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Abstract: Stress state evaluation in axially loaded structural members is significant for sustaining and
preserving the service life of buildings. While successful monitoring furnishes staunch information
on the health, integrity, safety and serviceability of structures, maintaining the structural performance
of a building with time significantly depends on assessing the occurrence. Variations in the stress
in axially loaded members may occur in masonry buildings or space structures caused by different
conditions and human-induced factors. In the last decades, numerous nondestructive methods
have been generated to furnish practical means for identifying axial load in the tie-rods of masonry
buildings and in the structural members of space structures. Significant effort has been put into
dynamic-based approaches, which make use of the vibrational response of the monitored member to
investigate its condition and evaluate the axial load. In particular, wide laboratory and field tests
have been executed worldwide, resulting in several findings. Meanwhile, with flourishing sensing
technology and computing power, Artificial Intelligence (AI) applications, such as hybrid methods,
optimization techniques and deep learning algorithms, have become more practicable and widely
used in vibration-based axial stress prediction, with efficiency and, frequently, with strict precision.
While there have been various manuscripts published on dynamic-based axial stress evaluation, there
are no works in which the passage from traditional methods to combinations with AI approaches have
been illustrated. This article aims to address this gap by introducing the highlights of the traditional
methods, and furnish a review of the applications of AI techniques used for nondestructive-based
axial stress prediction in tie-rods and structural members. Conclusions, including further studies and
field developments, have also been mentioned at the end of the article.

Keywords: artificial intelligence approach; axial load; frequency; inverse problem; masonry building;
nondestructive test; space structure; stress evaluation; structural member; tie-rod

1. Introduction

Space structures are generally used in many large frames or roof trusses, such as audi-
toriums, gymnasiums, etc. (Figure 1a). Nevertheless, due to the breaking of key structural
members, the collapse of the space grid structure frequently occurs [1]. In 1978, the collapse
of the square pyramid space truss gymnasium in Hartford City Center [2,3] due to the local
buckling of structural members, impressed the American civil engineering community.
Hence, nondestructive methods are required to accurately estimate the safety conditions of
the members of space structures to formulate their maintenance programs [4,5]. The stress
evaluation of such axially loaded members is highly sought after because it can help verify
the design model and evaluate the remaining performance of the entire structure [6]. As
occurred in the case of the space truss gymnasium in Hartford City Center in 1978 [2,3],
a significant re-distribution of the internal axial stresses can indicate a possible collapse
for buckling [7,8]. Indeed, the increment of material strengths allowed us to design space
structures composed of ever more highly slender elements (Figure 1a). Conversely, metal
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tie-rods are important elements which can mainly be found in heritage masonry buildings
(Figure 1b). Tie-rods guarantee a proper connection between walls and play a significant
part in the control of horizontal thrusts caused by static loads acting on arches and vaults,
or seismic-induced dynamic loads in the event of earthquake actions [9]. In particular,
tie-rods have often been inserted in historical buildings during the construction phase
(Figure 1b). Nevertheless, they have also been installed in buildings in subsequent phases,
if it has been necessary to modify a structure (building aggregations, super elevations, etc.),
increase the load, substitute elements subjected to a heavy decay, or repair a building after
an earthquake [10]. Still today, the insertion of tie-rods is one of the most widespread
methods utilized to reinforce historical masonry buildings in seismic-prone areas. Similarly
to what has been implemented for space structures, dynamic-based techniques have been
developed to provide practical means for identifying axial tensile stress in the tie-rods of
masonry buildings (usually in historical ones).
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As mentioned above, the traditional methods for axial stress evaluation in the struc-
tural members of buildings are mainly based on the vibrational response of the element
itself to be investigated [11]. Yet, there could be issues which may practically impede the
application of such techniques [12]. Primarily, the dimensions of these buildings are com-
monly relatively large, which means that common assessment can be both laborious and
time consuming. Secondly, since the traditional methods also depend on human decision
and data interpretation, they require highly trained and skilled labor. Nevertheless, the
first successes of vibration-based axial stress evaluation methods in tie-rods and structural
members have motivated researchers to develop new techniques. The final goal has been
that of overcoming the problems related to the traditional methodologies by providing
more feasible ways of identifying the axial stress according to the dynamics of the member
itself [13]. Meanwhile, in the last decade, plenty of advancements in sensor technology
and computational power have enabled the combination of Artificial Intelligence (AI)
approaches, such as hybrid vibration testing methods, optimization techniques and deep
learning algorithms, with generic applications in the field of Structural Health Monitoring
and Assessment (SHMA).

In this article, the research works conducted worldwide on evaluating stress in the
axially loaded tie-rods of masonry buildings and structural elements of space structures
have specifically been illustrated. Indeed, the safety conditions of masonry buildings,
space frames and roof trusses depend significantly on assessing the existing axial loads.
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Variations of the axial stress in such members may occur because of different conditions
and human-induced factors [14]. Scholars implemented a large number of nondestructive
methods, resulting in several findings, to improve their principles and techniques along
with their deployment in applications in the field of SHMA. Specifically, the methods
have been analyzed from three categories concerning investigations into traditional ones,
new devices and combinations with AI approaches (Figure 2). In fact, with flourishing
sensing technology and computing power, hybrid methods, optimization and deep learning
algorithms have become more feasible in vibration-based axial stress prediction with
efficiency and, frequently, with strict precision. While there have been multiple manuscripts
published on dynamic-based axial stress evaluation, there are no works in which the
transition from traditional methods to combinations with AI techniques has been discussed
(Figure 2). This article aims to address this gap by introducing the main highlights and
furnishing a literature review. In future investigations, the development of long-term
automatic dynamic-based methods, designed on a one-system-per-tie-rod or space structure
basis, are particularly encouraged and, when it is feasible, in combination with advanced
AI approaches.
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Figure 2. Workflow of the present work.

Methodology

The author reviewed a total of 85 book chapters, conference and journal contributions,
principally related to dynamic-based axial stress evaluation in tie-rods and structural
members, including 52 articles on traditional methods and 11 articles on new devices and
combinations with emerging AI techniques (Figure 3). The methodology for screening
these contributions has been synthesized and reported as follows:

• The articles have been gathered from well-known databases including the ASCE
Library, IEEE Xplore Digital Library, Sage, Science Direct, Scopus, Web of Science and
Wiley Online Library.

• The literature search has been executed using keywords such as “artificial intelligence-
based axial load identification”, “axial load identification”, “axial stress identification”,
“dynamic-based axial load identification”, “nondestructive-based axial load identifica-
tion”, “stress identification in axially-loaded structural member”, “stress identification
in axially-loaded tie-rod”, etc.
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• The journal articles selected were published between 1994 and 2023. Works on struc-
tural damage methodologies (e.g., impedance-based methods) were excluded since
they are beyond the scope of this manuscript. Additionally, articles related to dynamic-
based damage identification methods in civil structures were disregarded.

• Pertinent contributions from prominent conferences such as the 13th World Con-
ference on Non-Destructive Testing, Elsevier (1992); the 2014 IEEE Workshop on
Environmental, Energy, and Structural Monitoring Systems; the 7th International Con-
ference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015); and
the 10th International Conference on Structural Analysis of Historical Constructions
(SAHC 2016) were chosen and reviewed.
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2. Brief Progress Overview: From Indirect Measurements to Combinations with
Artificial Intelligence Approaches

Measurements of acceleration, deflection, strain and numerous physical parameters
are of basic importance in the field of applications of SHMA [15]. In particular, the dynamic
parameters of a space grid structure, i.e., damping, natural frequency and mode shape,
have always been key indicators. E.g., for a recently constructed square pyramid space
roof truss, one could be interested in measuring the corresponding few frequencies for
model updating, i.e., for reducing the difference between the real and the Finite Element
(FE) model employed during designing [16,17]. An accurate modeling of a space structure
is also needed for structural control aimed at counterbalancing the excitations caused by
earthquakes or wind gusts. However, for a space roof truss, a regular assessment of the
modal properties furnishes the most useful information for determining the degradation in
its different parts, including the decrease in stiffness, settlement in supports, breakage in
connections, or deterioration in metal materials, due to long-term corrosion, weathering
or earthquakes [18]. Furthermore, the identification of defects by static deflection mea-
surements has also become significant for the service life preservation of a structure or
infrastructure, enabling its decision-making in terms of maintenance and retrofitting. For
a bridge in use, e.g., the static deflection, with an accuracy equal to 0.01 mm, is crucial
because its limit is used as a control index of its global behavior and, moreover, it is the key
parameter for prestressing loss identification [19,20]. Thus, amongst the vibration-based
methods, axial stress evaluation using static deflections has additionally been demonstrated
to be a reliable technique for structural members. In fact, such deflections take precisely
into account the changes in geometry of the member due to the axial force variation on
the equilibrium conditions [21]. Laboratory investigations were firstly performed on the
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tie-rods and members of small-scale space frames and trusses by using three-point bending
tests [22–25]. This technique, conversely to dynamic-based methods, does not require
selecting the experimental damping, frequency or mode shape for use in algorithms but,
unfortunately, the application of the point load can practically result in an arduous process.

On-site measurement procedures, such as the ambient, forced and impact vibration
test, have often been performed to identify the dynamic parameters of a space grid structure.
These methods rely on the global response, which requests quite a high number of vibration
sensors to be mounted. Similarly, the direct approach is typically planned on a one-system-
per-tie-rod basis which, in turn, demands quite a high number of sensors be installed on the
single tie-rod. Furthermore, on-site instrumentation is generally laborious, time consuming
and is not maintenance free. The other disadvantage is that, once the nondestructive
method is concluded, the assessment system tailored for one space structure or tie-rod can
hardly be relocated to another one.

To overcome the above issues, the concept of extracting the dynamic parameters with
the help of an AI technique or using a new device has been attempted, where only the fun-
damental frequency of the structural member or tie-rod is usually assumed [26]. E.g., efforts
have been devoted to the development of methods for automated output-only modal anal-
ysis algorithms for vibration-based monitoring [27,28]. Vice versa, in the work proposed by
Camassa et al. [29], the interferometric radar was suggested for tensile stress evaluation
in tie-rods, since only a small number of sensors are required to be deployed. Notably,
in the field of geomechanics, Esmaeili-Falak and Benemaran [30] instead suggested two
hybridized Extreme Gradient Boosting (XGB) models for forecasting the resilient modulus
of pavement materials subjected to wet–dry cycles, instead of performing conventional
experiments that need time and money, along with special devices. In particular, the
two XGB models have been implemented for estimation purposes, where determinative
variables have been optimized using Particle Swarm Optimization (PSO) and the black
widow optimization algorithm. The XGB approach has also been suggested by Li et al. [31]
to predict the unconfined compressive strength of marine clay modified with recycled
tiles. Specifically, four hybridized models have been developed with the integration of an
adaptive neuro-fuzzy inference system, support vector regression, Random Forest (RF) and
XGB with Aquila optimizer algorithm. Moreover, in order to restore steel frame structures,
Shi et al. [32] have developed some techniques using a hybridized RF method on collected
carbon fiber reinforced polymer (CFRP)-steel single-shear experiment data to estimate the
bond strength of CFRP-steel. In fact, the bond strength between the CFRP and steel, along
with the mechanical properties of the CFRP, is crucial to the final strengthened effective-
ness. The RF hyper parameters have been tuned using the COOT optimizer, arithmetic
optimization algorithm and improved arithmetic optimization algorithm.

3. Works Conducted for Tie-Rods by Researchers Worldwide

Metallic tie-rods are mainly utilized to prevent the out-of-plane collapse of the ma-
sonry walls of buildings, or to counteract the horizontal thrusts exercised by arches and
vaults [33]. Especially, the tensile stress in tie-rods can considerably decrease the force ex-
erted on the abutments by the arches subjected to common vertical loading [34]. However,
the tensile force in the tie-rod is evidently higher than the masonry arch thrust decreased
by the buttress force exerted by the abutments (Figure 1b). As for the seismic vulnerability
of the arches, the model developed by Giuriani et al. [9] has furnished evaluations of
both the tie over-tension and the collapse multiplier in the transverse arch rocking con-
dition. An accurate assessment of the tensile stress in the tie-rod must be linked with
calculation tools with the aim of keeping the structural element in the elastic range and
limiting the global deformation of the arch rocking mechanism, such as those implemented
by Fraternali et al. [35], Fraternali [36,37] and Milani and Tralli [38]. Yet, with flourish-
ing sensing technology and computing power for applications in the field of SHMA [39],
vibration-based tensile stress evaluation methods in tie-rods have been combined with
hybrid numerical and experimental approaches, optimization techniques or with the use of
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new devices. In particular, to propose identification procedures that are computationally
straightforward (the numerical framework has to be easy to implement), the following al-
gorithms have been introduced: the Genetic Algorithm and the Artificial Neural Networks,
as illustrated in Figure 4 and Section 3.3.
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3.1. Investigations Including Traditional Methods

In the last decades, static and dynamic nondestructive methods have been developed
for tie-rods in which the reference model has firstly been assumed to simply be a supported
beam with rotational end constraints with the goal of reproducing the incidence that the
masonry offers to the parts of the element merged within the walls [4,5,22,40–45]. Static
approaches have made use of deflections (and/or deformations) along the tie-rod, subjected
to one or more point loads, with an accuracy usually equal to 0.01 mm. In references [5,40],
a point load was applied at the midspan and deflections, as well axial deformations at the
two opposite sides of the cross section; these were measured at three positions, giving rise
to nine different measurements. In detail, Beconcini [42] suggested three distinct static
tests with deflections measured at the quarter sections of the tie-rod. Later on, the tensile
stress can be obtained by minimizing the sum of the square errors between the analytical
and experimental data. Instead, Tullini et al. [22] presented a static approach that made
use of the deflections recorded at three specific cross sections in a three-point bending
test. Accordingly, the axial stress as well as the flexural stiffness coefficients of the end
constraints were estimated if the restraints had infinite translational stiffness (which is
a restrictive supposition). Conversely, in dynamic approaches, researchers resorted to
vibration experiments, making use of the beam model parameters. In references [4,41],
an approximate method was presented which uses both static deflections and natural
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frequencies. Using the first three natural frequencies, a numerical method was instead
implemented by Lagomarsino and Calderini [43] on the basis of a minimization procedure
of an error function. Moreover, in reference [45], the analytical solution of the beam
vibration and the Rayleigh–Ritz method were adopted to predict the natural frequencies of
the tie-rod as a function of the tensile stress according to numerical simulations.

More sophisticated models have made use of FE-based calibration formulas where
the unknown parameters have included the tie-rod length, concentrated masses, and an
elastic Winkler foundation simulating the interconnection between the tie-rod and masonry
wall [26,46–48]. Furthermore, Campagnari et al. [49] developed a FE model based on the
experimental identification of the tie-rod mode shapes and eigenfrequencies at a specific
number of cross sections. Unfortunately, no uniqueness of estimated parameters may arise
in these approaches. In fact, tie-rod extremities are merged in masonry walls, making the
length and the position of the restraints doubtful, so that the corresponding stiffness can
hardly be determined.

To overcome the aforementioned problems, Tullini [23], Li et al. [50], Li et al. [51],
Maes et al. [52], Rebecchi et al. [53] and Duvnjak et al. [54] presented some methods to eval-
uate the tensile stress in tie-rods with unknown boundary conditions. These approaches
allowed us to overtake the issue of determining the effective length that is free to vibrate,
the end constraints and the masses of the junction systems made to tighten the tie-rods
(typical of the traditional methods). In particular, Maes et al. [52] and Rebecchi et al. [53]
evaluated the axial stress of a tie-rod with known flexural stiffness, making use of any
vibrational bending frequency and five amplitudes of the related mode shape. Duvn-
jak et al. [54] developed a vibrational approach that combines on-site measurements and a
numerical-updating technique based on the tie-rod model with unknown flexural stiffness
and boundary conditions. Vice versa, the experimental investigation of ancient tie-rods ex-
ecuted by Calderini et al. [55] indicated that a mean estimated elastic modulus comparable
to that of modern steel (209 GPa) may occur, but with a considerable standard deviation of
76 GPa, and a variation coefficient of around 36%.

The procedure elaborated by Tullini and Laudiero [44] and Rebecchi et al. [53] has been
practically improved by some researchers. E.g., Rainieri and Fabbrocino [28] developed
an automated operational modal analysis algorithm for vibration-based tensile stress
evaluation according to dynamic measurements, which also made the technique suitable for
continuous monitoring rather than periodic checks only. The procedure has also provided
interesting opportunities for cheap and fast quality checks during the construction phase.
Gentile et al. [56,57] estimated the tensile stress in 112 tie-rods of the Milan Cathedral using
only their fundamental frequency. In particular, among the 112 tie-rods, the anomalous
phenomenon of the splitting of fundamental frequency was observed on 2 tie-rods, which
was then associated with the presence of small damages, i.e., thin cracks corresponding to
the welding joints [57]. Cescatti et al. [58] executed numerous laboratory and numerical
tests by considering a set of 224 configurations of tie-rods, including different methods of
vibration, boundary conditions and stress states, observing that pertinent errors may occur
for high tensile forces only. This result has been related to the problem of recording small
vibrations when increasing values of the tensile force make the tie-rod stiffer and stiffer [23].
Rainieri and Aenlle [59] instead investigated the accuracy of the method proposed by
Rebecchi et al. [53]. Specifically, 27 FE models of tie-rods with different end constraints,
lengths and axial stress values have been examined. The inaccuracy in the estimation of
the flexural stiffness has been taken into account by assuming a 14% underestimation of
the elastic modulus of the metallic material. Conversely, the error in the material density
evaluation has been considered to be equal to 0.6%. Also, an error of ±1%, affecting
the fundamental frequency of the 27 FE models, has been assumed. Thus, the influence
of measurement errors on axial stress estimations has been lower than 4%. Similarly,
Tullini et al. [60] studied the accuracy of the procedure. The influence of measurement
errors, as well as of inaccurate estimates of the flexural stiffness on the accuracy of the
tensile stress identification, have been considered. For the natural frequencies and mode
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shape amplitudes, measurement errors of ±1% have been assumed, whilst an error of
15% with respect to the elastic modulus value has been considered. Furthermore, it has
been underlined that the reliability of tensile stress identification, using one flexural mode
shape, relies on the measurement errors rather than on accurate guesses regarding the
elastic modulus. Very interesting is also the vibration-based method presented by Ruccolo
and Gentile [61], which differs from the one developed by Tullini and Laudiero [44], since
the elastic modulus has been considered to be unknown, whilst the natural frequencies of
higher modes have been utilized to solve the inverse problem. The practical application
has been demonstrated with reference to the long-term monitoring of some tie-rods in the
Milan Cathedral, showing the higher tensile stress state (>100 MPa).

The results of the aforementioned works have made evident that the traditional
vibration-based methods have been implemented by formulating increasingly accurate
reference models, i.e., from simply supported beams with known flexural stiffness and
rotational end constraints [4,5,22,40–45] to those with unknown flexural stiffness and
rotational and translational boundary conditions [54,61]. It is also worth noting that
the operational modal analysis algorithm proposed by Rainieri and Fabbrocino [28] has
opened the path to the creation of long-term vibration-based procedures designed on a
one-system-per-tie-rod basis [61]. Environmental conditions, mainly related to the changes
in temperature, relative humidity and moisture states which, in turn, may influence the
vibration modes of tie-rods, could be assumed within the continuous automatic vibration-
based stress identification approaches [62].

3.2. Investigations Including Methods Combined with New Devices

With the numerous advances in sensor technology, the idea of extracting the dynamic
parameters of tie-rods using a new device has been attempted, since traditional methods
typically demand quite a high number of vibration sensors (Section 3.1). In the work
presented by Resta et al. [63], acoustic measurements were adopted as the source of excita-
tion for the frequency response estimation of tie-rods. Specifically, two general-purpose
microphones were introduced to efficiently substitute more complex and expensive sensors.
Camassa et al. [29] instead suggested the non-contact approach based on the interfero-
metric radar since only a few number of sensors are required to be deployed. Laboratory
experiments have demonstrated that, provided that a suitable dynamic evaluation model is
used, tensile stress identifications from interferometric radar measurements indicate a very
high level of accuracy (i.e., with a mean estimation error <2%), which are comparable with
identifications accelerometric measurements. Clearly, the use of the interferometric radar
has the advantage of being economical efficient, and quick compared with the traditional
approaches (Section 3.1) and especially in the case of tie-rods which are hardly accessible.

3.3. Investigations Including Methods Combined with Artificial Intelligence Approaches

The nondestructive method proposed by Garziera et al. [64] consists in matching the
first six natural frequencies of the tie-rod with the corresponding numerical ones. This
technique has been executed using an optimization algorithm where the tie-rod length,
the presence of point masses along it and an elastic foundation at the restraints are the
optimization parameters. Thus, the tensile stress is obtained by an algorithm which
minimizes the difference between the experimental and numerical results on the basis of
the selection of multiple parameter combinations. Gentilini et al. [65] declared to evaluate
the tensile stress, elastic modulus and rotational stiffness at both restraints of a tie-rod on
the basis of a dynamic impact test, added masses and Genetic Algorithm. Particularly, the
identifications are driven by the Genetic Algorithm in which the objective function is a
metric of the discrepancy between the experimentally determined and the numerically
calculated natural frequencies of some modified systems achieved from the tie-rod by
adding a point mass at specific locations. Conversely, De Falco et al. [66] focused on a
sensitivity analysis of the eigenfrequency computing model on which most of the dynamic
tie-rod axial stress evaluation methods have been based. Using the application of general
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Polynomial Chaos Expansion and the calculation of Sobol’ indices, the influence of the
flexural stiffness and boundary conditions on the eigenfrequencies of generic tie-rods has
been studied. Makoond et al. [67] instead presented a vibration-based method employing
Artificial Neural Networks for tie-rods containing discontinuities or irregularities, i.e., in
the presence of connectors which unify historical tie-rods made from many segments. In
particular, this hybrid approach can be applied to any historical tie-rod by applying a
data-driven procedure to a dataset developed through an FE method.

The aforementioned advances have indicated that vibration-based methods combined
with AI applications and/or algorithms have been generated to let the tensile stress predic-
tions become more efficient and with strict accuracy. In particular, in the work proposed
by Makoond et al. [67], more realistic conditions of historical tie-rods were considered.
Furthermore, the approach of the FE simulations has commonly been utilized to calculate
the dynamic parameters according to the AI algorithms [65,67]. To summarize Section 3,
the main characteristics and information (i.e., year, type of approach, type of test, required
and model unknown parameters) of the works conducted worldwide for the axial stress
evaluation in tie-rods, above illustrated, have been listed in Tables 1 and 2.

Table 1. Nondestructive traditional methods for evaluating the axial stress in tie-rods (Section 3.1).
Note: the contributions have been listed based on the publication year.

Reference Year Approach Type of Test Required Parameters Model Unknowns

Briccoli Bati et al. [40] 1992 Static Bending test Flexural deflections Rotational boundary conditions

Blasi and Sorace [41] 1994 Static-dynamic Bending and free
vibration test

Flexural deflections and
natural frequencies Rotational boundary conditions

Beconcini [42] 1996 Static Bending test Flexural deflections Rotational boundary conditions

Sorace [4] 1996 Static-dynamic Bending and free
vibration test

Flexural deflections and
natural frequencies Rotational boundary conditions

Briccoli Bati and Tonietti [5] 2001 Static Bending test Flexural deflections Rotational boundary conditions

Fraternali et al. [35] 2002 Numerical Seismic analysis Flexural mode shapes —

Lagomarsino and Calderini [43] 2005 Pure dynamic Free vibration test First three natural frequencies Rotational boundary conditions

Tullini and Laudiero [44] 2008 Pure dynamic Free vibration test Flexural natural frequencies Rotational boundary conditions

Giuriani et al. [9] 2009 Analytical Seismic analysis Flexural mode shapes —

Amabili et al. [46] 2010 Numerical FE vibration analysis Flexural mode shapes Boundary conditions, length

Fraternali [36] 2010 Numerical Seismic analysis Flexural mode shapes —

Fraternali [37] 2011 Numerical Seismic analysis Flexural mode shapes —

Li et al. [50] 2011 Pure dynamic Free vibration test Flexural natural frequencies Boundary conditions, length

Milani and Tralli [38] 2012 Numerical Seismic analysis Flexural mode shapes —

Tullini et al. [22] 2012 Static Bending test Flexural deflections Rotational boundary conditions

Li et al. [51] 2013 Pure dynamic Free vibration test Flexural natural frequencies Boundary conditions, length

Maes et al. [52] 2013 Pure dynamic Free vibration test Flexural natural frequencies Boundary conditions, length

Rebecchi et al. [53] 2013 Pure dynamic Free vibration test Flexural natural frequencies Boundary conditions, length

Tullini [23] 2013 Static Bending test Flexural deflections Boundary conditions, length

Manzoni et al. [26] 2014 Numerical FE vibration analysis Flexural mode shapes Boundary conditions, length

Belleri and Moaveni [45] 2015 Numerical Vibration analysis Natural frequencies Rotational boundary conditions

Rainieri and Fabbrocino [28] 2015 Pure dynamic Ambient vibration test Flexural natural frequencies Boundary conditions, length

Ottoni and Blasi [47] 2016 Numerical FE vibration analysis Flexural mode shapes Boundary conditions, length

Campagnari et al. [49] 2017 Numerical-dynamic FE and free vibration test Flexural mode shapes Boundary conditions, length

Collini et al. [48] 2017 Numerical FE vibration analysis Flexural mode shapes Boundary conditions, length

Gentile et al. [56] 2017 Pure dynamic Free vibration test Fundamental frequency Boundary conditions, length

Cescatti et al. [58] 2019 Pure dynamic Free vibration test Flexural natural frequencies Boundary conditions, length

Gentile et al. [57] 2019 Pure dynamic Free vibration test Fundamental frequency Boundary conditions, length

Duvnjak et al. [54] 2020 Numerical-dynamic Numerical and free
vibration test Flexural natural frequencies Boundary conditions, flexural

stiffness, length

Ruccolo and Gentile [61] 2023 Pure dynamic Free vibration test Higher natural frequencies Boundary conditions, flexural
stiffness, length
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Table 2. Nondestructive methods combined with new devices and artificial intelligence approaches
for evaluating the axial stress in tie-rods (Sections 3.2 and 3.3). Note: the contributions have been
listed based on the publication year.

Reference Year Approach Type of Test Required Parameters Model Unknowns

Garziera
et al. [64] 2011 Numerical-dynamic combined

with an AI approach
Numerical and free

vibration test
First six natural

frequencies
Boundary

conditions, length

Gentilini
et al. [65] 2013 Numerical-dynamic combined

with an AI approach FE and free vibration test Natural frequencies Rotational boundary
conditions, flexural stiffness

Resta
et al. [63] 2020 Pure dynamic with the use

of microphone Free vibration test Natural frequencies Boundary
conditions, length

Camassa
et al. [29] 2021 Pure dynamic with the use of

interferometric radar Free vibration test Natural frequencies Boundary
conditions, length

De Falco
et al. [66] 2021 Numerical-dynamic combined

with an AI approach
Numerical and free

vibration test Natural frequencies Boundary conditions,
flexural stiffness, length

Makoond
et al. [67] 2022 Numerical-dynamic combined

with an AI approach FE and free vibration test Natural frequencies Boundary
conditions, length

4. Works Conducted for Structural Members by Researchers Worldwide

The deformations and geometric shapes of space frames and roof trusses are directly
influenced by the axial stresses in their structural members [68]. Because of the uncertainties
regarding dead loads, internal restraints and boundary conditions, accurate axial stress
identifications are relevant in order to assess the safety conditions of the entire space
structure (Figure 1a). Similarly to what has been developed for tie-rods (Section 3.3),
vibration-based axial stress evaluation methods have been combined with hybrid numerical
and experimental approaches, or multi-objective optimization techniques. Specifically, the
following algorithms have been established: the Genetic Algorithm and the PSO algorithm,
as described in Figure 5 and Section 4.2.
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4.1. Investigations Including Traditional Methods

Stress identification in axially loaded structural members with any given translational
and rotational boundary conditions has firstly dealt with the use of FE simulations matched
with model updating procedures. In references [69–75], experimental vibration responses
of the entire space structure were adopted to identify the axial stress in all beam members,
but the accuracy highly depends on the uncertainty of the FE model. Yet, a weighted
least-squares evaluation approach has been proposed by Livingston et al. [69] which
alternatively uses the two or three lowest natural frequencies, or the two lowest frequencies
with their corresponding mode shapes. Also, to identify both plane- and space-frame forces,
sensitivity-based methodologies have been employed in Greening and Lieven [70], Bahra
and Greening [71] and Park et al. [72].

The methods presented by Li et al. [50], Li et al. [51], Maes et al. [52] and Rebec-
chi et al. [53], as previously described in Section 3.1, have secondly been proposed for
any beam or truss member with uncertain boundary conditions, such as diagonal braces,
short thick cables and struts, and with good precision. FE simulations have been employed
to verify the theoretical formulations, accounting for different sensor positions, several
utilizations of dynamic parameters and the boundary conditions, but the methods, as
explained in Section 3.1, fail in the presence of high values of tensile stress. Subsequently,
Lechner et al. [76] investigated the procedure for estimating axial stress in timber beams
using vibrational bending measurements, whereas Li et al. [77] improved such a method
based on the modified Timoshenko beam theory. In any case, the flexural mode shape of
the member to be used in the evaluation process must be properly measured and selected.
This issue may not be straightforward for a space structure, where the global modes could
interfere with the local modes of the beam/s under investigation. In fact, in the work
performed by Luong et al. [78], a preliminary global modal analysis of the space structure
is required to determine potential local modal shapes on individual members at closely
spaced frequencies. Conversely, Irawan et al. [79] underlined that the estimation error of
axial stresses in the compression and tension members belonging to a steel truss varies
from 0.26% to 1.99% and from 0.2% to 2.41%, respectively. Nevertheless, these methods
require numerous sensors and are particularly sensitive to the selected vibration mode
shapes [80]. Kernicky et al. [80] have refined these approaches to integrate six or more
natural frequencies, which can be measured through one accelerometer only. Notwith-
standing this, this methodology is very challenging to apply to a rigid, short, member-like
component because the high-order vibration modes of such elements are hardly activated.

Hermansen and Thomsen [81] suggested two vibration-based methods to evaluate
the linear boundary stiffness and damping of structural members, whilst simultaneously
identifying their tensile stresses. An evaluation was executed by fitting the model boundary
parameters to the recorded modal vibration data. Yet, Brøns and Thomsen [82] suggested
a technique which consists in attaching an external mass with rotational inertia to one
beam restraint. According to this concept, the natural frequencies of the structural member,
measured by a single sensor only, change without varying the boundary stiffness and
axial tensile stress. Combined with a few repetitions of frequency measurements without
the external mass, the procedure furnishes information to be used in a regression model,
without imposing additional unknown parameters. The external mass adds a known
asymmetry, allowing a distinction between left and right, and for each added mass the
number of experimental frequencies needed to achieve a reliable evaluation is roughly
halved. Conversely, the problem of evaluating axial stress in members with non-uniform
cross sections and unknown boundary conditions has been investigated by Zhang et al. [68].
Primarily, a dynamic coefficient was inserted into an inverse model of a stepped beam with
elastic supports to overtake the numerical buckling often encountered in conventional exact
methods. Subsequently, a new approach has been established to estimate the measurement
error of the axial stresses in a real stepped beam through the inverse analysis of unknown
boundary condition parameters using only one or two measured frequencies.
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The findings of the above-mentioned researchers have underlined that there has been
a significant implementation up to now, since Zhang et al. [68] explored predicting axial
stress in members with non-uniform cross sections and unknown end constraints. Fur-
thermore, Kernicky et al. [80] and Brøns and Thomsen [82] have reduced the number
of sensors to be mounted to one, thus decreasing the time needed for on-site instru-
mentation (which is typically related to large buildings). However, such nondestructive
approaches still remain sensitive to the selected vibration mode shapes of the member/s
under investigation [50–53,76–79] and unworkable when the member/s belonging to the
space structure is/are rigid and short. Moreover, according to the literature review, no
long-term vibration-based stress estimation method designed on a one-system-per-space
structure basis has been developed yet.

4.2. Investigations Including Methods Combined with Artificial Intelligence Approaches

The inverse method proposed by Talic et al. [83] consists in identifying dynamic param-
eters, including damping, as well as the axial stress from a few vibrational measurements
along a structural member, modelled as an Euler–Bernoulli beam, using a multi-objective
optimization formulation and solved via a Genetic Algorithm. To calculate output errors,
the Euler–Bernoulli equation was discretized through finite differences in space and time,
and reformulated to a state space system. The identifiability was additionally verified
by checking the regularity of the Fisher information matrix. Yet, the methodology imple-
mented by Luong et al. [84] also allowed us to identify the joint rigidity of axially loaded
members belonging to generic space trusses using vibrational responses. In detail, the
procedure has been based on the FE model updating combined with nature-inspired opti-
mization techniques, particularly the PSO. The numerical model of the space truss has been
calibrated through natural frequencies and mode shapes from free vibration tests, as well
as additional information of the axial stress in the specific members based on the identified
experimental modal parameters. Regarding the modeling of the joints, the numerical
model of the space truss incorporates rotational springs of variable stiffness to describe the
semi-rigid connections. Also, a fixity coefficient has been established for the joint flexibility
evaluation. Subsequently, the researchers have calibrated the model of the space truss
through a Genetic Algorithm and specific validation criteria [85]. In this case, the validation
criteria have been established according to the identified natural frequencies and five am-
plitudes of the corresponding local mode shapes of the single members under investigation.
Similarly, a PSO-algorithm-based axial stress and boundary rigidity evaluation approach
has been proposed by Ding et al. [86] for structural members of space structures using
multi-order natural frequency measurements. Furthermore, Dudenhausen et al. [87] also
investigated an identification method on the basis of an iterative optimization procedure ca-
pable of determining the axial stress acting in compression members. In particular, a series
of dynamic parameters, including the compressive stress, have iteratively been adjusted
until the best agreement between the vibrational measurements and a theoretical analysis
was gained. A deviation function has been established and an innovative algorithm—in
this case facilitating a PSO—has been adopted to solve the optimization procedure. Six steel
beam specimens have been tested in the laboratory under four distinct compressive stresses
each. The average deviation over all the 24 experiments between the optimized stress and
the effective one directly measured by a load cell was obtained as 7.4%.

The aforementioned progress has shown that the vibration-based methods combined
with AI optimization techniques and algorithms have mainly been capable of identifying
the joint rigidity and axial stress acting along structural members of space structures with
rigorous procedures [84–86]. Notably, in the work presented by Dudenhausen et al. [87],
the axial stress prediction in compression members has been investigated with signifi-
cant improvements in terms of data interpretation. To synthesize Section 4, the principal
characteristics and information (i.e., year, type of approach, test structure, type of test, re-
quired and model unknown parameters) of the works conducted worldwide for axial stress
prediction in structural members, above described, have been itemized in Tables 3 and 4.
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Table 3. Nondestructive traditional methods for evaluating the axial stress in structural members
(Section 4.1). Note: the contributions have been listed based on the publication year.

Reference Year Approach Test Structure Type of Test Required Parameters Model Unknowns

Livingston
et al. [69] 1995 Numerical-dynamic Space structure FE and free

vibration test
Two or three lowest
natural frequencies

Boundary
conditions, length

Greening and
Lieven [70] 2003 Numerical-dynamic Space structure FE and free

vibration test
Two or three lowest
natural frequencies

Boundary
conditions, length

Bahra and
Greening [71] 2006 Numerical-dynamic Space structure FE and free

vibration test
Two or three lowest
natural frequencies

Boundary
conditions, length

Park et al. [72] 2006 Numerical-dynamic Space structure FE and free
vibration test

Two or three lowest
natural frequencies

Boundary
conditions, length

Flores et al. [73] 2007 Numerical-dynamic Space structure FE and free
vibration test

Two or three lowest
natural frequencies

Boundary
conditions, length

Bahra and
Greening [74] 2009 Numerical-dynamic Space structure FE and free

vibration test
Two or three lowest
natural frequencies

Boundary
conditions, length

Bahra and
Greening [75] 2011 Numerical-dynamic Space structure FE and free

vibration test
Two or three lowest
natural frequencies

Boundary
conditions, length

Li et al. [50] 2011 Pure dynamic Space truss Free vibration test Flexural natural
frequencies

Boundary
conditions, length

Lechner
et al. [76] 2013 Pure dynamic Timber beam

member Free vibration test Flexural mode shapes Boundary
conditions, length

Li et al. [51] 2013 Pure dynamic Space truss Free vibration test Flexural natural
frequencies

Boundary
conditions, length

Maes et al. [52] 2013 Pure dynamic Space truss Free vibration test Flexural natural
frequencies

Boundary
conditions, length

Rebecchi
et al. [53] 2013 Pure dynamic Space truss Free vibration test Flexural natural

frequencies
Boundary

conditions, length

Turco [21] 2013 Static Space frame
or truss Bending test Flexural displacements Boundary

conditions, length

Irawan
et al. [79] 2014 Pure dynamic Space structure Free vibration test Flexural mode shapes Boundary

conditions, length

Li et al. [77] 2017 Pure dynamic Space truss Free vibration test Flexural mode shapes Boundary
conditions, length

Bonopera
et al. [24] 2018 Static Space frame Bending test Flexural displacements Boundary

conditions, length

Bonopera
et al. [25] 2018 Static Space truss Bending test Flexural displacements

Rotational
boundary
conditions

Hermansen and
Thomsen [81] 2018 Pure dynamic Beam member Free vibration test Flexural natural

frequencies
Boundary

conditions, length

Kernicky
et al. [80] 2018 Pure dynamic Space structure Free vibration test First six (or more)

natural frequencies
Boundary

conditions, length

Luong
et al. [78] 2018 Numerical Space structure Vibration analysis Flexural mode shapes Boundary

conditions, length

Brøns and
Thomsen [82] 2020 Pure dynamic Beam member Free vibration test Flexural natural

frequencies
Boundary

conditions, length

Zhang
et al. [68] 2023 Pure dynamic Stepped beam

member Free vibration test Flexural natural
frequencies

Boundary
conditions, length
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Table 4. Nondestructive methods combined with artificial intelligence approaches for evaluating the
axial stress in structural members (Section 4.2). Note: the contributions have been listed based on the
publication year.

Reference Year Approach Test
Structure Type of Test Required Parameters Model Unknowns

Talic et al.
[83] 2015 Analytical-dynamic combined

with an AI approach
Beam

member
Analytical and

free vibration test Natural frequencies Boundary
conditions, length

Luong et al.
[84] 2017 Numerical-dynamic combined

with an AI approach Space truss FE and free
vibration test

Flexural mode shapes
and natural frequencies

Rotational
boundary conditions

Luong et al.
[85] 2017 Analytical-dynamic combined

with an AI approach Space truss Analytical and
free vibration test

Flexural mode shapes
and natural frequencies

Boundary
conditions, length

Ding et al.
[86] 2020 Analytical-dynamic combined

with an AI approach
Space

structure
Analytical and

free vibration test Natural frequencies Boundary
conditions, length

Dudenhausen
et al. [87] 2023 Analytical-dynamic combined

with an AI approach

Compression
beam

member

Analytical and
free vibration test Flexural mode shapes Boundary

conditions, length

5. Conclusions and Suggestions

The research works carried out worldwide on evaluating stress in the axially loaded
tie-rods of masonry buildings and structural members of space structures have been
described in this article (Figure 1a,b). Numerous dynamic-based prediction methods,
which rely on modal characteristics (damping, mode shape and natural frequency) as axial
stress-sensitive features, have been developed, resulting in several findings. In particular,
the methods have been analyzed from three categories, including the investigations into
traditional ones, new devices and combinations with AI approaches (Figures 4 and 5).
The latter mainly consists of hybrid methods, optimization techniques and deep learning
algorithms (Artificial Neural Networks, Genetic Algorithm and PSO algorithm). Early in
the text, a brief progress overview, i.e., from indirect measurements in the field of SHMA to
combinations with AI approaches, was presented (Section 2). The reviewed studies have
also been analyzed in terms of type of approach, test structure, type of test and required
and unknown parameters (Tables 1–4). Within the limitations of this work and according to
the literature review conducted, the following have been summarized as major conclusions:

• The development of long-term automatic dynamic-based approaches designed on a
one-system-per-tie-rod or space structure basis is encouraged, since variations in tem-
perature, relative humidity and moisture conditions may influence the corresponding
modal characteristics.

• The development of dynamic-based methods for tie-rods and structural members with
non-uniform cross sections and unknown boundary conditions is also encouraged. In
the case of handmade traditional tie-rods, non-homogeneities and non-uniform cross
sections can be present.

• Researchers have started to combine AI approaches with traditional dynamic-based
methods to develop evaluation techniques that require a lower need for data prepro-
cessing or hand-crafted feature extraction, thus decreasing the time needed for the
overall process (Sections 3.3 and 4.2). In terms of shorter computational time, the
Artificial Neural Networks are preferred over the metaheuristic approaches, i.e., the
Genetic Algorithm and the PSO algorithm [88].

• The traditional dynamic-based methods remain sensitive to the selected mode shapes
of the tie-rod or structural member and, unfortunately, fail in the presence of high axial
stress values. This is related to the difficulty of measuring small vibrations when in-
creasing the values of axial stress makes the element stiffer and stiffer. Furthermore, the
impact force cannot be indefinitely increased if yielding must be prevented [60]. There-
fore, the mode shape must be properly selected. In this respect, Rebecchi et al. [53]
suggested choosing flexural mode shapes with amplitudes with the same sign. On the
contrary, local mode shapes close to a straight line must be disregarded. A dynamic-
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based method combined with an AI approach can make the evaluation procedure
somewhat feasible (Sections 3.3 and 4.2).

• The traditional dynamic-based methods could be impracticable when the structural
members are rigid and short. In this case, the combination with an AI approach can
properly be employed. Vice versa, if the combination is made with a static-based
vertical deflection method, a suitable way to apply the point load along the span
member must be found (Section 4.1).
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