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Abstract: Reinforced concrete (RC) structures under earthquake excitation may fail and cause signifi-
cant casualties and economic losses, highlighting the importance of studying their seismic failure
mechanisms. Considering that the commonly used finite element method and discrete element
method have inherent limitations, a more efficient meshless method, known as peridynamics (PD),
has been proposed and applied in various areas. PD has two types, namely, bond-based peridynamics
(BPD) and state-based peridynamics (SPD). BPD is limited by its fixed Poisson’s ratio, while SPD
suffers from the zero-energy mode issue. A hybrid peridynamics (HPD) method is introduced in this
paper to overcome these limitations, as it establishes bonds between each PD point and other PD
points within its horizon and sums up all bond forces on the PD point to calculate the total force. The
proposed HPD method is then applied to simulate three RC beams with different shear span-to-depth
ratios. The simulation results, including the shear force–deflection of the beams, shear force–strain
of stirrups, crack formation and propagation, and diagonal crack width, are compared against ex-
perimental data. The proposed HPD method is demonstrated as being capable of simulating RC
structures’ behaviors in an accurate and stable manner.

Keywords: peridynamics; reinforced concrete; zero-energy mode

1. Introduction

The destruction and collapse of reinforced concrete (RC) structures under earthquakes
may cause heavy casualties and economic losses. It is of great significance to study the
failure mechanism of RC structures during earthquake excitation, including the genera-
tion and propagation of cracks, and the destruction of components. Among the currently
used methods, the finite element method (FEM) is primarily effective in simulating the
macroscopic mechanical behaviors of structures but faces challenges in accurately cap-
turing discontinuous displacement fields and the evolution of cracks [1,2]; the discrete
element method (DEM), a mesoscopic simulation method used to model the discontinuous
behaviors of materials, often involves a large amount of computation and may present
challenges when being applied to practical engineering problems [3,4].

Peridynamics (PD) is a meshless method capable of simulating the damage and
fracture processes of materials, and which requires more time in general than FEM methods
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but with accepted accuracy [5–7]. PD is a valuable choice for specific applications, and it
is based on the concept of nonlocal interactions among PD points and their neighboring
points, which naturally allows the capture of the formation and propagation of cracks.
There are primarily two types of PD: the bond-based peridynamics (BPD) and the state-
based peridynamics (SPD).

In the BPD method, one can calculate the bond force between a PD point and another
point within its horizon based on the stretch of the bond. The direction of the bond force is
assumed to align with the line connecting the two points; its magnitude can be computed
using a one-dimensional (1D) constitutive model [7–9]. In civil engineering, BPD has
been employed to investigate the damage, cracking, and failure behaviors of concrete
structures. To give a few examples, Huang et al. used a refined BPD method to simulate
the damage propagation and failure of concrete structures under tension, compression,
and impact loading [10]. Demmie et al. performed simulations of the damage and failure
behaviors of concrete structures under impact and explosive loads using BPD [11]. Zhang
et al. developed a refined BPD model (i.e., an axial–shear interaction bond-slip model) for
RC components and effectively simulated the damage behavior of RC, such as strength
failure, stiffness degradation, crack propagation, and shear slip between reinforcement and
concrete [12]. Although BPD is capable of solving various problems, its Poisson’s ratio
µ is fixed in an elastic case (in plane stress cases µ = 1/3, and in plane strain and three-
dimensional cases µ = 1/4), and the plastic incompressibility cannot be considered [7,13].

On the other hand, SPD can overcome BPD’s limitations and has found extensive applica-
tion in the fields of solid mechanics, fluid mechanics, and heat conduction [14–18]. Regarding
civil engineering applications, Gu et al. studied the tension, compression, and damage behav-
iors of concrete through a 3D Cap plastic model and SPD [19]. Lu et al. used SPD to simulate
the pull-out test for a 3D anchor bolt and investigate its failure mechanism [20]. Dong et al.
employed an SPD-based meso-scale damage model to analyze the damage and failure
characteristics of concrete [21]. However, there is currently insufficient utilization of SPD
in the simulation of RC structures. In addition, the SPD may suffer from the so-called
“zero-energy mode” (i.e., the predicted responses by SPD, such as displacements, stresses,
and strains, may be inaccurate or have spatial oscillation) [5,22–25]. To mitigate the zero-
energy mode, several solutions have been proposed in the literature. For example, Silling
presented a stable correspondence material model by introducing an additional force state
density between each PD point and all neighboring points [26]. Breitenfeld et al. developed
a similar approach, utilizing the average displacement across all points within the horizon
to establish an additional force state density [27]. Although these methods are capable of
mitigating the zero-energy mode issue, their applicability to highly nonlinear models with
damage remains questionable.

This paper introduces a stabilized hybrid peridynamic (HPD) method to suppress the
zero-energy mode issue of SPD and ensure that the solutions obtained are accurate and
stable. The proposed HPD method builds upon a previous peridynamic method developed
by the authors. However, while the previous method shares similarities with the HPD
method, there is a significant difference in the approach used to calculate the strain, and the
previous one has not been applied to simulate reinforced concrete beams [28]. The proposed
HPD method is successfully implemented in OpenSees, and applied to simulate the refined
mechanical behaviors of RC beams with different shear span-to-depth ratios, based on
published test results [29]. The simulated results, including the shear force–deflection of
the beams, shear force–strain curve of stirrups, the formation and propagation of cracks,
and width of the diagonal cracks, are all compared against the experiment results, which
showed that the proposed HPD method is an accurate and stable approach for simulating
the behaviors of RC structures.

The manuscript is organized as follows: Section 1 provides the background and
an introduction to the research topic. Section 2 introduces the theory of peridynamics,
including the theory of BPD (Section 2.1), the theory of SPD (Section 2.2), and the theory of
the proposed HPD (Section 2.3). Section 3 focuses on numerical applications, encompassing
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subsections such as the introduction of the experiment (Section 3.1), the peridynamic model
of the RC beams (Section 3.2), and specific beam configurations with shear span-to-depth
ratios of 1.5, 2.0, and 2.6, respectively (Sections 3.3–3.5). Section 4 presents the conclusions
of the paper.

2. The Theory of Peridynamics

As shown in Figure 1, the PD model assumes that within the range of horizon HX , each
material point X interacts with other material points, one of them denoted as X′. The bond
vector between points X and X′ in the reference configuration (denoted as ξ) is defined as
the vector connecting these points. The relative displacement between points X and X′ is
denoted as η, i.e., η = u′ − u. Consequently, in the deformed configuration, the relative
position of points x and x′ can be represented as the vector ξ + η.
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Applying Newton’s Second Law, the equation of motion for the material point X at
time t can be expressed as follows [7],

ρ
..
u(X, t) = L(X, t) + b(X, t) (1)

where ρ is the mass density,
..
u represents the acceleration of PD point X, b denotes the body

force density, and L(X, t) is the internal force on X. Depending on the format of L(X, t), the
three types of PD (i.e., BPD, SPD, and HPD) are elaborated in the subsequent sections.

2.1. BPD Theory

In BPD, L(X, t) takes the form of:

L(X, t) =
∫

HX

f
(
u′ − u, X′ −X, t

)
dVX′ (2)

where f(u′ − u, X′ −X, t) represents the pairwise force function between PD points X and
X′, which can also be written as

f
(
u′ − u, X′ −X, t

)
= f (s)n (3)

where n is the direction vector of the bond, and f (s) is the magnitude of the bond force in
the form of a function of bond stretch s, i.e.,

s =
|ξ + η| − |ξ|
|ξ| (4)
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where |ξ + η| and |ξ| are the length of bond in the reference and deformed configurations,
respectively. BPD is a straightforward and practical approach widely employed to address
discontinuous problems. However, BPD is only suitable for 1D material constitutive models
and not compatible with 3D ones. Additionally, BPD is incapable of taking the plastic
volume incompressibility into consideration. In the case of elastic models, the Poisson’s
ratio µ is fixed in plane stress cases (µ = 1/3) and in plane strain and 3D cases (µ = 1/4).

2.2. SPD Theory

The equation of motion for SPD has the same format as Equation (1), while the second
term L(X, t) can be written as [30]:

L(X, t) =
∫

HX

(
T(X, t)〈ξ〉 − T

(
X′, t

)
〈−ξ〉

)
dVX′ (5)

where T(X, t)〈ξ〉 and T(X′, t)〈−ξ〉 are the force states as depicted in Figure 2. Specifically,
T(X, t)〈ξ〉 is the force state of point X operating on ξ, and T(X′, t)〈−ξ〉 shows that of point
X′ operating on −ξ.
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To calculate the force state of PD point X, the shape tensors in the reference and
deformed configurations, K(X) and N(X), respectively, are calculated as follows:

K(X) =
∫

HX

w〈ξ〉(ξ ⊗ ξ)dVX′ (6)

N(X) =
∫

HX

w〈ξ〉(y⊗ ξ)dVX′ (7)

where the symbol ⊗ denotes the dyadic product of two vectors, y is the relative position of
X and X′ in current configuration, and w is the influence function.

The deformation gradient F(X) is calculated as

F(X) = N(X)K−1(X) (8)

Based on the virtual work principle, the force state T(X)〈ξ〉 in Equation (5) can be
derived as [30]

T(X)〈ξ〉 = w〈ξ〉P(X)K−1(X)ξ (9)

where P(X) is the first Piola–Kirchhoff stress of point X transformed by the Cauchy stress
σ(X), which can be calculated by applying the constitutive law according to the strain ε(X),
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and ε(X) is obtained by the deformation gradient F(X) (according to the strain theory in
continuum mechanics).

SPD is capable of overcoming the disadvantages of BPD and is widely used in various
practical areas. However, SPD is susceptible to a phenomenon known as the “zero-energy
mode,” which leads to notable challenges in terms of solution accuracy and stability. The
root cause of the zero-energy mode lies in the approximation method of the deformation
gradient at a PD point (i.e., the Equations (7)–(9)). The displacements of all neighboring
points within its horizon are used when calculating the deformation gradient, which consti-
tutes a homogenization process. Meanwhile, due to the potential presence of numerous
neighboring PD points, such a homogenization process leads to a weak dependence of each
bond’s force density on its own stretch.

2.3. Hybrid Peridynamic Method

To address the limitations of BPD and SPD (more importantly, the zero-energy mode
problem in SPD), a novel hybrid peridynamic method (HPD) is proposed. As with BPD, the
HPD creates bonds between each PD point and its neighboring PD points within its horizon
and calculates the total force on the PD point from all bond forces [28]. The equilibrium
equation for HPD follows the same format as BPD and SPD (i.e., Equation (1)), and the
computation of the pairwise force function L(X, t) can also be computed using Equation (2).
However, it is noteworthy that the direction of the pairwise force is not necessarily aligned
with the bond, i.e.,

L(X, t) =
∫

HX

f
(

u’ − u, X’ −X, t
)

dVX′ (10)

When HPD method is applied to 2D or 3D material constitutive models, the pairwise
force f

(
u′ − u, X’ −X, t

)
is defined as the force at the cross-section at the midpoint of the

bond. As shown in Figure 3, fb is the pairwise force of point b, and is calculated by the
2D/3D stress tensor σb multiplied by the direction n and the area A of the bond, i.e.,

fb = ω〈ξ〉 · σb · nb · A (11)

where ω〈ξ〉 is the influence state whose magnitude is related to the length of the bond and
horizon size δ, and it is calculated as follows:

ω〈ξ〉 =
(

1− |ξ + η|
δ

)
g

VXVX′
(12)

where g is a variable related to the horizon size, VX and VX′ are the volume of PD point X
and X′, respectively. In Equation (11), σb can be calculated by:

σb = σb(εb) (13)

where εb is the strain tensor, which can be obtained by using the following equation,

εb =
1
2

(
FT

b + Fb

)
− I (14)

where Fb is deformation gradient of point b, and I is the identity matrix. Fb is obtained
using the following process.

As shown in Figure 4a, with X as the endpoint and bond XX’ as the reference di-
rection, the bonds with the smallest absolute angle relative to bond XX’ are searched in
both clockwise and counterclockwise directions within the horizon of X (assuming the
counterclockwise rotation is positive). It is clear that bonds XB and XD have the smallest
angles relative to bond XX’; thus, bond BD can be determined as one of the virtual bonds
for calculating the deformation gradient at point b. Additionally, as shown in Figure 4b,
with X’ as the endpoint and X’X as the reference direction, bonds X’A and X’E have the
smallest angles relative to X’X; thus, bond AE can be considered as another virtual bond
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for obtaining the deformation gradient at point b. Ultimately, the deformation gradient at
point b can be determined by bonds XX’, BD, and AE. Specially, the method to determine
the deformation gradient of point b in cases where the numerical models are uniformly
arranged can be referenced in Appendix A. Similar to SPD, the deformation gradient at
point b in HPD can be calculated using the following equation,

Fb = NbK−1
b (15)

where
Kb = ξXX′ ⊗ ξXX′ + ξBD ⊗ ξBD + ξAE ⊗ ξAE (16)

and
Nb = yXX′ ⊗ ξXX′ + yBD ⊗ ξBD + yAE ⊗ ξAE (17)
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By performing the same calculations for all virtual bonds within the horizon of point
X as with bond XX’, the forces exerted on point X (the first term on the right side of
Equation (1) can be obtained, and the equilibrium equation can be solved using Newton’s
second law or another explicit method. In this paper, the equilibrium equation of HPD is
expanded into a form that can be applied to explicit and implicit integration methods for
both static and dynamic analyses. Define the force density vector of PD point X as

r(X) = −L(X) (18)

and Equation (1) can be rewritten as

ρ
..
u(X) + r(X) = b(X) (19)
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Suppose m(X) =
∫

VX
ρdVX, R̃(X) =

∫
VX

r(X)dVX, and b̃(X) =
∫

VX
b(X)dVX, and

Equation (19) can be rewritten as

m(X)
..
u(X) + R̃(X) = b̃(X) (20)

Equation (20) is the equilibrium of PD point X. By listing and assembling the
equilibrium equations for all PD points in the model and defining lumped mass ma-
trix M = A

X
(m(X)), resisting force vector R = A

X

(
R̃(X)

)
, and external force vector

F = A
X

(
b̃(X)

)
, the equilibrium equation of the PD model can be formed in the matrix

and vector format as follows:
M

..
u + R = F (21)

Both explicit and implicit integration methods can be employed to solve Equation (20).
In the context of this paper, an implicit method called Newton–Raphson iterative method
is adopted for solving the equilibrium equation, unless otherwise specified. For static
analysis, the first item M

..
u can be omitted.

The proposed HPD method presented herein has been implemented in OpenSees,
an open-source finite element framework widely used for various nonlinear problems,
especially in the field of civil engineering.

3. Applications
3.1. Introduction of the Experiment

Numerical simulations were conducted on three RC beams with different shear span-
to-depth ratios, and the results were compared with experiment results obtained in test
measurements [29,31]. The experimental model of the beam is shown in Figure 5.
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different shear span-to-depth ratios. In the following context, “PD” refers to the HPD 
method. Due to the symmetry of the geometry and loading conditions of the RC beams, a 
half-span structure is used for simulation. Taking the case of BEAM2.6 as an example, the 
numerical model is shown in Figure 6: 
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Figure 5. The experimental model of the beam.

The shear span-to-depth ratios of the three RC beams are 1.5, 2.0, and 2.6, respectively.
All three beams have the same cross-sectional dimensions, with a width of 0.12 m, a height
(depth) of 0.24 m, and an effective section height of 0.22 m. The shear span-to-depth ratio
is represented by λ = a

d . The geometric parameters of the beams are presented in Table 1,
where the number following “BEAM” indicates the magnitude of the shear span-to-depth
ratio. b denotes the total length of the beam, while S1 and S2 represent the spacings between
adjacent stirrups.

In the experiment, longitudinal reinforcement in the RC beams was provided by
19 mm diameter high-strength deformed bars with a yield strength of 708 MPa. Three-
millimeter-diameter steel wires were placed in the top section zone as assembly bars, while
stirrups were fabricated from 6 mm diameter plane round steel bars with a yield strength
of 300 MPa. After the specimen was prepared, a three-point bending test was carried out
and the loading process was displacement-controlled with an increment of 0.2 mm/min.
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Table 1. The geometric parameters of the beams with different shear span-to-depth ratios.

ID Shear Span-to-Depth Ratio a (m) b (m) S1 (m) S2 (m)

BEAM1.5 1.5 0.33 0.9 0.12 0.09
BEAM2.0 2.0 0.44 1.12 0.12 0.08
BEAM2.6 2.6 0.58 1.4 0.12 0.1

3.2. The PD Model of the RC Beams
3.2.1. The Geometric Model

The proposed HPD method was used to perform static analysis on RC beams with
different shear span-to-depth ratios. In the following context, “PD” refers to the HPD
method. Due to the symmetry of the geometry and loading conditions of the RC beams, a
half-span structure is used for simulation. Taking the case of BEAM2.6 as an example, the
numerical model is shown in Figure 6:
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Figure 6. Numerical model of the RC beam.

PD and FEM models are used to simulate the mechanical behaviors of concrete and
steel reinforcement, respectively. The concrete is discretized into a PD model that consists
of PD material points, while the steel reinforcement is simulated using a finite element
model (i.e., truss element). Shear slippage between the steel reinforcement and concrete
is not considered, and the enforced displacement constraints are used between PD points
and truss nodes. A hinge support is placed at the left bottom of the beam, and the node’s
degree of freedom (DOF) is fixed in the y direction, while being free in the x direction.
A sliding support is used at the mid-span of the beam, whose nodal DOF is fixed in the
x direction and free in the y direction. To simulate the displacement-controlled loading
process, a spring with high elastic modulus is set at the top of the beam.

In the three numerical examples, the truncated Drucker–Prager model (TDP) is used
to simulate the concrete material, while a bilinear model is employed for the steel reinforce-
ment. TDP is an advanced constitutive model utilized to describe the nonlinear behavior
of concrete.

3.2.2. The TDP Model

Figure 7 shows the TDP model, which has two yield surfaces, including the shear
failure yield function ( f1) and tensile cutoff yield function ( f2). The shear failure yield
function is defined as

f1(σ) = ‖s‖ − Fe(I1), Fe(I1) = α + λI1 (22)
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where σ = s +
(

1
3 I1

)
I2 is the stress tensor (I2 is the second order identity tensor), s is the

deviatoric stress component, and I1 is the volumetric stress component. ‖s‖ is the norm of
the deviatoric stress tensor and ‖s‖ =

√
s : s, in which “:” is the dyadic tensor product. α is

the shear strength when the volumetric stress is zero and λ is the slope of f1. The shear
failure yield surface only considers material yielding caused by shear force.
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The tensile cutoff yield function is defined as

f2(σ) = T − I1 (23)

where T is the maximum hydrostatic tensile strength. The tensile cutoff yield surface only
considers material yielding caused by tensile force.

The generalized associative flow rule of the TDP model is defined as

.
ε

p
=

2

∑
i=1

.
γi

∂ fi
∂σ

(24)

where
.
ε

p is the plastic strain rate,
.
γi is the magnitude of the plastic strain rate, and ∂ fi

∂σ is
the direction of the plastic strain. According to the equation, the direction of

.
ε

p is assumed
to be consistent with the outer normal direction of the yield surface.

From Figure 7, the two yield surfaces clearly divide the stress space into four sub-
regions specified by four modes, i.e., tensile cutoff mode, tensile corner region, failure
envelope mode, and elastic region. The elastic region is given by stress states such that
f1(σ) < 0 and

.
γi = 0. The stress computation algorithms are different for each mode,

which is introduced in detail in the literature [32].
The material parameters used in the three examples are shown in Table 2, where ρ is

the density of concrete, G is the shear modulus, and K is the bulk modulus.

Table 2. Material parameters in TDP model.

Material
Parameters ρ (t/m3)

G
(kPa)

K
(kPa) λ

α
(kPa)

T
(kPa)

2400 1.64 × 107 1.22 × 107 0.3435 1.1 × 104 −1.43 × 103
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3.2.3. The Bilinear Model

The bilinear model is particularly useful for simulating steel bars that exhibit elastic
and plastic behaviors. The model is shown in Figure 8. The stress–strain relationship can
be written as

σ =

{
Eε elastic
σy + bE

(
ε− σy

E

)
plastic

(25)

where σ and ε are the stress and strain, respectively; E, σy, and b are the elastic modulus,
yield stress, and the ratio between the post-yield tangent and initial elastic tangent, respec-
tively. The parameters of the longitude reinforcement, stirrups, and assembly bars used in
the numerical examples are shown in Table 3.
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Table 3. The parameters of steel bars using bilinear model.

E (kPa) σy (kPa) b

longitude
reinforcement 2.482 × 108 7.06 × 105 0.02

assembly bars 2.482 × 108 3 × 105 0.02
stirrups 2.482 × 108 3 × 105 0.02

3.3. RC Beam with a Shear Span-to-Depth Ratio of 1.5
3.3.1. The Detailed Model of BEAM1.5

The model of BEAM1.5 is shown in Figure 9. The concrete model is divided into
23 columns and 12 rows, resulting in a total of 276 PD points. The gird size of the PD model
is 0.02 m, and the volume of each PD point is 0.000048 m3; the plane strain condition is
used here, and the thickness of the beam is 0.12 m. The radius of the horizon δ is set to be
0.3 m. The geometry and material parameters of the concrete and steel bars are provided in
Section 3.2 and are therefore not repeated here.

A static analysis is performed for this example. The Newton–Raphson iterative method
is used for solving the equilibrium equation R(u) = B, and the norm of the incremental
displacement vector is used as a convergence criterion with a tolerance of 10−6 m.
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Figure 9. PD model of RC beam with a shear span-to-depth ratio of 1.5.

3.3.2. Comparison of Force–deflection Curve

Figure 10 shows the comparison of the force–deflection curve between the experiment
and PD results for BEAM1.5. The horizontal axis represents the deflection of the beam, and
the vertical axis represents the force exerted on the beam. The red solid line corresponds to
the experimental results, while the blue dashed line represents the PD results. The results of
the experiment and PD show good agreement, and the spatial oscillation of the PD points
is virtually nonexistent. The peak force in the experiment is 216.6 kN, while the simulation
result is 228.7 kN, resulting in an acceptable level of error at 5.6%.
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Figure 10. Comparison of force–deflection curve between experiment and PD results.

In the initial stage of the experiment, the incomplete compression of the loading pad
and the uneven surface of the concrete may cause the beam stiffness to be far smaller than
its actual value. Therefore, we moved the experimental curve to the left and modified the
initial stiffness until it matched the actual initial stiffness of the concrete (the elastic modulus
of C30 concrete in the elastic stage is 2.95 × 1010 Pa and the Poisson’s ratio is 0.2, which
can be used to calculate the approximate stiffness of the concrete). In the experiment, the
stiffness of the beam decreases continuously with the increase in load (indicating that the
beam gradually entered the plasticity stage), and the same trend is present in the PD results.
From Figure 10, it is observed that after reaching the peak force, the experimental curve
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shows a downward trend. However, this phenomenon was not applicable to the numerical
simulation result (i.e., the load-bearing capacity of the PD model does not decrease after
reaching the peak value). This may be attributed to the use of the TDP model for the
concrete; since the shear failure yield surface of the TDP model cannot decrease and the
maximum shear bearing capacity increases with the increase in the bulk stress, it cannot
simulate the decrease in the load-bearing capacity of the RC beam.

3.3.3. Comparison of the Shear Force–Strain Curves for Stirrups

Figure 11 shows the comparison of the shear force–strain curves for stirrup #1 and
stirrup #2 between the experiment and PD results in the BEAM1.5. The horizontal axis
represents the strain of the stirrup, while the vertical axis represents the magnitude of the
shear force acting on the stirrups. Solid lines represent the experimental results, while
dashed lines represent the PD simulation results. Red lines show the results for stirrup #1,
and blue lines show the results for stirrup #2. The results of the experiment and PD are in
relatively good agreement: during the initial loading stage, the strain of the stirrup does not
change significantly, indicating that no cracks have yet emerged at the stirrup location. As
the load increases, shear cracks are generated near the supports and continue to grow. When
the cracks pass through the stirrups, the strain gradually increases. With the continuous
growth of diagonal cracks, the stress in the stirrups increases until yielding occurs.
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3.3.4. Strain Distribution of Stirrups

Figure 12 shows the strain distribution of stirrups at sections A–A and B–B of the
BEAM1.5. The purple area in the figure represents the actual crack location observed in
the experiment. As the strain gauges were only attached at the middle of the cross-section
of the beam during the experiment, only the numerical simulation results are discussed
here. On the cross-section A–A, the strain of all segmented stirrups at the peak load can
be calculated by drawing a horizontal solid black line corresponding to the magnitude of
the strain. Connect these lines and the strain distribution of the stirrups can be obtained,
which is represented by the portion indicated by the solid red line. The strain distribution
of the stirrups on section B–B follows a similar approach. As can be seen from the figure, at
the peak load, the stirrups near the bottom of section A–A have the largest strain, and the
strain decreases continuously along the y direction; on section B–B, the upper-middle part
of the stirrups has the largest strain, while the strains on both sides are smaller.
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3.3.5. Analysis of the Shear Crack

During the experiment, a shear crack appears near the support and grows as the load
increases; when the crack passes through the stirrups, the strain on the stirrups increases
rapidly. Therefore, the location with the largest stirrup strain is considered as the most
prominent place for crack growth. By connecting the locations with the largest stirrup
strain with a straight line, the position and direction of the main diagonal crack in the beam
can be approximated.

In actual engineering circumstances, the tensile strength of concrete is relatively low,
and the main cause of crack formation is tensile failure. Therefore, it is appropriate to
determine the formation and expansion of cracks in RC beams based on the magnitude and
direction of the principal tensile strain of the PD points. If the maximum principal strain is
the principal tensile strain, a crack is formed at that point and the direction is perpendicular
to the direction of the principal tensile strain. Figure 13 shows the diagonal crack pattern of
the BEAM1.5 at the peak load, as Figure 13a,b show the results of the experiment and PD,
respectively. The blue solid lines can be regarded as simulated cracks whose width and
length represent the magnitude of the crack, and the directions are perpendicular to the
principal tensile strain direction.
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Figure 13. Comparison of the direction of crack.

The formation and propagation of cracks obtained using the principal tensile strain
method can be considered as diffuse cracking. Although all cracks cannot practically be
merged into one main crack, connecting the locations with the largest simulated strain of
the stirrup using a straight line, the position and direction of the main diagonal crack in the
beam can be approximated.

To compare the width of the crack, the following crack formula is used [33], i.e.,

dc = g× (ε1 − σ1/E) (26)

where dc is the width of crack, g is the grid size (in PD model, g is dx),ε1 and σ1 are the
first principle strain and first principle stress, respectively. E is the young’s modulus of
concrete (E = 2.95 × 1010 Pa). The crack width at each PD point is calculated, and all of the
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crack widths on the M-M section are summarized to obtain the width of the diagonal crack.
Figure 14 compares the predicted diagonal crack widths using PD and the experiment, and
it shows that with the increase in loading, the diagonal crack width increases continuously.
The relative error between PD and the experiment is small in the early loading stage but
increases as the loading increases. Table 4 shows the detail of the width of the diagonal
crack, the maximum relative error is 19.3% when the width of the crack is 0.25 × 10−4 m.
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Table 4. The detail of the width of the diagonal crack of BEAM1.5.

Width of Crack
(×10−4[m]) 0.25 0.3 0.4 0.5 0.55 0.65 0.75

Load (×105(N))
Experiment 1.19 1.39 1.49 1.60 1.69 1.79 1.89

HPD 1.42 1.51 1.67 1.81 1.88 2.00 2.12

3.4. RC Beam with a Shear Span-to-Depth Ratio of 2.0
3.4.1. The Detail Model of BEAM2.0

The model of BEAM2.0 is shown in Figure 15. The concrete model is divided into
29 columns and 12 rows, resulting in a total of 348 PD points. The geometric and material
parameters are the same with the RC beam shown in Section 3.3. A static analysis is
performed. The Newton–Raphson iterative method is used for solving the equilibrium
equation, and the norm of the incremental displacement vector is used as a convergence
criterion with a tolerance of 10−6 m.
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3.4.2. Comparison of Force–deflection Curve

Figure 16 shows the comparison of the force–deflection curve between the experiment
and PD results for BEAM2.0. The horizontal axis represents the deflection of the beam,
while the vertical axis represents the force acting on the concrete beam. The red solid line
corresponds to the experimental results, while the blue dashed line represents the PD results.
The experimental data were processed in the same manner as described in Section 3.3. The
results of the experiment and PD show good agreement. The peak force in the experiment
is 163.5 kN and the simulation result is 158.4 kN, resulting in a relative error of 3.1%.
However, from Figure 16, the load-bearing capacity of the PD model does not decrease
after reaching the peak value. This is for the same reason as described in Section 3.3.
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3.4.3. Comparison of the Shear Force–strain Curves for Stirrups

Figure 17 shows the comparison of the shear force–strain curves for stirrup #1 and
stirrup #2 between the experiment and PD results in the BEAM2.0. The horizontal axis
represents the strain of the stirrup, and the vertical axis represents the magnitude of the
shear force exerted on the stirrups. Solid lines represent the experimental results, while
dashed lines represent PD simulation results. Red lines show the results for stirrup #1,
and blue lines show the results for stirrup #2. The trends of the experimental results and
PD results are in relatively good agreement. In the initial loading stage, the strains of
the stirrup using PD are consistent with the experiment; however, as the load increases,
especially when the structure enters the plastic stage, the relative errors between PD and
the experiment become larger.

3.4.4. Strain Distribution of Stirrups

Figure 18 shows the strain distribution of the stirrups at sections A–A, B–B, and C–C of
the BEAM2.0. As can be seen from the figure, at the peak load, the stirrups near the bottom
of section A–A have the largest strain; on section B–B, the middle part of the stirrups has
the largest strain; and on section C–C, the upper-middle part of the stirrups has the largest
strain. Similar to the case of BEAM1.5, by connecting the points of the maximum stirrup
strain with a straight line, the approximate location and direction of the main diagonal
crack in the beam can be simulated.
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Figure 17. Comparison of shear force–strain curves of stirrups #1 and #2 between experiment and
PD results.
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3.4.5. Analysis of the Shear Crack

The method used in Section 3.3 is employed to analyze the crack width and direction
of BEAM2.0. Figure 19a,b display the crack of BEAM2.0 using the experiment and PD,
respectively. In Figure 19b, the blue solid line can be considered as the crack predicted by
PD, with its width and length representing the magnitude of the crack, and its direction is
perpendicular to the principal tensile strain. The purple area in the figure indicates the crack
in the experiment. It can be observed that a horizontal crack appears at the top of the beam;
in addition, the straight line connecting the locations of the largest simulated cracks matches
well with the actual crack. The crack width of the diagonal cracks is calculated using the
same method as in Section 3.3. As shown in Figure 20, the predicted diagonal crack width
using PD and the experiment are compared, and the results are in good agreement. Table 5
shows the detail of the width of the diagonal crack, and the maximum relative error is 10%
when the width of the crack is 0.96 × 10−4 m.
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Table 5. The detail of the width of the diagonal crack for BEAM2.0.

Width of Crack
(×10−4[m]) 0.01 0.31 0.51 0.6 0.7 0.96

Load (×105(N))
Experiment 0.84 1.10 1.30 1.40 1.49 1.6

HPD 0.88 1.15 1.26 1.31 1.35 1.44

3.5. RC Beam with a Shear Span-to-Depth Ratio of 2.6
3.5.1. The Detailed Model of BEAM2.6

The model of BEAM2.6 is shown in Figure 21. The concrete model is divided into
36 columns and 12 rows, resulting in a total of 432 PD points. Other geometric and material
parameters are the same as those for the RC beam shown in Sections 3.3 and 3.4. The
static analysis is performed. The Newton–Raphson iterative method is used for solving the
equilibrium equation, and the norm of the incremental displacement vector is used as a
convergence criterion with a tolerance of 10−6 m.
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Figure 21. PD model of RC beam with a shear span-to-depth ratio of 2.6.

3.5.2. Comparison of Force–deflection Curve

Figure 22 shows the comparison of the force–deflection curve between the experiment
and PD results for BEAM2.6. The experimental data were processed in the same manner
as described in Sections 3.3 and 3.4. The results of the experiment and PD show good
agreement. The peak force in the experiment is 147.6 kN and the simulation result is
143.6 kN, resulting in a relative error of 2.7%. From Figure 22, the load-bearing capacity
of the PD model does not decrease after reaching the peak value for the same reason as
described in Section 3.3.
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Figure 22. Comparison of shear force–deflection curve between experiment and PD results.

3.5.3. Comparison of the Shear Force–strain Curves for Stirrups

Figure 23 shows the comparison of the shear force–strain curves for stirrup #1 and
stirrup #2 between the experiment and PD results in the BEAM2.6. The trends of the
experimental results and PD results are in relatively good agreement.

Buildings 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 
Figure 23. Comparison of shear force–strain curve of stirrups #1 and #2 between experiment and PD 
results. 

3.5.4. Strain Distribution of Stirrups 
Figure 24 shows the strain distribution of stirrups at sections A–A, B–B, C–C, and D–

D of the BEAM2.6. As can be seen from the figure, at the peak load, the stirrups near the 
bottom of section A–A have the largest strain; on section B–B, the middle part of the stir-
rups has the largest strain; on section C–C, the upper-middle part of the stirrups has the 
largest strain; and on section D–D, the top of the stirrups has the largest strain. Similar to 
the cases of BEAM1.5 and BEAM2.0, connecting the points of the maximum stirrup strain 
with a straight line yields the approximate location and direction of the main diagonal 
crack. 

 
Figure 24. The strain distribution of stirrups at sections A–A, B–B, and C–C. 

3.5.5. Analysis of the Shear Crack 
The method used in Section 3.4 is employed to analyze the crack width and direction 

of BEAM2.0. Figure 25b uses the same configuration as Figure 19b and the observations 
are also similar between BEAM2.0 and BEAM2.6, which is also true for Figures 20 and 26. 
In sum, the results of BEAM2.6 from the experiment and PD are in good agreement as 
well. Table 6 shows the detail of the width of the diagonal crack, and the maximum rela-
tive error is 6% when the width of the crack is 0.55 × 10−4 m. 

0 2 4 6 8 10

strain [ ] 10 3

0

1

2

3

4

5

6

7

sh
ea

r f
or

ce
 [N

]

10 4

stirrup#1-experiment

stirrup#2-experiment

stirrup#1-PD

stirrup#2-PD

A

A

B

B

C

C

D

D

Figure 23. Comparison of shear force–strain curve of stirrups #1 and #2 between experiment and
PD results.

3.5.4. Strain Distribution of Stirrups

Figure 24 shows the strain distribution of stirrups at sections A–A, B–B, C–C, and D–D
of the BEAM2.6. As can be seen from the figure, at the peak load, the stirrups near the
bottom of section A–A have the largest strain; on section B–B, the middle part of the stirrups
has the largest strain; on section C–C, the upper-middle part of the stirrups has the largest
strain; and on section D–D, the top of the stirrups has the largest strain. Similar to the cases
of BEAM1.5 and BEAM2.0, connecting the points of the maximum stirrup strain with a
straight line yields the approximate location and direction of the main diagonal crack.
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3.5.5. Analysis of the Shear Crack

The method used in Section 3.4 is employed to analyze the crack width and direction
of BEAM2.0. Figure 25b uses the same configuration as Figure 19b and the observations are
also similar between BEAM2.0 and BEAM2.6, which is also true for Figures 20 and 26. In
sum, the results of BEAM2.6 from the experiment and PD are in good agreement as well.
Table 6 shows the detail of the width of the diagonal crack, and the maximum relative error
is 6% when the width of the crack is 0.55 × 10−4 m.
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4. Conclusions

This paper introduces a stabilized hybrid PD method (HPD) to simulate the mechanical
behaviors of reinforced concrete (RC) beams. HPD uses a similar equation of motion as
that of bond-based peridynamics, as the internal force is also calculated based on all bond
forces within its horizon. What is different for HPD is that the bond forces are determined
by using the stress tensor at the midpoint of the bond, multiplied by the direction and
area of the bond. The stress tensor is calculated using two- or three-dimensional material
constitutive models based on the strain at the bond’s midpoint. The strain is obtained by
using a similar homogenization method to that in SPD.

Three examples of RC beams with different shear span-to-depth ratios are presented
herein to verify the accuracy and stability of the proposed HPD method in terms of its ability
to simulate the mechanical behaviors of RC beams, including the shear force–deflection
of the beams, shear force–strain curve of stirrups, crack formation and propagation, and
the diagonal crack width of the beam. The HPD results are relatively consistent with
those of the experiment and no zero-energy mode in SPD is present, which shows that the
proposed HPD method is a practical and effective alternative to solve complex problems of
RC structures.

Author Contributions: Conceptualization, C.L., Z.L. and L.W.; writing—original draft preparation,
L.W.; writing—review and editing, S.H., X.X. and C.L.; investigation, X.X.; visualization, S.H.; funding
acquisition, L.W. All authors have read and agreed to the published version of the manuscript.
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Appendix A

In this paper, all the numerical models are uniformly arranged. The coefficient g in
Equation (12) can be obtained through an inverse calculation algorithm. When δ = 1.5dx,
the value is 2.40. The cross-sectional area of the bond is A = dx · t, where t represents the
width of the cross-section (i.e., the thickness of the two-dimensional model).

The following section provides a detailed explanation of the method for solving the
deformation gradient at the midpoint of the virtual bond.

As shown in Figure A1, the red points represent the PD points, the solid blue line
represents the bond, and the green point b represents the midpoint of the bond XC. To
calculate the deformation gradient at point b, according to the calculation method of HPD,
set point X as the endpoint and XC as the reference direction, and find the two bonds
(light blue dashed lines) with the smallest absolute angle with XC. In this example, they
are XD and XB, with angles +45◦and −45◦ with respect to XC, respectively. Thus, the
bond BD is selected as one of the bonds to approximate the deformation gradient at point b
(see Figure A1a). Then, considering point C as the endpoint and direction CX as the
reference direction, CA and CE are the two bonds with the smallest absolute angle with
CX. Therefore, AE is selected as another bond to approximate the deformation gradient at
point b (see Figure A1b). Finally, the deformation gradient at point b can be approximated
by using the bonds XC, AE, and BD with Equation (12) (see Figure A1c).

For the inclined bond XB shown in Figure A2, the calculation of the deformation
gradient at point b is similar to that of the horizontal bond. The difference lies in the selection
of the bonds when approximating the strain of point b. With X as the endpoint and XB as
the reference direction, the bond AC is selected (see Figure A2a). When considering point B
as the endpoint and BX as the reference direction, the bond AC is selected (see Figure A2b).
Therefore, only the bonds XB and AC are needed to approximate the deformation gradient
at the midpoint b of the inclined bond XB (see Figure A2c).
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