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Abstract: The radiant ceiling cooling system is widely adopted in modern office buildings as it
improves cooling source efficiency and reduces fossil fuel usage and carbon dioxide emissions by
utilizing low-grade natural energy. However, the nonlinear behavior and significant inertia of the
radiant ceiling cooling system pose challenges for control systems. With advancements in computer
technology and artificial intelligence, the deep reinforcement learning (DRL) method shows promise
in the operation and control of radiant cooling systems with large inertia. This paper compares
the DRL control method with traditional control methods for radiant ceiling cooling systems in
two typical office rooms across three different regions. Simulation results demonstrate that with an
indoor target temperature of 26 ◦C and an allowable fluctuation range of ±1 ◦C, the DRL on–off
or varied water temperature control satisfies the indoor temperature fluctuation requirements for
80% or 93–99% of the operating time, respectively. In contrast, the traditional on–off or PID variable
water temperature control only meets these requirements for approximately 70% or 90–93% of the
operating time. Furthermore, compared to traditional on–off control, the DRL control can save
energy consumption in the radiant ceiling cooling system by 3.19% to 6.30%, and up to 10.48%
compared to PID variable water temperature control. Consequently, the DRL control method exhibits
superior performance in terms of minimizing indoor temperature fluctuations and reducing energy
consumption in radiant ceiling cooling systems.

Keywords: indoor temperature control; radiant ceiling cooling system; on–off control; PID control;
deep reinforcement learning

1. Introduction

China’s “14th Five Year Plan” clearly identified green and low carbon as the key
to the development of various fields. Considering the goal of “Carbon peaking and
Carbon neutrality”, the development of various industries had undergone corresponding
adjustments. According to the relevant statistical report in 2018 [1], the energy consumption
of the Heating, Ventilation, and Air-conditioning (HVAC) system accounted for more than
23% of the total energy consumption of the entire life cycle of buildings nationwide. In
United States, the HVAC systems also accounted for 27% of the energy consumption of
commercial buildings and 45% of the peak power demand [2], and approximately 44%
of the total energy consumption of American buildings [3]. Hence, energy consumption
control and energy efficiency improvement of the HVAC system in buildings are important
steps in national energy conservation and green and low-carbon development.

Generally, improving the energy efficiency of HVAC systems requires consideration
of two aspects: system design and system control. The radiant ceiling cooling system,
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which could effectively improve the efficiency of cooling source and utilize some low-grade
energy [4], has been applied in the modern office buildings in the past 20 years. The current
research on HVAC system control can be divided into three methods: rule-based method,
model-based method, and learning-based method [5]. These methods have been applied to
varying degrees in radiant heating and cooling systems.

Due to the nonlinear control changes in radiant ceiling cooling systems, the large inertia
of controlling indoor temperature and the interference effects of multiple environmental
factors [5], it has brought great challenges to various control systems. Therefore, this study
focus on the indoor temperature control of radiant ceiling cooling system based on deep
reinforcement learning (DRL) method, and compared DRL control methods with traditional
on–off and PID control methods to explore the direction of optimal control for radiant
ceiling cooling systems.

2. Literature Review

Rule-based control methods mainly included rule-on–off and PID control.
Zaheer-uddin et al. [6] compared on–off control with single/dual parameters of radiant
floor heating system, and the results showed that the latter strategy had a better control
effect under intermittent operation. Doosam et al. [7] achieved on–off control of a radiant
floor cooling system by simultaneously controlling the cooling coil of fresh air based on
the deviation between the indoor temperature feedback and the set target and the tem-
perature difference between the radiant cooling surface temperature and the room dew
point temperature. However, on–off control determined output variable parameters based
on the upper and lower thresholds set by the system, which was difficult to meet the
precise control and energy-saving requirements. PID control was based on the deviation
between the set target and the actual output result and obtained a new system control
quantity after calculating the deviation according to three parts: proportion, integration,
and differentiation. Compared to model-based method, PID was simpler, but the tuning of
its internal parameters was a time-consuming and cumbersome process, especially when
the actual operating conditions did not match the design tuning conditions and the control
effect of PID declined. Therefore, in order to solve this problem, some scholars used neural
networks combined with PID or fuzzy gain optimization [8,9] to adjust PID parameters
during operation. However, such behavior led to more complex practical PID control.

Model-based control methods mainly included fuzzy equation control and model
predictive control (MPC). The control of fuzzy equations, which required certain simulation
results or experimental basis to establish control equations for the model parameters, was
highly empirical. Doosam et al. [7] mentioned the control equation for controlling the
supply water temperature of the radiant cooling system based on outdoor temperature
reset. MPC could consider multiple environmental parameters and suppress disturbances,
which had received widespread attention and had been proven to be an effective control
method [10–12]. Pang et al. [13] established MPC arithmetic based on radiant cooling
experiments with large thermal inertia radiant slab and compared it with traditional
heuristic control, and the MPC achieved better energy-saving and thermal comfort effects.
Joe et al. [14] established a MPC arithmetic to achieve dynamic estimation and prediction
based on regional load and temperature, outdoor weather and HVAC system models,
and the results showed that MPC saved 34% of the cost and 16% of the energy compared
to baseline feedback control. Chen et al. [15] conducted a comparison of three control
methods for radiant cooling panels: MPC, PID, and bang-bang, and they found that the
MPC was more energy efficient regardless of continuous or intermittent control. However,
the primary limitation of MPC is the high cost associated with modeling. The established
model is not universally applicable and is constrained by specific building environments.

Learning-based control methods mainly included neural networks and reinforcement
learning [16]. The most obvious advantage was that it was not limited by the system
model, and could be driven by the system’s historical data or real-time interactive data.
Through continuous attempts and environmental information feedback, internal control
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strategies were updated and optimized to reduce reliance on prior knowledge. Currently,
many HVAC control systems had begun to adopt the reinforcement learning control
method [17,18]. Zenger et al. [19] conducted interactive learning with the environment
based on the state action reward and punishment strategies of reinforcement learning,
achieving the required thermal comfort requirements while reducing HVAC energy con-
sumption. Zhang et al. [20] established a deep reinforcement learning (DRL) framework
based on deep learning, realizing both online and offline learning, and took the boundary
elements of the system model into account in operation to achieve better energy-saving
effects. Wei et al. [21] added long-term and short-term memory neural (LSTM) units to
enhance the understanding of the temporal correlation and logic between HVAC systems
and environmental states in neural network models. However, until now, it was evi-
dent that most learning-based methods were applied to the traditional air conditioning
systems [21–23], whereas there were very few research studies on radiant heating and
cooling using the learning-based methods.

In conclusion, learning-based control methods show potential for optimizing indoor
temperature control in radiant ceiling cooling systems and deserve attention. Factors that
influence room temperature control can be categorized into three broad categories: system-
related factors, building-related environmental factors, and human factors. The learning-
based control strategy aims to create an intelligent control agent by adjusting the state
settings and operation strategies of HVAC systems to accommodate dynamic and variable
environmental conditions. This approach allows for the adjustment of state settings and
operation strategies of HVAC systems in response to changing environmental conditions.

3. Methodology
3.1. Overview

The research method was divided into two parts, one was the physical simulation
model establishment of radiant ceiling cooling room (as shown in Figure 1), and the other
was the modeling of control methods. The traditional on–off and PID control methods
could be implemented through the components in TRNSYS simulation software.
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Figure 1. Schematic diagram of radiant ceiling cooling room model.

3.1.1. Simulation Environment

Compared to more developed HVAC systems, environmental control simulations for
radiant ceiling cooling systems were relatively rare. Currently, more and more high-end
office buildings were beginning to use radiant panels for cooling. Based on standard
office buildings in reality and combined with local actual weather data, a room model was
established. The room structure, cooling load, and radiant panel selection were considered
in the establishment of the physical model to ensure that the design met the specifications,
as seen in Section 3.2.

3.1.2. Control Methods

The traditional on–off control and PID control method could be achieved using the
environment simulation software TRNSYS, as demonstrated in Section 3.3. The learning-
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based control method, which took the combination of deep learning (DL) and reinforcement
learning (RL), could be achieved with programming software Python 3.8, as demonstrated
in Section 4.

3.2. Physical Model of Room
3.2.1. Meteorological Data

The simulation software used in this study was TRNSYS, which has a variety of
integrated meteorological data reading modules. We used meteorological modules in
IWEC format, and the meteorological data source was the national meteorological data
collection official website energyplus.net (accessed on 20 April 2021). The time of cooling
load calculation was from 06-01 00:00:00 to 10-01 00:00:00 in data, and the corresponding
annual simulation period was 3624 h to 6552 h.

In this simulation, three different building regions in China were selected: Beijing,
Shanghai and Guangzhou, which, respectively, corresponded to the cold region, hot sum-
mer and cold winter region, and hot summer and warm winter region. Outdoor tem-
perature and solar radiation varied curves in different regions are shown in Figure 2.
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3.2.2. Room Structure

Two standard office rooms facing south and north in a typical office building were
selected as the research object. The room had only one exterior wall with one window and
the room specification structure is shown in Figure 3. The room’s length, width and height
were 5.5 m, 3.4 m and 2.8 m, and the window’s length and high was 3.0 m and 1.65 m
(window frame occupying 15% of the total area).

The thermal performance parameters of enclosure structure were determined accord-
ing to the relational national standard in China [24,25], as shown in Table 1. The thickness
of the thermal insulation layer for the external walls in Shanghai was 25 mm and there was
no thermal insulation layer for the external walls in Guangzhou.
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Table 1. Relevant enclosure structure parameters.

Region External Wall HTC
(W/(m2·K))

External Window HTC
(W/(m2·K))

External Window
SHGC

Beijing 0.485 1.51 0.37
Shanghai 0.745 2.14 0.23

Guangzhou 1.346 2.36 0.29
Note: HTC—heat transfer coefficient, SHGC—solar heat gain coefficient.

3.2.3. Room Cooling Load

The room cooling load calculation part mainly included four parts: (1) the heat
transferred through the enclosure, (2) the solar radiation heat entered through the window,
(3) the human body heat dissipation, and (4) the indoor equipment heat dissipation. With
a cycle of one week, the time of workers’ occupancy in the room and the running time of
indoor equipment are shown in Figure 4.
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Based on the cooling load calculations using TRNSYS18, the maximum sensible heat
load for both rooms in each region were obtained (see Table 2). It should be noted that solar
radiation had clear effect on room cooling loads due to different windows’ orientation.

Table 2. Statistics of sensible heat load calculation.

Region Room Orientation Room Area
(m2)

Cooling Load
(W)

Time of Cooling
Load (h)

Cooling Load per Area
(W/m2)

Beijing South-facing 18.8 1286.3 6422 68.3
North-facing 18.8 973.5 4816 51.8

Shanghai South-facing 18.8 1061.5 5990 56.5
North-facing 18.8 980.8 5128 52.2

Guangzhou South-facing 18.8 1104.1 6255 58.7
North-facing 18.8 1054.8 4600 56.1

3.2.4. Radiant Panel Selection

In order to ensure indoor healthy, the radiant ceiling cooling system was usually used
together with a dedicated outdoor air system. The supply air temperature and air volume
rate were set as 20 ◦C and 30 m3/h per person, and the indoor relative humidity was kept at
50%. Since the supply air temperature was lower than the indoor temperature, the supply
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air would take part of the room cooling load, so this part needed to be removed for the
selection of radiant panel. The specific selection of radiant panels and some related data
are shown in Table 3.

Table 3. Design and selection of radiant panel.

Region Room
Orientation

Cooling
Load (W)

Inlet Water
Temperature

(◦C)

Water
Flow Rate

(kg/h)
Pipe Space

(mm)
Pipe

Diameter
(mm)

Average Water
Temperature

(◦C)

Cooling
Capacity

(W)

Laying
Area (m2)

Laying
Percentage (%)

Beijing South-facing 1163.3 17 450 100 20 18 1174.5 14.5 77.1
North-facing 850.5 17 350 100 20 18 866.7 10.7 56.9

Shanghai South-facing 938.5 17 450 100 20 18 939.6 11.6 61.7
North-facing 857.8 17 350 100 20 18 858.6 10.6 56.4

Guangzhou South-facing 981.1 17 450 100 20 18 996.3 12.3 65.4
North-facing 931.8 17 350 100 20 18 947.7 11.7 62.2

In the TRNSYS model, the construction of radiant panels was completed through the
construction of the ‘Chilled ceiling’ layer in the ‘Layers’ of the ‘Construction Types’ in the
multi-zone building model. In addition, two contact modes of ceiling radiant panel and
ceiling were given: (1) the structure with air interlayer and (2) the structure with direct
attachment and tight connection. The first type was adopted in the study, which could
effectively prevent the upward cooling loss through the air interlayer.

3.3. Simulation Modeling of Traditional Control Models

We used TRNSYS to establish the control simulation models, as shown in Figures 5 and 6.
The establishment of different traditional control method models is shown in the following
parts. The simulation module of the model mainly included: the weather data module,
the wet air calculation module, the sky temperature calculation module, the building
heat balance calculation module, the simulation time operation function setting module
(weeks, days), the visual output module (output, plot show), and the control module.
The building heat balance calculation module was the core of this simulation, which
mainly included the energy balance calculation of the building room and various designed
heating, ventilation, and air conditioning systems. Other modules provided boundary
conditions and control conditions for building heat balance calculation. Among them,
the meteorological parameter module provided various relevant weather parameters of
the region, and the wet air calculation module provided the relative humidity and dry
bulb temperature and the sky temperature calculation module provided the equivalent
sky temperature. The calculation control module played different roles in different models
according to the edited algorithm. The controls for the simulation were only active during
the working hours. They were turned on one hour in advance to ensure that the room
temperature met the requirements when the workers entered.
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3.3.1. Traditional on–off Control Model of Radiant Ceiling Cooling System

The traditional on–off control was realized through the on–off control module, and the
digital signals of 0 and 1 were output to the ‘Building’ module to control the opening and
closing of the supply water valves in the two rooms. Among them, the valve control during
the working period was realized through the simulation time operation function setting
module (weeks, days). When setting the target indoor temperature control, the lower limit
of the target indoor temperature for on–off control was 26 ◦C. Once the indoor temperature
dropped below 26 ◦C during the working time, the valve was forced to close. The supply
water temperature and supply water flow of the on–off control model were kept at constant,
and only the opening and closing of the supply water valve were controlled.

3.3.2. PID Variable Water Temperature Control Model of Radiant Ceiling Cooling System

The PID variable water temperature control module was implemented through
type 23 in TRNSYS, with a control target of the indoor temperature of 26 ◦C only dur-
ing working hours. The supply water temperature of radiant ceiling cooling system was
adjusted through the opening of the mixing valve to get the required water temperature.
The supply water flow of the PID control model was a fixed value, and the parameter
output of the PID control was the supply water temperature. The variable range of the
supply water temperature was 17.0–26.0 ◦C (the lower limit was the design supply water
temperature, and the upper limit was the indoor target temperature).

The proportional coefficient determined the speed of the system’s response. Adjusting
the proportional term could quickly improve the accuracy of the system, but it could not
eliminate steady-state errors. Therefore, an integral term was needed, but its size needed to
match the inertia of the designed radiant ceiling cooling system and consider the system’s
response time. If the inertia was large, the effect of the integral term should be weaker and
the integral time should be increased. The differential term could determine the trend of
error changes and make adjustments in advance, thereby speeding up the system’s response
and reducing adjustment time. Therefore, the improvement of PID control performance
was closely related to the parameter tuning of the three terms. The final results of PID
parameter tuning for two rooms in each region are shown in Table 4.
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Table 4. PID setting parameters.

Region Room Orientation Proportionality Coefficient Integration Time/min Differential Time/min

Beijing South-facing 4.0 40 5
North-facing 4.0 35 5

Shanghai South-facing 3.5 45 10
North-facing 3.5 45 10

Guangzhou South-facing 3.0 40 5
North-facing 3.5 40 5

4. Simulation Modeling of DRL Control Model

This study intended to employ the DRL method to control the radiant ceiling cooling
room, which required a combination of reinforcement learning (RL) and deep learning (DL).
RL emphasized the interaction between the control model and the surroundings, while
DL focused on data analysis and processing. This control method was developed through
external programming software Python and communicated with TRNSYS’s room physical
model through the bridging, as shown in Figure 7. The following described the specific
logical process and the corresponding modeling process of DRL.
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4.1. DRL Control Model of Radiant Ceiling Cooling System

In order to achieve data exchange with the DRL model established in the Python
programming software, the Data Interaction module (type155) was added to the TRNSYS
model. The ‘Data interaction’ module obtained the environmental state parameters during
the operation process of the physical model in the ‘Building’ module and transferred them
to the DRL model as input parameters. Then through the ‘Data interaction’ module, the
DRL model exported the feedback action instructions into the room model. Two different
DRL control simulations were conducted: (1) DRL controlled the opening and closing of
the supply water valve and (2) DRL controlled the changes in supply water temperature,
and compared them separately with two traditional control methods (Section 3.3).

In this study, we used MATLAB as a connecting bridge by communicating through
m-files written in MATLAB to interact the information between simulated environments.
The action instructions and environmental parameters considered in each simulation were
different. By modifying the MATLAB m-file called by the type155 module, different
simulation requirements could be met. The DRL model established different control logic
for different simulations and discreteness the action instructions into different dimensional
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vectors. For on–off control simulation, only two action instructions (open and close) were
available. For water temperature control simulation, the range of supply water temperature
was discredited into 19 variable actions at intervals of 0.5 ◦C between 17 ◦C and 26 ◦C.

4.2. Reinforcement Learning (RL) Process

The radiant ceiling cooling system needed to maintain the indoor temperature as
the target set temperature with the varied external environmental parameters, such as
the current indoor temperature and external environmental solar radiation, supply water
temperature, radiation panel temperature, and other disturbances. The indoor temperature
for the next step could be determined by the current system state and environmental
disturbances as well as the input supply water temperature and flow rate. It could be
independent of the previous state of the building. Therefore, the control of a radiant ceiling
cooling system could be seen as a Markov reinforcement learning process [26], as shown
in Figure 8.
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(1) Environment state: Determining the next optimal action based on the observation
of the current state of the simulation environment. This step considered the interference of
selected parameters such as indoor temperature and external environmental factors that
were input into the DRL model. In order to be closer to the actual situation and reflect
the impact of real weather on regulation, authoritative data published by the National
Meteorological Administration were selected and gradually reflected in the simulation
environment according to the time series.

(2) Control method: The supply water temperature and supply water valve of the
radiant panel were adjustable, and the state of the supply water valve had two options:
S = {open, close}. The supply water temperature could be selected from multiple discrete
levels, represented by T = {t1, t2,. . ., tm}. If control was performed using two action
variables, then the entire output space would be n = 2 × m. If there were too many
rooms and the supply water temperature was discredited more finely, the dimension of
the action space would rapidly increase, which would increase the training time and make
convergence difficult, ultimately reducing control performance. Therefore, the simulation
compared the control of the supply water valve and supply water temperature separately,
rather than controlling them together.

(3) Reward: The goal was to control the indoor temperature within a specified target
range. Based on our action state space A = {a1, a2,. . .}, after performing an action in the
previous state St−1, the environment changed to a new state St, ready for the next action.
At this point, a mechanism was needed to evaluate the performance of this action and
provide rewards or punishments.

Vπ(s) = Eπ [Rt+1 + γVπ(st+1)|St = s ] (1)

The design of the reward and punishment strategy had an important impact on the
speed and control results of the reinforcement learning algorithm. The calculation not only
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included the reward® of the current action but also the cumulative rewards of all previous
actions to achieve the best training effect. We could use a rewarded discount factor γ [0, 1]
to represent how much the current action affected future rewards. When γ = 1, future
rewards were considered equally important as immediate rewards. The above Equation (1)
was a state value function, representing the sum value (Vπ) of all discounted rewards from
a certain state St until the end of the sampling period. However, the expected target output
influenced by the action value was considered, as shown in Equation (2).

Q∗(st, at) = E
(

Rt+1 + γmax
at+1

Q∗(st+1, at+1)[st, at]
)

(2)

The state transition of buildings was random and could not be accurately measured
due to the influence of environmental interference. Therefore, the best Q value estimation
would be updated according to the Q learning method, as shown in Equation (3).

Qt+1(st, at) = Qt(st, at) + α(Q∗(st, at)−Qt(st, at)) (3)

where α ∈ [0, 1] indicated the learning rate. Larger could speed up the convergence, but
the effect was not necessarily good. Smaller could make the algorithm stable, but would
prolong the training time [8]. Specific control is shown in Figure 9 [21].
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4.3. Deep Learning (DL) Process

In this paper, we used not the general DQN but the improved Double DQN in our
simulation. Compared to policy-based methods (DDPG, AC, PPO), value-based methods
(Double DQN) can only handle discrete actions but have a relatively lower computational
cost for training. This is because policy-based methods require maintaining separate
networks for action and critic, while value-based methods solely rely on the Bellman
equation and only need to calculate the Q network during iteration. Value-based methods
are effective in smaller action spaces [27] and Q-learning has been shown to be effective in
slow thermodynamic systems such as radiation [22].

The Q-learning algorithm stored the “action-value” pairs in a table and was a Markov
decision process about discrete state and action spaces. However, in practical problems,
various possible combinations of actions and states formed a large-scale state and action
space, which could cause the disaster of dimensionality in general reinforcement learning
and make computation difficult. Generalization methods that used random trees and
neural networks to approximate Q-values were usually effective. In the simulation, a
weightedω neural network was used to approximate the value function Q(s,a,ω). However,
function approximations had the risk of instability and divergence, especially for nonlinear
approximations such as neural networks. However, by using experience replay and learning
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methods that determined target Q-values, neural networks were proven to be effective and
stable. The purpose of deep neural networks was to solve how to obtain Q-values faster
and more efficiently in a large state space.

The simulation considered input state parameters such as solar radiation, supply
and return water temperature, indoor dry bulb temperature, outdoor temperature, supply
air temperature, wind speed, and other observable parameters. Some non-dimensional
parameters would be obtained through standardization and vector distance algorithms
with the target state. The more observed state parameters that were considered and
the closer they were to reality, the greater the challenge to DRL and the more practical
significance it had.

According to the neural network structure (as shown in Figure 10), the Q-value of
all control actions could be directly obtained through the hierarchical transmission of the
neural network after the state St input, which could greatly improve the efficiency of the
greedy algorithm or ‘softmax’ selection. ‘ReLU’, as the activation function of the hidden
layer, was output at the last fully connected linear layer. The deep neural network needed a
lot of data for training, and it required independent distribution between samples. However,
the sample size obtained by the reinforcement learning agent was sparse and had a certain
delay, and the sample obtained was also continuous. Therefore, it was necessary to establish
a data storage unit for the DL part of the DRL model to store historical environmental
interaction and action data.
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To solve the problems caused by the combination of deep neural networks and rein-
forcement learning, two key points were summarized:

(1) Sample pool (experience replay): The state samples collected by the agent were
put into a sample pool, and then random samples were taken from the sample pool for
training. This approach broke the correlation between samples, making them independent
and solving the problem of non-stationary distribution. Through the sample pool, the
neural network could learn from current and previous experiences, which improved
learning efficiency.

(2) Fixed Q-target network: Perturbation mechanism for Q-value correlations. To com-
pute the target value of the network, existing Q-values were used. Using a slower-updating
network to provide this Q-value could improve algorithm stability and convergence. The
Q-target introduced two Q-value outputs in the algorithm, both using the same neural
network but with different input parameters. The predicted Q-value input the current state,
while the target Q-value input the old state. The mean square error Formula (4) was used
to obtain the error loss between the current Q-value and the target Q-value, which was
then used to update the weight parametersω.

Loss =
1
m

m

∑
i=1

(
Q∗

(
st, ai

t

)
−Q

(
st, ai

t

))2

(4)



Buildings 2023, 13, 2281 12 of 22

The target Q-value of the update process Q* could be obtained by Equation (5)
when the gradient decreased, and the predicted Q value could be approximated by
neural network.

Q∗(st, at) = Rt+1 + γamax
t+1 Q(st+1, at+1) (5)

4.4. DRL Control Model Algorithm Design

The runtime simulation environment continuously carried out state feedback accord-
ing to the action instructions to improve the control strategy. The control time length of
the environment determined the training times of an iteration. The algorithm updated the
batch and time step according to the environment settings. The DRL model consisted of a
cyclic process of interaction with the environment and an internal self-learning optimization
process, as shown in Figures 11 and 12.
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Initialization setting: Firstly, the number of iteration rounds T, the characteristic
dimension n of characteristic states St, and the algorithm of reward R and rewarded
discount factor γ were determined. If you use ε, the greedy algorithm was also needed
to determine the exploration rate ε, Q network structure, update network frequency C
and randomly initialize Q network weight parameters ω. Also noted was that for the
experience replay storage set M, each recent transition tuple (St, At, Rt, St−1) would be
pushed into M and continuously extracted, initialized as an empty set, and set its size
reasonably. The total number of layers of the neural network was 3. Of course, compared to
some large network models, it was relatively shallow. The specific process was as follows.

1. Initialize all parameters of Q network ω, Target Q* network ω* = ω, and Random-
basedω. Initialize states and actions and corresponding q-value. Clear the experience
playback collection M.

2. Ensure the normal connection between the algorithm model and the environment,
and reset the environment to the initial state.

3. When the communication connection was smooth and the environment was running
normally, carry out the iteration.

(1) Obtain the current state quantity of environment initialization, and conduct
preliminary processing to obtain the characteristic state parameter S.

(2) In the Q network, take S as the input to obtain the action output of all corre-
sponding q-values of the Q network, and the ε Greedy algorithm or ‘softmax’
selected the corresponding action ‘a’ from the current q-value (the ‘softmax’
function performed well in the simulation).

(3) Execute the action ‘a’ in the current state St, and obtain the processed char-
acteristic state vector St+1 of the new environment state and the reward r of
this action.

(4) Put tuples (St, a, St+1, r) into experience replay storage set M.
(5) Assignment: St = St+1.
(6) Randomly select n samples from the experience replay set M, and calculate the

target q-value of these samples to update the Q-value estimation network.

(7) q =

{
r; when step n + 1 is the end of a round of iteration
r + γQ(st+1, argmaxαQ(st+1, α, ω), ω∗); other situations

(8) The weight valueωwas modified by the loss function 1
m

m
∑

i=1
(q−Q(st, α, ω))

2

As a fast response system, the radiant ceiling cooling system would consider the
impact of recent actions on future response during control, so the rewarded discount
factor γwould be set at a higher value, and the internal parameters are shown in Table 5.
The reward and punishment strategy of DRL considered the indoor temperature of the
controlled room.

Table 5. Internal parameters of DRL algorithm.

Parameter Name Value Parameter Name Value

Experience playback capacity M 3000 Rewardeddiscount factor γ 0.9
Small batch N 160 Greedy exploration factor ε 0.5

Number of neurons h 30 Learning rate lr 0.1
Target temperature T 26 Control step ∆t 1 h

In order to maximize the control effect of the DRL model in the radiant ceiling cooling
system, the DRL reward and punishment strategy were set and optimized before com-
parison and verification. During the simulation of strategy optimization, many detailed
mathematical algorithms and the evaluation design of the temperature control range was
carried out, and the simulation data after several different strategy modifications were pro-
cessed. The final selection is shown in Table 6, where ∆t in the following table represented
the temperature difference with the set control target set T (26 ◦C). The specific evaluation
mathematical language and rewards and punishment values were not given in the Table 6.
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Table 6. DRL reward and punishment strategy.

Positive Evaluation Negative Evaluation Energy Conservation Considerations Strategy Summary

|∆t| < 0.8 ◦C
|∆t| < |∆t′|

∆t > ∆t′ (∆t < 0 ◦C)
∆t > ∆t′ (0 ◦C < ∆t < 0.8 ◦C)

0 ◦C < ∆t

|∆t| > 0.8 ◦C
∆t < ∆t′ (∆t < 0 ◦C)

∆t < ∆t′ (0 ◦C < ∆t < 0.8 ◦C)
∆t < −0.2 ◦C

Negative rewards will be given when
the indoor temperature is lower than
25.8 ◦C. When ∆t is greater than 0, it

will be allowed to continue to increase
within the temperature control range,
and additional rewards will be given

Reduce the range of
allowable temperature
fluctuation, and add

more temperature
criteria for reducing
energy consumption

Note: ∆t′ represents the temperature difference between the last state and the target temperature. The evaluation
score corresponding to each judgment sentence in the table has different emphasis and is not the same.

5. Results

The comparison simulation was divided into two parts: (1) comparison of DRL on–
off with traditional on–off control method and (2) comparison of DRL variable water
temperature with PID variable water temperature control method.

5.1. Comparison of DRL on–off with Traditional on–off Control Method

DRL on–off and traditional on–off control method were used to control the opening
and closing of the supply water valve, and the indoor temperature varied curves in two
rooms in each city are shown in Figures 13–15.

Figures 13–15 indicated the observed indoor temperature fluctuation patterns. The
DRL on–off control method trained with a target temperature of 26 ◦C nearly had the
same control effect as the traditional on–off control, but the controlled indoor temperature
with DRL on–off method was generally lower compared to the traditional on–off method.
Moreover, both control methods could ensure that the indoor temperature fluctuated within
the allowable range of 25–27 ◦C during the work time (between the two yellow lines), but
each operation would cause a one-time up-and-down oscillation of the indoor temperature
due to the on–off control of the supply water valve, unless we found a suitable valve
on-time ratio based on the thermal inertia of the room [28].
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Figure 15. Indoor temperature varied curve of on-off control in Guangzhou ((a) south-facing room,
(b) north-facing room).

Although on–off control could cause indoor temperature oscillations, the temperature
oscillation with DRL on–off control was clearly better than that with traditional on–off
control, as shown in Figures 13–15. The further comparisons of temperature control effects
and energy consumption could be seen in Figures 16 and 17.
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As shown in Figure 16, considering the cumulative work time of 688 h, the indoor tem-
perature percentage of 25–27 ◦C with the DRL on–off control was significantly higher than
the traditional on–off control in two rooms in three cities. Moreover, the DRL on–off control
ensured that the requirements for indoor temperature fluctuations were met almost 80% of
the work time, while the traditional on–off control only satisfied this requirement about 70%
of the work time. Due to a wide range of permissible temperature, the enhanced comfort
effect of indoor temperature was not significant among different cities and orientations.
However, north-facing rooms generally had a less improvement in indoor temperature
control compared to south-facing rooms. This might probably because that south-facing
room experienced intense solar radiation, which limited the effectiveness of traditional
or DRL on–off control. Climate change was a difficult problem for the traditional on–off
control, but DRL model could be trained to adapt to the climate change.

Figure 17 indicated that the DRL on–off control had lower energy consumption com-
pared to the traditional on–off control in both south-facing and north-facing rooms in
three cities. In addition, compared with the traditional on–off control, the energy con-
sumption with DRL on–off control can be saved from 3.19% to 6.30%. According to the
actual energy-saving values of different rooms, the maximum saved energy consumption
appeared in the north-facing rooms, and the minimum always appeared in the south-facing
rooms. The different orientations of rooms would absorb solar radiation with different
magnitude and frequency, and the south-facing rooms significantly absorbed more solar
radiation than the north-facing rooms. Solar radiation was uncontrollable disturbance to
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the DRL model training, and the stronger the external disturbance, the more challenging
the training becomes.

5.2. Comparison of DRL Variable Water Temperature with PID Variable Water Temperature
Control Method

The indoor temperature varied curves in two rooms in each city with DRL and PID
variable water temperature control method are shown in Figures 18–20.
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Figure 20. Indoor temperature varied curve of variable water temperature control in Guangzhou
((a) south-facing room, (b) north-facing room).

As shown in Figures 18–20, DRL control caused fluctuations with relatively small
amplitude and low frequency in indoor temperature, while PID control resulted in large
amplitude and high frequency oscillations. Moreover, both control methods almost ensured
the indoor temperature within the allowable temperature range of 25–27 ◦C during the
work time. However, the PID control would experience a period of temperature oscillation
after opening the supply water valve at the initial few hours during each working period,
which was the overshoot adaptation process of the PID control before stabilizing [29].
The temperature oscillation would have an impact on indoor thermal comfort in practical
applications, so in addition to achieving its objectives, stability was also crucial for a
control method. The further statistical results of indoor temperature control and energy
consumption with DRL and PID variable water temperature control methods are shown in
Figures 21 and 22.
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Figure 21 indicated that the indoor temperature control effect with DRL variable water
temperature control in two rooms in three cities was slightly better than that with PID
control. Moreover, the DRL control could ensure 93% to 99% of the work time within the
allowable temperature fluctuation range, while the PID control only ensure 90% to 93% of
the work time is comfortable. Although PID control caused temperature oscillations, its
oscillation time was not long, and the overall thermal comfort level was close to the DRL
control. Figure 21 also shows that the control effects in Shanghai with DRL control were
better than in Beijing and Guangzhou. This might be due to the different solar radiation and
thermal performance parameters of building envelopes in three cities. From the perspective
of outdoor parameter changes, Beijing had the large fluctuation and Guangzhou had
the small. The overall performance of DRL and PID control in Beijing was indeed poor
compared to the other two cities (see Figures 16 and 21). Nevertheless, DRL still successfully
achieved its control objectives and indicated good robustness.

As shown in Figure 22, energy consumption of radiant ceiling cooling system with
DRL method was slightly smaller than that with PID method. The energy-saving effect of
DRL compared with PID was not very obvious, except in the simulation in the south-facing
room in Shanghai (see Figure 22b), where the energy-saving benefit increased by 10.48%.
To avoid accidental results, the study was conducted through multiple simulations, and
each simulation result for the north-facing room in Shanghai was very similar. Moreover,
DRL showed different energy saving effects in simulations of different rooms in different
regions, which was worth considering and leading to not effective results by analyzing the
weather factors in different regions or the differences in the physical models of the rooms.
However, by comparing the results of multiple DRL controls, DRL was relatively more
energy efficient than PID for each simulation.

6. Discussion
6.1. Performance of the DRL Method

In this study, two control methods were evaluated for the radiant ceiling cooling
system: a simple on–off control approach and a more complex variable water temperature
control method. Both traditional control and the DRL method were implemented for
these control methods. The two control methods had distinct action state spaces, resulting
in varying environmental states following different actions. However, the DRL method
demonstrated positive outcomes in both control scenarios, as shown in Table 7.

The DRL on–off control method demonstrated superior thermal comfort levels and
lower energy consumption when compared to the traditional on–off control approach. The
indoor temperature curve with DRL on–off control exhibited a smoother fluctuation pattern,
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with smaller amplitude and duration, in contrast to the traditional on–off control. However,
the DRL on–off control method required slightly more frequent opening and closing of the
supply water valve compared to the traditional method. Under identical conditions, the
opening and closing frequency of the supply water valve with the traditional on–off control
varied from 500–580 times, depending on the city and orientation. In comparison, the DRL
on–off control method showed an increase in the opening and closing frequency ranging
from 20–60 times higher than the traditional method. Although this increased frequency is
a trade-off associated with the DRL on–off control, the impact on the entire cooling season
is relatively small.

Table 7. Comparative effectiveness of DRL methods.

Region Room Orientation
Compare to on–off Control Method Compare to PID Control Method

Temperature
Control Effect

Energy
Consumption

Temperature
Control Effect

Energy
Consumption

Beijing South-facing +11.2% −100.3 MJ +2.8% −55.5 MJ
North-facing +3.1% −129.2 MJ +7.5% −30.2 MJ

Shanghai South-facing +7.4% −70.5 MJ +7.6% −246.4 MJ
North-facing +5.4% −90.5 MJ +7.1% −6.5 MJ

Guangzhou South-facing +14.6% −77.7 MJ +6.1% −3.2 MJ
North-facing +8.2% −139.8 MJ +2.4% −5.2 MJ

Note: “+” (“−”)—indicated how much A method increases (or decreases) over B method.

Based on the analysis of the indoor temperature variation, temperature control ef-
fectiveness, and energy consumption results, it was found that the DRL variable water
temperature control method outperformed the PID variable water temperature control
method for the radiant ceiling cooling system. Although the energy savings achieved by
the DRL method compared to the PID method were not substantial, the impact on reducing
indoor temperature fluctuations was significant.

6.2. Analysis of the DRL Method

The simulation results indicated variations in the effectiveness of optimization control
in radiant ceiling cooling rooms with different orientations in various regions. It can
be inferred that the disparities in temperature control and energy-saving outcomes may
be significantly influenced by the specific model employed, and in certain regions, the
optimization may not have been fully achieved. Additionally, the parameters of distinct
physical models and control output parameters can also contribute to these discrepancies.
Furthermore, when the same DRL model was implemented in rooms facing different
directions, divergences in simulation results may arise due to differing external disturbances
in different regions.

Based on the simulation results using on–off control, the DRL method demonstrated
better improvement in indoor temperature control for the south-facing room compared to
the north-facing room. However, the actual energy savings achieved were somewhat lower.
When variable water temperature control was employed, the DRL method did not exhibit
the same pattern, and its overall optimization performance was inferior to on–off control.
These findings suggest that there may be limitations to the optimization capabilities of the
DRL method when applied to different control output parameters.

Differences in simulation results can also arise from variations in the configuration of
reward and punishment strategies. This study made multiple adjustments to the reward
and punishment strategy. However, during the process of optimizing the strategy, certain
strategies that were logically superior performed worse in practical application. This
discrepancy can be attributed to two factors: (1) inadequate research on reward and
punishment strategies, and (2) limitations in maximizing the control of supply water in the
radiant ceiling cooling system. Due to space constraints and the depth of the research, the
comparative outcomes of different reward and punishment strategies were not presented
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in this paper. Nonetheless, the experimentation resulted in the selection of one of the most
effective reward and punishment strategies.

7. Summary and Future Work
7.1. Summary

This study compared the performance of DRL control method with that of the tra-
ditional on–off control method and PID variable water temperature control method for
radiant ceiling cooling systems. The system simulation results were analyzed to determine
the optimal control approach for such systems. The findings indicate that the DRL on–off
control method outperformed the traditional on–off control method in terms of reduced
indoor temperature fluctuations and energy consumption. Moreover, the DRL variable
water temperature control method demonstrated superior performance compared to the
PID variable water temperature control method for radiant ceiling cooling systems. These
results suggest that the DRL control method has significant potential for energy savings
and operational efficiency in radiant ceiling systems. As computer technology and artificial
intelligence continue to advance, the DRL control method may replace traditional control
methods in the future.

7.2. Future Work

The design of reward and punishment strategies in the field of HVAC is a crucial
issue, particularly for achieving automated improvements through the DRL model. While
researchers have made attempts to apply various algorithms to HVAC systems, the role of
HVAC expertise in this context should be emphasized. In this study, preliminary tests were
conducted on several strategies, which yielded relatively good results. However, there is
still ample room for improvement in terms of control effectiveness, as well as potential for
exploring new research directions. Future work will focus on enhancing the optimization
and selection process of the DRL model, as well as refining the reward and punishment
strategies. Additionally, further research is warranted to consider the thermal inertness of
the radiant ceiling cooling system, as well as its integration with a mechanical ventilation
system. To facilitate these investigations, an experimental bench has been established,
and it is anticipated that the simulation will be implemented in practical applications
in the future.
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