 increased the ultimate capacity considerably.
In addition, the cracking patterns for µ = 10−2 and µ = 10−3 indicated an overly large
influence zone of the struts. This occurred because the residual tensile strength of the
concrete was artificially increased (an undesired characteristic) by increasing the viscosity
parameter [51]. Therefore, for values of viscosity between 10−2 and 10−3, the material
may redistribute the load similar to steel-fiber-reinforced concrete, which explains why the
plastic strains were less concentrated at the strut region and covered a wider zone.

Michał and Andrzej [51] showed that increasing the viscosity value increases the
damage distribution between the neighboring elements, which results in higher resistance
of the structural member. Figure 25 shows the evolution of the tensile damage variable dt
(DAMAGET) with increasing viscosity values. In fact, with µ ≥ 10−3, there was a larger
spread of damage throughout the corbel, resulting in a higher ultimate capacity, as seen in
Figure 24.

In order to overcome problems of convergence of the analysis, the computational cost
of each viscosity value was also evaluated. When compared with the simulation with µ
= 0, the simulations with µ = 10−6 and µ = 10−5 did not show significant processing-time
savings; whereas for µ = 10−4, µ = 10−3, and µ = 10−2, the computational cost reductions
were 9%, 41%, and 44%, respectively.
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7. Level of Accuracy for the Dataset

The proposed modeling choices to represent the non-linear response of the RC corbels
were checked against a databank of 36 test results (4 from Wilson et al. [4] and 32 from other
references that will be described in the next sections). In this way, the level of accuracy of
the proposed framework for the NLFEA using CDP could be verified in detail.

7.1. Test by Khosravikia et al. [5]

Khosravikia et al. [5] tested three double corbels named S1, S2, and S3. The geometry
of the corbels was similar to the corbels tested by Wilson et al. [4] (with a/d = 0.59 but
with bw = 305 mm). Details on the geometry and reinforcement layout can be consulted
elsewhere [5].

The primary reinforcement of corbels S1 and S3 consisted of four bars with a diameter
of 25.4 mm and yield strength of 471 MPa. In corbel S2, three bars with a diameter of
25.4 mm were adopted with a yield strength of 570 MPa. For the secondary reinforcement,
in corbels S1 and S2, closed horizontal stirrups (a secondary reinforcement) and vertical
ones with a diameter of 9.53 mm and a yield stress of 467 MPa were adopted. As for corbel
S3, no secondary reinforcement was applied.

The concrete used in the corbels was designed to have a 28-day compressive strength
of 34.5 MPa with a maximum aggregate size of dg = 10 mm. Table 4 shows the compressive
strength (fcm), modulus of elasticity (Ec), and splitting tensile strength (ftm,sp) on the day of
the corbel test. The table also shows the direct tensile strength (ftm) adopted in the numerical
simulation of each corbel as well as the measured yield strength of reinforcement (fym).

Table 4. Material properties used for the corbels tested by Khosravikia et al. [5].

Property (MPa) Testing Method S1 S2 S3

Concrete

fcm (MPa) ASTM C39 [19] 27.1 26.5 27.3

Ec (MPa) ASTM C469 [20] 27,670 27,000 27,370

ftm,sp (MPa) ASTM C496 [21] 3.36 3.12 3.16

ftm (MPa) 0.9ftm,sp 3.02 2.81 2.84

ϕ 9.53 mm fym
ASTM A370 [22]

467 467 -

ϕ 25.4 mm fym (MPa) 471 570 471
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Figures 26–28 show the main test results and the predicted ones using NLFEA. In these
figures, item (a) corresponds to the load vs. displacement behavior, highlighting points of
interest such as the beginning of the first flexural cracks, the beginning of the inclined cracks
in the strut, and the point corresponding to the ultimate failure load (the starting points of
cracking in the S3 strut were not documented by the researchers). Items (b) and (c) are the
maximum plastic deformations of the simulation at the instant of the ultimate load. Item
(d) shows the tensile damage coefficient (dt), and finally, items (e) and f) correspond to the
cracking evolution and the final cracking pattern of the tested corbels, respectively.
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Figure 26. Experimental and numerical results for corbel S1 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues 
of plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of 
tensile damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking 
pattern after failure. 

As in the tested corbels, no reinforcement yielding was observed in the numerical 
models at failure. Therefore, failure of both the experimental and numerical corbels was 
governed by failure in the strut region. 

Figure 26. Experimental and numerical results for corbel S1 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of tensile
damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking pattern
after failure.

Buildings 2023, 12, x FOR PEER REVIEW 28 of 36 
 

 

Figure 27. Experimental and numerical results for corbel S2 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues 
of plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of 
tensile damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking 
pattern after failure. 

 

Figure 28. Experimental and numerical results for corbel S3 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues 
of plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of 
tensile damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking 
pattern after failure. 

The evolution of the cracking pattern was also well tracked by the numerical models: 
(i) firstly, flexural cracks appeared at the column–corbel interface, followed (ii) by the on-
set and propagation of inclined cracks in the region of the strut until the failure. The start-
ing points of the flexural cracks in the experimental tests and in the numerical simulations 
were quite similar. Nevertheless, inclined cracks appeared at slightly higher loads in the 
numerical simulations when compared to the experimental tests. In general, the cracking 

Figure 27. Experimental and numerical results for corbel S2 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of tensile
damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking pattern
after failure.
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Figure 28. Experimental and numerical results for corbel S3 from Khosravikia et al. [5]: (a) load-
displacement graphs; (b) distribution of inner cracking in the numerical model through isovalues of
plastic strains; (c) distribution of maximum plastic strains at the corbel face; (d) distribution of tensile
damage in the corbel face and (e) evolution of the cracking pattern at the test; (f) cracking pattern
after failure.

As in the tested corbels, no reinforcement yielding was observed in the numerical
models at failure. Therefore, failure of both the experimental and numerical corbels was
governed by failure in the strut region.

The evolution of the cracking pattern was also well tracked by the numerical models:
(i) firstly, flexural cracks appeared at the column–corbel interface, followed (ii) by the onset
and propagation of inclined cracks in the region of the strut until the failure. The starting
points of the flexural cracks in the experimental tests and in the numerical simulations
were quite similar. Nevertheless, inclined cracks appeared at slightly higher loads in
the numerical simulations when compared to the experimental tests. In general, the
cracking patterns of the numerical simulations fitted well with those observed in the
experimental tests.

For corbels S1 and S2, the differences between the predicted and tested ultimate loads
were 6.2% and 2.1%, respectively. As for corbel S3, the predicted failure load was 11.4%
higher than that of the experimental one.

7.2. Tests by Fattuhi

In Fattuhi [52], Fattuhi [53], Fattuhi and Hughes [54], and Hughes and Fattuhi [55], a
variety of corbels with different geometries, reinforcement ratios, and concrete strengths
with different fiber volumes were studied. Figure 29 shows the typical geometry used
in these studies, for which the value of the load application distance (a) and the effective
depth (d) are given in Table 5 for each corbel. It should be noted that the corbels selected in
Table 5 were corbels composed of concrete without the presence of fibers. Note that the a/d
ratio of the tests ranged from 0.41 to 1.46. Some more detailed information on the corbels
tested by Fattuhi and Hughes [54] and Hughes and Fattuhi [55] is given in Canha et al. [6]
and Naegeli [56].

Table 5 presents the material properties of the materials used in the numerical models.
For the compressive strength of concrete (fcm), the value measured on cube specimens was
multiplied by 0.82 [39] to take into account the difference between the compressive tests
using a cylindrical specimen (100 × 200) and a cubic specimen (100 × 100 × 100). For the
corbels in Fattuhi [52] and Fattuhi [53], the tensile strength (ftm) was multiplied by 0.9 to
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consider the difference between the splitting tensile tests and direct tension [57]. For the
corbels in Fattuhi and Hughes [54] and Hughes and Fattuhi [55], the tensile strength (ftm)
was estimated using the fib Model Code 2010 expression [24]:

ftm = 0.3 · ( fcm − 8)2/3 (20)

According to the authors, the maximum aggregate size for the concrete was 10 mm.
The concrete modulus of elasticity (Ec) of all corbels was estimated using the fib Model
Code 2010 expression [24] with αe = 1.0:

Ec = (0.8 + 0.2 fcm/88) · 21, 500 · αe · ( fcm/10)1/3 (21)

Table 5 also describes the reinforcement used in each corbel. In the tested corbels that
had three bars as a primary reinforcement, two bars with larger diameters were applied in
the numerical corbels with the same total cross-sectional areas. It was observed that the
T2 and T7 corbels had a secondary reinforcement (seam reinforcement), and the T8 and
T9 corbels had two secondary reinforcements (seam reinforcements), both in the form of
stirrups with two branches.

For the simulation, the corbels were discretized with an average size of finite elements
(ld) of 7.5 mm (Figure 29b), and a double symmetry of the corbels was adopted, as shown
in Figure 29c. The displacement imposed on the RP-1 point was −3 mm in the y-direction.
Figures 30–32 compare the experimental and numerical cracking patterns of corbels T6, 34,
and 25, respectively. In general, the numerical model of corbel T6 accurately represented
the cracking pattern evolution of the test, starting with the flexural cracks and finishing
with a large inclined crack in the central region of the strut. For corbels 34 and 25, with an
a/d of 1.11 and 0.89, respectively, an additional crack between the column and the support
plate also arose in the numerical models and in the tests, which is very common in corbels
with geometries closer to a beam.

In general, minor differences in inclinations of the cracks and load × displacement
graphs between the test and numerical results can be attributed to the isotropic material
properties considered for the concrete in the numerical models as well as to the perfect
adhesion assumed between the reinforcement and concrete. In practice, the material
properties varied along the corbels, and cracks generally started at the weakest points. In
addition, some bond-slip between the reinforcement and concrete could also change the
global stiffness of the corbel and change the inclination of the cracks. Nevertheless, it was
assumed that the main results of the numerical models (governing the failure mechanism
and the ultimate loads) were accurately predicted.
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Table 5. Geometric properties, material properties, and reinforcement amounts of the corbels tested
in Fattuhi’s studies.

Corbel a
(mm)

d
(mm) a/d c

(mm)
h

(mm)
bw

(mm)
fcm

(MPa)
ftm

(MPa)
Ec

(MPa) Quant. φ
(mm)

d
(mm)

fy
(MPa)

Fattuhi [52]

25 110 123 0.89 200 150 150 30.50 2.718 27,513.2 2 12 123 452

26 80 125 0.64 200 150 150 30.50 2.718 27,513.2 2 10 125 450

33 75 124 0.60 200 150 150 32.80 3.258 28,361.7 2 8 124 450

34 135 122 1.11 200 150 150 32.80 3.258 28,361.7 2 * 14.7 * 122 452

41 135 123 1.10 200 150 150 29.44 2.889 27,110.6 2 ** 13.26 ** 123 452

42 135 121 1.12 200 150 150 29.44 2.889 27,110.6 2 18 121 427

Fattuhi [53]

65 110 91.8 1.20 200 147.8 150 28.29 3.024 26,670.2 2 12 91.8 452

66 135 93 1.45 200 149 150 28.29 3.024 26,670.2 2 * 14.7 * 93 452

67 110 132.4 0.83 200 148.4 150 30.012 3.159 27,328.1 2 12 132.4 452

68 110 112.4 0.98 200 148.4 150 30.012 3.159 27,328.1 2 12 112.4 452

69 135 122.6 1.10 200 148.6 150 26.24 2.799 25,864.9 2 * 14.7 * 122.6 452

70 135 92.3 1.46 200 148.3 150 26.24 2.799 25,864.9 2 * 14.7 * 92.3 452

71 110 121.5 0.91 200 147.5 150 28.29 2.79 26,670.2 2 ** 13.26 ** 121.5 452

72 110 123.2 0.89 200 149.2 150 28.29 2.79 26,670.2 2 12 123.2 452

73 75.0 124 0.60 200 148 150 28.29 2.898 26,670.2 2 8 124 451

74 75.0 94.2 0.80 200 148.2 150 28.29 2.898 26,670.2 2 8 94.2 451

Fattuhi and Hughes [54]

T1 89 105 0.85 200 150 150 41.21 3.099 29,158.4 2 10 105 558

T2 89 130 0.68 200 150 150 41.21 3.099 29,158.4 2
2

10
10

130
76 558

T6 89 137 0.65 200 150 150 43.05 3.213 29,707.6 2 12 137 491

T7 89 130 0.68 200 150 150 39.46 2.990 28,629.5 2
2

12
10

130
80

491
558

T8 89 130 0.68 200 150 150 43.05 3.213 29,707.6
2
2
2

12
10
10

130
93
85

491
558
558

T9 89 130 0.68 200 150 150 39.46 2.990 28,629.5
2
2
2

12
10
10

130
69
61

491
558
558

Hughes and Fattuhi [55]

C1 125 120 1.04 200 150 150 39.57 2.996 28,659.1 2 10 120 558

C21 53 129 0.41 200 150 150 38.75 2.944 28,391.6 2 8 129 495

C22 89 129 0.69 200 150 150 41.10 3.093 29,129.2 2 8 129 495

C23 125 129 0.97 200 150 150 41.10 3.093 29,129.2 2 8 129 495

C24 53 129 0.41 200 150 150 38.75 2.944 28,391.6 2 10 129 558

C25 65 129 0.50 200 150 150 40.80 3.074 29,041.6 2 12 129 491

C26 125 129 0.97 200 150 150 39.57 2.996 28,659.1 2 12 129 491

Notes: * 3 φ 12 mm; ** 1 φ 8 mm + 2 φ 12 mm.
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Figure 30. Comparison between the tested and predicted cracking pattern of corbel T6 at failure:
(a) distribution of maximum tensile plastic strains; and (b) tensile damage in the numerical model;
(c) cracking pattern after failure in the test.
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(a) distribution of maximum tensile plastic strains; and (b) tensile damage in the numerical model;
(c) cracking pattern after failure in the test.

Buildings 2023, 12, x FOR PEER REVIEW 32 of 36 
 

 

Figure 32. Comparison between the tested and predicted cracking pattern of corbel 25 at failure: (a) 
distribution of maximum tensile plastic strains; and (b) tensile damage in the numerical model; (c) 
cracking pattern after failure in the test. 

In general, minor differences in inclinations of the cracks and load × displacement 
graphs between the test and numerical results can be attributed to the isotropic material 
properties considered for the concrete in the numerical models as well as to the perfect 
adhesion assumed between the reinforcement and concrete. In practice, the material prop-
erties varied along the corbels, and cracks generally started at the weakest points. In ad-
dition, some bond-slip between the reinforcement and concrete could also change the 
global stiffness of the corbel and change the inclination of the cracks. Nevertheless, it was 
assumed that the main results of the numerical models (governing the failure mechanism 
and the ultimate loads) were accurately predicted. 

7.3. Summary of the Accuracy Level of the NLFEA 
Table 6 presents a comparison between the ultimate loads observed in the tests (FEXP) 

and the predicted ones with the proposed framework for the NLFEA (FFEM). The mean 
ratio between the numerical and experimental failure loads FFEM/FEXP was 1.015 with a co-
efficient of variation equal to 8.57%. Therefore, the proposed framework for the NLFEA 
provided accurate predictions of the ultimate load for the databank, similar to the ones 
achieved in other studies related to RC corbels using NLFEA [5–7]. For instance, the ratio 
between the predicted and tested resistances in Khosravikia et al. [5] was 0.972 with a 
coefficient of variation equal to 9.35%. In Canha et al. [6], the average ratio between the 
tested and predicted resistances for the simulated corbels was 1.03 with a coefficient of 
variation equal to 15.9%. In both publications, two-dimensional NLFEA was employed. 
Therefore, this work also showed that the level of accuracy using two-dimensional or 
three-dimensional NLFEA provides similar levels of accuracy for RC corbels. Neverthe-
less, the proposed 3D modeling approach is the most flexible because it may be used to 
investigate the effect of load eccentricity along the corbel width, for instance. 

Table 6. Comparison between experimental (tested) and predicted resistances and failure mecha-
nism with the finite element models (FEMs). FME = failure mode in the experiment; FMF = failure 
mode in the finite element model; C = failure in the strut; T = failure at the primary reinforcement; 
CP = whether the failure mechanism was correctly predicted. 

Reference Corbel a/d fcm (MPa) FEXP (kN) FFEM (kN) FFEM/FEXP FME FMF CP 

Wilson et al. [4] 

C0 0.66 36.54 1426.2 1458.0 1.02 C T No 
C1 0.59 44.82 1677.7 1627.2 0.97 T T Yes 
C2 0.59 46.88 1784.5 1778.2 1.00 T T Yes 
C3 0.59 38.61 1544.2 1346.9 0.87 T T Yes 
S1 0.59 27.10 1050.0 1115.4 1.06 C C Yes 

Figure 32. Comparison between the tested and predicted cracking pattern of corbel 25 at failure:
(a) distribution of maximum tensile plastic strains; and (b) tensile damage in the numerical model;
(c) cracking pattern after failure in the test.

7.3. Summary of the Accuracy Level of the NLFEA

Table 6 presents a comparison between the ultimate loads observed in the tests (FEXP)
and the predicted ones with the proposed framework for the NLFEA (FFEM). The mean
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ratio between the numerical and experimental failure loads FFEM/FEXP was 1.015 with a
coefficient of variation equal to 8.57%. Therefore, the proposed framework for the NLFEA
provided accurate predictions of the ultimate load for the databank, similar to the ones
achieved in other studies related to RC corbels using NLFEA [5–7]. For instance, the ratio
between the predicted and tested resistances in Khosravikia et al. [5] was 0.972 with a
coefficient of variation equal to 9.35%. In Canha et al. [6], the average ratio between the
tested and predicted resistances for the simulated corbels was 1.03 with a coefficient of
variation equal to 15.9%. In both publications, two-dimensional NLFEA was employed.
Therefore, this work also showed that the level of accuracy using two-dimensional or three-
dimensional NLFEA provides similar levels of accuracy for RC corbels. Nevertheless, the
proposed 3D modeling approach is the most flexible because it may be used to investigate
the effect of load eccentricity along the corbel width, for instance.

Table 6. Comparison between experimental (tested) and predicted resistances and failure mechanism
with the finite element models (FEMs). FME = failure mode in the experiment; FMF = failure mode
in the finite element model; C = failure in the strut; T = failure at the primary reinforcement; CP =
whether the failure mechanism was correctly predicted.

Reference Corbel a/d fcm (MPa) FEXP (kN) FFEM (kN) FFEM/FEXP FME FMF CP

Wilson et al. [4]

C0 0.66 36.54 1426.2 1458.0 1.02 C T No
C1 0.59 44.82 1677.7 1627.2 0.97 T T Yes
C2 0.59 46.88 1784.5 1778.2 1.00 T T Yes
C3 0.59 38.61 1544.2 1346.9 0.87 T T Yes

Khosravikia et al. [5]
S1 0.59 27.10 1050.0 1115.4 1.06 C C Yes
S2 0.59 26.50 1096.5 1073.4 0.98 C C Yes
S3 0.59 27.30 772.0 860.1 1.11 C C Yes

Fattuhi [52]

25 0.89 30.50 108.5 103.1 0.95 T T Yes
26 0.64 30.50 112.5 114.8 1.02 T T Yes
33 0.60 32.80 91 85.3 0.94 T T Yes
34 1.11 32.80 114 104.1 0.91 T T Yes
41 1.10 29.44 98 92.2 0.94 T T Yes
42 1.12 29.44 111.5 99.1 0.89 C C Yes

Fattuhi [53]

65 1.20 28.29 74 82.1 1.11 T T Yes
66 1.45 28.29 73.5 70.7 0.96 T T Yes
67 0.83 30.01 101.3 100.9 1.00 T T Yes
68 0.98 30.01 96 95.0 0.99 T T Yes
69 1.10 26.24 93.5 89.2 0.95 C T No
70 1.46 26.24 67.3 65.9 0.98 C C Yes
71 0.91 28.29 116.5 110.5 0.95 T T Yes
72 0.89 28.29 101 93.3 0.92 T T Yes
73 0.60 28.29 87.5 83.5 0.95 T T Yes
74 0.80 28.29 74.3 63.5 0.86 T T Yes

Fattuhi and Hughes [54]

T1 0.85 41.21 93 100.0 1.08 C C Yes
T2 0.68 41.21 146 156.4 1.07 C T No
T6 0.65 43.05 136 138.0 1.01 T T Yes
T7 0.68 39.46 157 169.7 1.08 C C Yes
T8 0.68 43.05 188 212.3 1.13 T T Yes
T9 0.68 39.46 153 179.9 1.18 C C Yes

Hughes and Fattuhi [55]

C1 1.04 39.57 80 88.2 1.10 C C Yes
C21 0.41 38.75 114 123.2 1.08 T T Yes
C22 0.69 41.10 82 81.5 0.99 T T Yes
C23 0.97 41.10 47 58.0 1.23 T T Yes
C24 0.41 38.75 145 151.0 1.04 C T No
C25 0.50 40.80 151 159.3 1.06 T T Yes
C26 0.97 39.57 90 102.0 1.13 C C Yes

Average 1.015 32/36
Standard deviation 0.087

Coefficient of variation 8.57%

Different from previous publications in this field [5,6], we also attempted to highlight
the level of accuracy related to the prediction of the governing failure mechanism. Table 5
shows that the governing failure mechanism, either concrete crushing at the strut (C) or
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reinforcement yielding of the primary reinforcement (T), was also well predicted by the nu-
merical models. The governing failure mechanism was correctly predicted in 32/36 = 88%
of the tests using the numerical models.

8. Conclusions

In this study, the behavior of reinforced concrete corbels was evaluated through
advanced non-linear finite element analysis. Firstly, the proposed framework for the
non-linear finite element analysis was checked against a specific experimental program.
Afterwards, a sensibility study was conducted to show the parameters of the Concrete
Damaged Plasticity model that more significantly influenced the ultimate capacity and
deformation capacity of the corbels. In the end, the proposed approach to the NLFEA using
CDP was checked against a databank of 36 test results. The following conclusions could
be drawn:

• The shape factor Kc, the dilation angle ψ, and the viscosity parameter µ were the
most influential parameters in the deformation and ultimate capacity of the numerical
models of the RC corbels. After proper calibration, the chosen parameter values were
allowed to accurately represent a reasonable number of test results from the literature.

• Values of viscosity parameters higher than 10−4 should be avoided because they
significantly change the cracking pattern evolution and the corresponding ultimate
capacity of the corbels. In practice, such values may increase the residual tensile and
compressive strength of concrete and induce a larger influence zone for the cracks,
changing the governing failure mechanisms of the numerical models.

• Different stress–strain behavior models in compression did not significantly change
the ultimate capacity of the modeled corbels. This indicates that in practice, the tensile
cracks also govern the capacity of the struts.

• The proposed framework for the NLFEA of reinforced concrete corbels was able to
satisfactorily predict the global behavior of corbels with different geometries with an
a/d varying from 0.4 to 1.4 and a compressive strength of concrete of 28 to 46 MPa.

• The numerical models allowed the accurate prediction of the ultimate loads of RC
corbels with varied geometries and material properties. The average ratio between the
predicted and tested resistances was 1.015 with a coefficient of variation of 8.57% for
the databank, including 36 test results from the literature.

• Different failure mechanisms may govern the ultimate limit states of RC corbels. In
this context, the proposed modeling approach allowed the correct prediction of the
governing failure mechanism for approximately 88% of the test results. Therefore, an
NLFEA can be used not only to assess the ultimate capacity but also to guide eventual
strengthening tasks in existing corbels to indicate whether the primary reinforcement
or the strut capacity should be improved.
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