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Abstract: The stay cable is one of the most critical structural components of a cable dome structure.
However, during its service life, it may lose its stiffness due to environmental factors and metal
fatigue, thus making the structure a safety hazard. As the most important mechanical physical
parameter of the cable, it is necessary to create a health-monitoring method to ensure the safety of the
structure. In this study, a smart cable with a fiber optic Bragg grating (FBG) sensor is proposed. The
sensor is embedded in the Z-shaped cable of the stay cable to ensure the simultaneous deformation of
the sensor and cable. The monitoring of the cable force can be achieved after obtaining the relationship
coefficient between the sensor and the cable force. In the rest of the paper, the sensing principle and
fabrication procedure are described. A series of tests are conducted to verify the sensing performance
of the smart cable. Finally, the dynamic monitoring and long-term monitoring of the cable force in
the cable-supported grid system of Dalian Suoyuwan Football Stadium are carried out by using the
smart cable, and the stability and safety of the structure are evaluated by the monitoring results.

Keywords: cable dome structure; cable force; fiber Bragg grating (FBG); smart cable

1. Introduction

The cable dome structure is a new type of long-span space structure developed by
American engineer Geiger in the 1980s on the basis of the Fuller tensioner structure. It is a
tensioner integrated system based on the principle of tension and compression coexistence,
which connects continuous cables with discontinuous rods. During the tensile phase of
the structure, pre-stressing the cable is required to provide the necessary stiffness. In the
operation phase of the structure, the cable plays the role of stabilizing the structural stiffness,
maintaining the tensile shape of the structure and providing the load-bearing capacity of
the structure. However, at this stage, the structure usually loses stiffness due to adverse
factors, such as vibration [1,2], corrosion [3–5], impact [6,7], crack [8,9], etc. [10]. Wind load
is the main control load of the flexible structure formed by the cable and support [11], and
the response of the structure under load is very sensitive. In recent years, the failure cases
of some long-span cable-supported structures under wind load have fully shown that the
cable is the main control and bearing element of the structure, and the cable force is an
important control parameter in the tension and operation stage of the structure, which is of
great significance to the shape and safety of the structure. Real-time dynamic monitoring of
the cable force is of great significance to the safe construction and operation of the structure.

At present, the main methods of cable-force monitoring include oil pressure gauge
measurement [12], magnetic flux measurement [13] and vibration measurement [14]. Oil
pressure gauge method is usually used in the tension stage of the structure, using the oil
pressure gauge and adjusting the pre-stressed jack to measure the cable force. Although this
method is very mature and has a highly costly performance, it can only be monitored in the
tensioning stage and cannot meet the needs of cable-force monitoring in the operation stage.
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Magnetic flux method is a method that uses a small electromagnetic sensor placed on
the cable to measure the change of magnetic flux and calculates the cable force according to
the relationship between the cable force, temperature and the change of magnetic flux [15].
The defect of this method is that it is easily affected by electromagnetic interference, and
the magnetism of ferromagnetic materials is easily affected by chemical composition,
organizational structure, impurities, defects, non-uniformity of materials, temperature,
wire twisting, etc., resulting in uneven measurement zero points and the need to correct the
temperature. Therefore, although its precision is suitable for the cable-force monitoring of
cable-stayed bridges, its measurement accuracy cannot meet the requirements of cable-force
monitoring in cable dome structures under a complex environment.

The method of vibration measurement of the vibration frequency is to use the me-
chanical parameters of the cable, establish the structural model of the cable, carry out
modal analysis to obtain the relationship between the frequency [16] and the cable force,
and convert the cable force by measuring the natural vibration frequency of the cable
according to the different excitation methods for measuring the cable vibration; the fre-
quency method can be divided into artificial excitation method and random excitation
method. When the artificial excitation method is used to measure the vibration frequency
of the cable, the method of artificial excitation should be used to make the cable vibrate
at a single fundamental frequency. The random vibration method is used to measure the
vibration frequency of the cable by the wind, bridge floor vibration and other random
excitation sources. Then, the vibration signal of the cable under artificial excitation and
random excitation is obtained by the acceleration sensor [17], and the frequency spectrum
of the vibration signal is analyzed by the spectrum analyzer to obtain the fundamental
frequency of the cable, or the fundamental frequency is calculated by the first several orders
of the vibration frequency of the cable. The frequency method can only be an artificial
and temporary measurement and cannot realize the long-term real-time monitoring of
the cable. Meanwhile, the measurement results are easily interfered by various external
factors. This method is often affected by sag, slope and other factors related to cable force
measurement results. The results of cable force measurement by frequency method are
related to the installation position of the vibrator, whether the cable vibrates or not, the
span, sag, slope and boundary conditions of the cable, etc. The signal processing is also
relatively complicated and cannot achieve all-weather real-time monitoring. In addition,
due to the complexity of cable connections in the cable dome structure, the distribution of
cable forces before and after the cable clamps is different, so in order to ensure the safety
of the cable dome structure, a real-time dynamic and distributed cable-force monitoring
method is needed.

Fiber Bragg Grating (FBG) sensors have been widely used for practical engineering
in the past two decades over the world [18]. The periodic grating inside the FBG changes
the wavelength of the reflected light according to the surrounding environment, and this
property is used to measure the change of physical quantities in the axial direction of the
fiber. In addition, due to its small size, lightweight property, shape malleability, high sensi-
tivity, corrosion resistance, and resistance to electromagnetic interference, this technology
can achieve real-time, dynamic, and long-term measurements of various physical quanti-
ties [19]. However, since the FBG sensor cannot be mounted on the cable without a support
structure [20], in order to synchronize the deformation of the sensor with the object to be
measured, it is necessary to weld or bond the sensor to the object to be measured by means
of a base. Based on the above information, in this paper, the authors have innovatively
used the method of embedding the FBG sensor into the Z-shaped cable of the stay cable to
achieve a consistent deformation of the FBG sensor with the stay cable.

In this paper, a novel, smart stay cable based on FBG sensors is proposed. The smart
cable is designed so as to achieve the simultaneous deformation of the sensor and the
diagonal cable by embedding FBG sensors into the Z-shaped cable with an inscribed
groove. The second section describes, in detail, the sensing principle and manufacturing
process of the smart cable. The third section verifies the performance of the smart cable
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through calibration tests and accuracy tests. Finally, the application case of cable-force
monitoring in Dalian Suoyuwan Football Stadium proves that the smart cable meets the
needs of a real-time, dynamic and long-term monitoring of the cable force by the cable
support grid system.

2. Fabrication Procedure of Smart Cable

In this section, the measurement principle and structural design of the smart cable
were described. The implementation of the distributed measurement of the cable force by
smart cables is also described in detail.

2.1. Measurement Principle of Smart Cable

FBG sensors are sensed by modulation of the central wavelength of the FBG by
external variables. According to the FBG diffraction principle, when a beam of light enters
the grating, only a specific wavelength of light is reflected, and the rest of the wavelength
continues to travel through the FBG without loss, as shown in Figure 1.
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Figure 1. Flowchart of the study process.

The wavelength λ at the peak of the reflected light wave is:

λ = 2nΛ (1)

In Equation (1) [21], n is the refractive index of the fiber core to the central wavelength
in free space, and Λ is the period of the phase mask grating. The initial wavelength λ0 of the
FBG sensor can be measured using a fiber grating demodulator. When the strain εg changes,
the elasto-optical effect causes a change in the refractive index and period stretching of the
grating. The FBG strain ε is related to the strain εm of the monitored substrate (steel strand)
by the strain transfer rate β. The difference between the initial wavelength and the central
wavelength is the wavelength drift of the FBG ∆λ. The relationship between the strain and
the wavelength drift is as follows:

∆λ = K ∆λ = Kεβεm = Kε
′εm (2)

In Equation (2) [21], Kε is the FBG strain sensitivity, and Kε’ is the FBG monitoring
strain sensitivity, which can be determined by calibration. The relationship between the
strain εm of the monitored substrate and the cable force F is εm = F/EA, where E and A are
the modulus of elasticity and cross-sectional area of the monitored substrate, respectively.
Therefore, the relationship between ∆λ and F can be obtained as follows:

∆λ = Kε
′ F/EA (3)

In Equation (3) [21], the synchronized deformation of the FBG sensor and the cable is
the key to measuring the cable force using the sensor. Since the cable is made of the circular
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center wire shown in Figure 2 and the external Z-shaped cable stranded into a wire, one
only needs to fix the sensor to the external Z-shaped cable through epoxy resin to achieve
the synchronous force and common deformation of the sensor and the cable. Please note
that the red circle in Figure 3 shows the sensor.
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Based on the above theory, this paper develops a notched-embedded smart cable.
The smart cable generates a strain under external load, which is transmitted to the FBG
sensor embedded in the cable of the strand, causing a change in λB. For calibration, Kε

′ is
known using the known F and ∆λ. In use, F is calculated from Equation (3) based on the
∆λ monitored by the FBG sensor to realize the monitoring of the cable force.

In addition, since there are many components connected to the stay cable of the cable
dome structure, a cable will have a different cable force distribution after passing through
the connected components, so obtaining the distributed cable force of the cable is the key
to ensuring the safety of the structure. As shown in Figure 3, the smart cable developed
in this paper only needs to increase the number of sensors in the cable according to the
demand of realizing the distributed cable-force monitoring of the cable.

2.2. Structural Design of Smart Cable

The fabrication procedure of the smart cable can be described as follows:

(1). Before twisting the high vanadium full-locked coil cable, two symmetrical Z-shaped
cables are selected for grooving. The grooving specifications were a 200 mm groove
length, 1 mm groove depth and 0.4 mm groove width.

(2). Twist the Z-shaped cords with grooves to shape them with other cords. After filling
the groove with epoxy resin, put the FBG sensor into the groove ring along the length
and fill it with epoxy resin.

(3). As the epoxy resin is susceptible to weathering and ageing under the sun and high
temperatures, it loses its stress-transfer performance. Therefore, a coating layer is
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added on the outside of the epoxy resin for protection. This process can solve the
problems of an easy fall off and low survival rate of fiber grating and can achieve a
large amount of range monitoring.

(4). The smart cable is fabricated and ready for the calibration test. The strain and wave-
length change values measured at each measurement point are fitted, and if the data
of each fitted curve are all linear with linear correlation coefficients greater than 0.9999
and no hysteresis, this indicates that the smart cable has a high stability and accu-
racy, the strain sensitivity Kεm of the Z-shaped cable derived from calibration has
confidence, and the smart cable can be used for the measurement of the cable force
according to Equation (3).

3. Performance Testing of Smart Cable

In this section, laboratory tests are carried out to verify the smart cable’s sensing
performance, including a calibration test, repeatability test and accuracy test.

3.1. Calibration Test

The smart cable proposed in this paper needs to be calibrated to obtain the strain
sensitivity of the Z-shaped cable in order to achieve real-time cable force measurement. As
shown in Figures 4 and 5, the calibration test is performed at the cable factory. Multiple
gantry cranes are used together to put the smart cable into the over-tensioning test tank by
lifting and installing the safety bolts. The tensile machine specification adopts a 4000 tons
tensile machine, one end of the smart cable is connected with the anchor head of the tensile
machine, and the other end is connected with the fixed end of the slot tail. The fiber optic
sensor of the smart cable is connected to the multi-channel data acquisition instrument
through the extension cable connector to ensure that the data-processing system converts
the strain information into real-time cable-force information. The calibration test was
carried out by means of graded loading of the tensile machine. The smart cable is loaded
continuously from 0 kN to 1600 kN at intervals of 400 kN, with constant loading for 30 s
after reaching the specified pulling force.
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The change of wavelength of the smart cable and the pulling force of the tensile
machine are recorded throughout the whole process, and the linear relationship between
the wavelength and the pulling force is plotted in Figure 6.
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The correlation coefficient R2 between the wavelength and force is obtained by per-
forming a general linear fit on them. The correlation coefficient R2 reaches 0.9999, indicating
a linear correlation between the wavelength of sensors and the force of the stay cables.
The calibration test not only proved the feasibility of measuring the tensile force by the
wavelength of the FBG sensor but also obtained the correlation coefficient between the
wavelength and tensile force.

The residual stresses generated in the steel structure under the influence of external
loads may affect the measurement accuracy of the smart cable. To verify the measurement
stability of the smart cable, the calibration test was repeated five times. The test setup and
loading conditions were the same as for the first calibration test, and the trend of the sensor
wavelength during the change of external load from 400 kN to 1600 kN in the five tests was
recorded; the data of the five tests are plotted in Figures 7 and 8, and the detailed data at
each working condition level are shown in Table 1.
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Table 1. Detailed data for calibration test.

Force/[kN] First Test/[nm] Second Test/[nm] Third Test/[nm] Fourth Test/[nm] Fifth Test/[nm]

400 1560.509 1559.862 1559.790 1559.610 1559.648
600 1561.176 1560.513 1560.452 1560.289 1560.338
800 1561.826 1561.215 1561.169 1561.026 1561.080

1000 1562.465 1561.953 1561.910 1561.775 1561.821
1200 1563.137 1562.672 1562.648 1562.527 1562.568
1400 1563.839 1563.423 1563.430 1563.290 1563.333
1600 1564.609 1564.211 1564.201 1564.072 1564.141

In the five calibration tests, the change of wavelength is about 4.4 nm at the pulling
force change of 1600 kN, which indicates that the residual stress has less influence on the
measurement accuracy and that the stability of the smart cable is good, which meets the
requirements of a stable, accurate and real-time monitoring of the cable force in the cable
support grid system.

3.2. Accuracy Test

According to the specification, the quality of smart cables must be checked by over-
tensioning tests before they leave the factory. With the help of a 4000 kN over-tensioning
test, the accuracy test of the smart cable was carried out. The test setup and the smart cable
are installed in the same way as for the previous calibration test. The comparison curve
between the measured cable force of the smart cable and the real-time tensile force of the
tensile machine is shown in Figure 6, and detailed data for the accuracy test are shown in
Table 2.

Table 2. Detailed data for accuracy test.

Load Level Smart Screw/[kN] Smart Cable/[kN]

1 460 296
2 902 830
3 1273 1252
4 1729 1711
5 2181 2179
6 2657 2618
7 3120 3092
8 3660 3639
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The reason for the large difference in the first stage is that the cable will produce
deflection under its own gravity load, and the pulling force of the tensile machine in the
early stage of loading is used to offset this deflection, which makes the error. In addition to
this, the average error rate for the remaining loading stages is only 0.2%, which indicates
that the smart cable meets the requirements of the cable support grid system for real-time,
dynamic and accurate monitoring of the cable force.

4. Field Application of the Smart Cable

As mentioned above, as the main component of the roof, the stay cable plays a critical
role in ensuring the integrity and safety of the cable support grid system. The smart cable
can record the time history of the cable force. Thus, the health status of the stay cables can
be diagnosed by the collected time history of the cable force.

4.1. Description of the Dalian Suoyuwan Football Stadium

The Dalian Suoyuwan Football Stadium, as shown in Figure 9, is the first stadium to be
surrounded by the sea on three sides in China. The total construction area is approximately
136,000 m2, with 63,000 seats. As shown in Figure 10, the roof structure is a cable support
grid system with stay cables as the main components. The upper layer is an oblique
cross-stabilized cable, and the lower layer is a radial load-bearing cable.
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4.2. Result of Monitoring

As shown in Figure 11, the smart cables are placed at the lower chord radial cables in
the four directions of the roof structure: due east, due west, due south and due north. The
change in the cable force of the smart cable located due north from 7 March to 15 May is
selected for plotting.
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Figure 11. Structural drawing of steel structural roof.

Since the steel structure is cross-sensitive to temperature and load, the diurnal variation
of temperature causes real cable force due to the thermal expansion effect. The long-term
monitoring results in Figure 12 show that the cable force varies cyclically with the daily
temperature change. The maximum value of temperature-induced cable force variation is
about 450 kN, accounting for 3.1% of the cable breaking force of 14,500 kN, which is within
the safety threshold. This indicates that the mechanical state of the structure is stable in the
operation stage and that the influence of temperature on the structure is within a safe and
controllable range.
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Figure 12. Results of the solicitation monitoring.

The specific locations of measurement point one, point two, and point three are shown
in Figure 13. From the change of the curve, it can be seen that the distribution of the cable
force of the cable will have different changes after the cable clamp; furthermore, the trend
of the change of the cable force in different locations is the same, but the amount of change
is not the same. This further demonstrates the importance of a smart cable that can measure
the distributed cable force.
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In summary, the smart cable meets the demand of the real-time monitoring and
long-term monitoring of the cable force for cable dome structures.

5. Conclusions

The function of cables in cable dome structures serving in open-air environments
includes bearing loads and transmitting loads, which results in cables that are prone
to metal fatigue, leading to reduced stiffness and even cases involving cable-breakage
accidents. The current stage of monitoring methods cannot meet the real-time, dynamic,
long-term monitoring of the distributed cable force.

To solve this problem, a smart cable based on FBG sensors is proposed, and its
application in Dalian Suoyuwan Football Stadium is presented. The following conclusions
were obtained from this study: The conversion coefficient between the sensor wavelength
and the force on the cable was extracted by calibration tests. The stability and reliability of
its measurement were verified by repetition tests, and the accuracy of its measurement was
verified by accuracy tests.

The dynamic and long-term monitoring results of Dalian Suoyuwan Football Stadium
show that the smart cable based on an FBG sensor can meet the requirements of an accurate,
dynamic and long-term monitoring of the cable force of the cable dome structure. In
addition, its unique design provides a distributed monitoring of the force of cables.
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