
Citation: Wang, X.; Huo, L.; Shen, T.;

Yang, X.; Bai, H. A Web3D Rendering

Optimization Algorithm for Pipeline

BIM Models. Buildings 2023, 13, 2309.

https://doi.org/10.3390/

buildings13092309

Academic Editors: Qiuchen Lu,

Zigeng Fang and Yuting Chen

Received: 9 August 2023

Revised: 5 September 2023

Accepted: 6 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A Web3D Rendering Optimization Algorithm for Pipeline
BIM Models
Xiaoyu Wang, Liang Huo, Tao Shen *, Xincheng Yang and Haoyuan Bai

School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; wangxiaoyu.bucea@gmail.com (X.W.); huoliang@bucea.edu.cn (L.H.)
* Correspondence: shentao@bucea.edu.cn

Abstract: BIM (building information modeling) plays a pivotal role in the construction industry. BIM
technology tailored for pipelines offers in-depth semantic information and spatial data, bolstering
the utility and implementation of digital twin-associated technologies in both architecture and urban
planning. This paper introduces a rendering optimization algorithm rooted in the BSP Tree (Binary
Space Partitioning Tree). The algorithm is used to address the challenges of slow loading and
poor rendering quality of pipeline BIM models when displayed on the web, which stem from large
amounts of model data and complex geometric configurations. Initially, the algorithm delves into
the geometric distribution traits of the pipeline BIM model from multiple perspectives, pinpointing
the spatial division dimension. Subsequently, it employs an adaptive step size technique for spatial
segmentation, harmonizing it with real-world application contexts. Concurrently, any superfluous
data that emerge are refined to uphold the structural wholeness of the BIM model. This algorithm is
adept at systematically arranging and overseeing the BIM model data. Trial outcomes reveal that the
AKDT (Adaptive K-Dimensional Tree) algorithm significantly trims the browser’s initial rendering
duration while maintaining the model’s accuracy and semantic uniformity. Moreover, it excels in
areas such as rendering frame rate, user interaction responsiveness, and data transmission duration.
In essence, the algorithm stands out for its efficiency and precision in rendering pipeline BIM models
on web platforms, achieving the desired optimization results.

Keywords: building information modeling (BIM); AKDT (Adaptive K-Dimensional Tree); principal
component analysis (PCA); rendering optimization; adaptive segmentation step

1. Introduction
1.1. Background

With advancements in modern construction engineering and the proliferation of
digital technology, recent scholarly research has underscored the pivotal role of BIM and
its associated technologies in Construction 4.0, Industry 4.0, sustainable building, and
smart cities [1–3].

BIM technology uses computers to create virtual 3D models and integrate project-
related information, enabling all project participants to quickly grasp all building phases. A
BIM model is more than a mere 3D representation; it amalgamates physical and functional
details, material attributes, and comprehensive data on time and cost [4]. BIM facilitates
data sharing and information governance [5] and aids in early risk detection, reducing
engineering mishaps and curtailing safety hazards [6]. The potential of BIM is increasingly
recognized in the construction industry. It is primarily used in the planning, design,
construction, and operation and maintenance phases of intelligent buildings. BIM helps
reduce energy consumption and increases economic benefits, and integrates with other
information technologies to boost building automation [7].

Among the myriad applications, utilizing pipeline BIM technology allows for com-
prehensive management of the entire building life cycle through the integration of 3D

Buildings 2023, 13, 2309. https://doi.org/10.3390/buildings13092309 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13092309
https://doi.org/10.3390/buildings13092309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings13092309
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13092309?type=check_update&version=2


Buildings 2023, 13, 2309 2 of 19

visualization, conflict detection, and construction simulation. Furthermore, this technology
enhances the recycling efficiency of building materials and fosters the evolution of eco-
friendly, green buildings [8]. The technology streamlines the model and rule verification
processes, elevating the productivity of construction engineers [9]. Furthermore, it fur-
nishes dependable semantic and geometric data concerning MEP (Mechanical, Electrical,
and Pipeline), safeguarding the MEP framework and its ancillary systems. This ensures the
MEP systems’ efficient operation and upkeep in edifices [10,11], translating to fiscal and
temporal savings and bolstering operational efficacy and dependability.

As urbanization accelerates, there is an increasing emphasis on integrating data and
technology for efficient management [12,13]. Pipeline BIM technology emerges as a potent
instrument for urban design. In this context, the seamless rendering of models on web
platforms and the enhancement of rendering optimization efficiency become crucial [14,15].

However, as the complexity and detail of pipeline BIM models increase, along with the
numerous pipeline variants [15], challenges arise. These challenges are intensified by tight
pipeline configurations, overlapping pipeline segments, and complex interactions with
other infrastructure elements [16–18]. Therefore, rendering pipeline BIM models presents
significant challenges.

1.2. Related Research

To enhance the rendering efficiency of BIM models on web platforms, researchers
have explored various approaches. Traditional pipeline BIM model processing methods
primarily emphasize simplifying the model representation to optimize rendering.

One such technique is the LOD (Level of Detail), which was once widely used. This
method accelerates rendering primarily by reducing the model’s detail.

She et al. proposed a novel 3D building simplification method that considers both the
model mesh and building structure [19].

Li et al. extracted three types of geometrical structures based on topological relation-
ships between components and proposed a structural simplification method for progressive
3D building models based on LOD technology [20].

She et al. proposed a simplification method for complex 3D building models based
on half-edge collapse. The proposed approach segments the surface mesh of the building
model such that the collapse operations occur within each region [21].

Furthermore, there are mesh simplification methods which can be categorized into
local and global methods. Local methods focus on simplifying the geometry and connec-
tivity in specific areas of the mesh, thereby reducing the number of polygons. In contrast,
global methods work on a broader scale, aiming to simplify the overall mesh topology.

Garland and Heckbert developed the QEM algorithm. The algorithm uses iterative
contractions of vertex pairs to simplify models and maintains surface error approximations
using quadric matrices [22].

Wei et al. improved the simplification algorithm by considering discrete curvature
coefficients and sparse coefficients. The algorithm effectively preserves the detailed features
of the model such as sharp edges and corners, but the model is prone to visual degradation
when a large simplification is performed [23].

Ma et al. used the half-edge folding method for simplification, using the length of the
edge to be deleted and the information of the dihedral angle of the edge to calculate the
importance of the edge; the algorithm is more efficient and the simplification is fast, but the
gap between the simplified model and the original model is obvious [24].

Dassi et al. introduced displacement variations between the original and the resultant
model in the folding cost to improve the overall simplification of the mesh model, but the
algorithm has limited effect on the preservation of local detailed features of the model [25].

Traditionally, 3D model simplification techniques include LOD (Level of Detail) meth-
ods, vertex deletion, edge folding, and triangle folding. However, these techniques often
sacrifice crucial model information, compromising realism. Such compromises can lead
to inaccuracies and reduced performance in real-world applications. Furthermore, while



Buildings 2023, 13, 2309 3 of 19

hardware-accelerated rendering, especially leveraging the parallel processing capabilities of
GPUs, has been investigated, it demands substantial hardware investments. This approach
is not ideal for loading lightweight model data on web-based platforms.

In recent years, algorithmic optimization has emerged as a focal point in research
to enhance the efficiency of pipeline BIM rendering. Notably, algorithms such as Octree,
quadtree, and BVH Tree are deemed potent for model rendering, attributed to their spatial
division capabilities and search efficiency. Yet, the rigid partitioning approaches of Octree
and quadtree can result in suboptimal space utilization and computational inefficiency,
especially when compared to adaptive data structures handling non-uniform data dis-
tributions [26]. Such methods often produce numerous empty or underutilized nodes,
incurring added storage and computational burdens. Furthermore, quadtrees are inher-
ently restricted to 2D spaces, constraining their utility in 3D data rendering. Constructing
BVHs typically entails greater complexity and demands more time.

Consequently, a method tailored to the unique attributes of pipeline BIM models is
essential. This method should not only enhance rendering efficiency but also maintain the
model’s geometric and semantic integrity.

1.3. Relevant Concepts

The BSP tree (Binary Space Partitioning Tree) is a prevalent technique for scene orga-
nization and space partitioning. Notably, the K-D Tree (K-Dimensional Tree) represents
a specific variant of the BSP tree. The fundamental principle of the BSP tree involves
using a partitioning plane to bifurcate the space into two sections, continuing this division
recursively until the subspaces satisfy certain criteria. In 3D scene applications, the empha-
sis lies in constructing the tree structure, partitioning the dataset in K-dimensional space
recursively, and transforming the scene space into a more structured division [27]. BSP
Trees excel in 3D scene organization, adeptly determining the occlusion relationships and
positions between objects. This capability enhances the culling efficiency during rendering.
Nonetheless, traditional BSP Trees can induce numerous scene cuts in intricate scenarios,
leading to distorted renderings and fragmented scene data. Furthermore, the sequence in
which surfaces are split influences the tree’s shape and depth, subsequently impacting data
retrieval efficiency.

PCA (principal component analysis) is a linear transformation technique extensively
employed in statistics and machine learning for the dimensionality reduction of high-
dimensional datasets. Its fundamental concept involves transforming multidimensional
data into a new coordinate framework. During this transformation, PCA identifies these
principal components by computing the data’s covariance matrix and deriving its eigen-
vectors. By choosing eigenvectors associated with the highest eigenvalues, it retains the
primary variability of the data and discerns the dataset’s key features. Employing PCA
for dimensionality reduction not only streamlines data analysis and visualization but also
curtails computational intricacy and noise. In this study, PCA is utilized to ascertain the
features of the model vertex distribution [28,29].

1.4. Article Content

As illustrated in Figure 1, this study introduces the AKDT (Adaptive K-Dimensional
Tree) algorithm, building upon prior research on traditional model rendering techniques
and the K-D Tree. We conduct comprehensive experiments and analyses on the rendering
efficacy of pipeline BIM models on web platforms using this algorithm.



Buildings 2023, 13, 2309 4 of 19

Buildings 2023, 13, x FOR PEER REVIEW 4 of 19 
 

The AKDT algorithm, as presented in this paper, initially employs the PCA method 
to compute model data. Based on these results, we can discern the model’s geometric fea-
tures, and ascertain its primary expansion direction and layout, thereby determining a 
more efficient dimension division direction for rendering the pipeline BIM. 

Moreover, the adaptive segmentation step size design allows the algorithm to tailor 
itself to the data density variations across regions, refining the segmentation procedure 
and enhancing the algorithm’s overall efficiency. We also introduce concepts of data den-
sity gradient and data heterogeneity, formulating an energy function to pinpoint the op-
timal segmentation hyperplane. Given the potential for redundant triangles generated 
during algorithmic segmentation, a merging strategy is proposed to maintain the BIM 
model’s geometric and semantic integrity and ensure model quality. A weighting function 
is then crafted to guarantee the algorithm’s timely termination, considering the web plat-
form’s rendering capabilities. This ensures optimal rendering results while conserving 
computational resources. 

By integrating these steps, the AKDT algorithm ultimately renders and optimizes the 
pipeline BIM model on web platforms. 

 
Figure 1. AKDT algorithm-based pipeline BIM model visualization framework in web platforms. 

2. Materials and Methods 
2.1. Description of The AKDT Algorithm 

As shown in Figure 2, the AKDT (Adaptive K-Dimensional Tree) algorithm in this 
paper is based on the further optimization of the BSP Tree (Binary Space Partitioning 
Tree). This algorithm first selects one of the 3D scene coordinate axes as the segmentation 
hyperplane, and then recursively divides the scene space of the pipeline BIM model ac-
cording to the AKDT algorithm strategy. At the same time, the space can be divided dy-
namically according to the discrete degree of pipeline model data and spatial distribution 
pattern and other factors. In addition, the algorithm designs a termination condition func-
tion for the spatial division of the pipeline BIM model, which not only takes into account 
the amount of data, but also integrates key parameters such as the depth of the tree. 

AKDT algorithm steps: 
1. Initialize to build the root node:  

Generate a wraparound box that surrounds the pipeline BIM model in the view field 
as the root node. The orientation of this enclosing box is aligned with the coordinate 
axes. 

2. Space segmentation: 
(1) Spatial dimensioning: combining PCA methods to select segmentation axes. 

Figure 1. AKDT algorithm-based pipeline BIM model visualization framework in web platforms.

The AKDT algorithm, as presented in this paper, initially employs the PCA method
to compute model data. Based on these results, we can discern the model’s geometric
features, and ascertain its primary expansion direction and layout, thereby determining a
more efficient dimension division direction for rendering the pipeline BIM.

Moreover, the adaptive segmentation step size design allows the algorithm to tailor
itself to the data density variations across regions, refining the segmentation procedure and
enhancing the algorithm’s overall efficiency. We also introduce concepts of data density
gradient and data heterogeneity, formulating an energy function to pinpoint the optimal
segmentation hyperplane. Given the potential for redundant triangles generated during
algorithmic segmentation, a merging strategy is proposed to maintain the BIM model’s
geometric and semantic integrity and ensure model quality. A weighting function is then
crafted to guarantee the algorithm’s timely termination, considering the web platform’s
rendering capabilities. This ensures optimal rendering results while conserving computa-
tional resources.

By integrating these steps, the AKDT algorithm ultimately renders and optimizes the
pipeline BIM model on web platforms.

2. Materials and Methods
2.1. Description of The AKDT Algorithm

As shown in Figure 2, the AKDT (Adaptive K-Dimensional Tree) algorithm in this
paper is based on the further optimization of the BSP Tree (Binary Space Partitioning
Tree). This algorithm first selects one of the 3D scene coordinate axes as the segmentation
hyperplane, and then recursively divides the scene space of the pipeline BIM model
according to the AKDT algorithm strategy. At the same time, the space can be divided
dynamically according to the discrete degree of pipeline model data and spatial distribution
pattern and other factors. In addition, the algorithm designs a termination condition
function for the spatial division of the pipeline BIM model, which not only takes into
account the amount of data, but also integrates key parameters such as the depth of
the tree.



Buildings 2023, 13, 2309 5 of 19

Buildings 2023, 13, x FOR PEER REVIEW 5 of 19 
 

(2) Determine the adaptive segmentation step: dynamically calculate the segmen-
tation step based on parameters such as the amount of BIM model data con-
tained in the current node, spatial density, and the preset segmentation strategy. 

(3) Determine the segmentation hyperplane: determine the segmentation hyper-
plane according to the optimal segmentation hyperplane determination method. 

(4) Constructing subspace: Based on the segmentation hyperplane, the data space 
is divided into left and right subspaces according to the coordinates of the pro-
jection on the segmentation axis. 

3. Recursive subspace:  
For the generated subspace, perform the space partitioning operation of step 2 again. 

 
Figure 2. Flowchart of AKDT algorithm. 

2.2. Segmentation of Dimensions Based on PCA 
In order to ensure that the AKDT algorithm achieves optimal performance and accu-

racy when dealing with pipeline BIM models, the algorithm must select the appropriate 
segmentation dimensions in each recursive iteration. PCA (principal component analysis) 
is widely used to determine the main features of the dataset, and in this paper, we adopt 
the PCA methodology to determine the features of the model vertex distribution. Through 
computational analysis, we can determine the spatial distribution of model vertices in dif-
ferent coordinate axis directions, and then determine the division dimension. At the same 
time, the dimensional segmentation according to the direction of the model arrangement 
can minimize the subsequent impact on the model geometry during rendering and ensure 
the integrity of the model. 

Segmentation of dimensionality steps based on PCA: 
1. Representation of datasets: 

First, get the dataset of model vertex coordinates, denoted as 𝑃: 𝑃 = ሼ𝑝ଵ, 𝑝ଶ, … , 𝑝௡ሽ 

where each point 𝑝௜ is represented in 3D space as 𝑝௜ = (𝑥௜, 𝑦௜, 𝑧௜) 

2. Calculate the mean coordinates of the dataset: 
Calculate the mean point by averaging the coordinates of each dimension 𝑝‾ Coordi-
nates of the mean point 

Figure 2. Flowchart of AKDT algorithm.

AKDT algorithm steps:

1. Initialize to build the root node: Generate a wraparound box that surrounds the
pipeline BIM model in the view field as the root node. The orientation of this enclosing
box is aligned with the coordinate axes.

2. Space segmentation:

(1) Spatial dimensioning: combining PCA methods to select segmentation axes.
(2) Determine the adaptive segmentation step: dynamically calculate the segmen-

tation step based on parameters such as the amount of BIM model data con-
tained in the current node, spatial density, and the preset segmentation strategy.

(3) Determine the segmentation hyperplane: determine the segmentation hyper-
plane according to the optimal segmentation hyperplane determination method.

(4) Constructing subspace: Based on the segmentation hyperplane, the data space
is divided into left and right subspaces according to the coordinates of the
projection on the segmentation axis.

3. Recursive subspace: For the generated subspace, perform the space partitioning
operation of step 2 again.

2.2. Segmentation of Dimensions Based on PCA

In order to ensure that the AKDT algorithm achieves optimal performance and accu-
racy when dealing with pipeline BIM models, the algorithm must select the appropriate
segmentation dimensions in each recursive iteration. PCA (principal component analysis)
is widely used to determine the main features of the dataset, and in this paper, we adopt
the PCA methodology to determine the features of the model vertex distribution. Through
computational analysis, we can determine the spatial distribution of model vertices in dif-
ferent coordinate axis directions, and then determine the division dimension. At the same
time, the dimensional segmentation according to the direction of the model arrangement
can minimize the subsequent impact on the model geometry during rendering and ensure
the integrity of the model.

Segmentation of dimensionality steps based on PCA:

1. Representation of datasets: First, get the dataset of model vertex coordinates, denoted
as P:

P = {p1, p2, . . . , pn}



Buildings 2023, 13, 2309 6 of 19

where each point pi is represented in 3D space as

pi = (xi, yi, zi)

2. Calculate the mean coordinates of the dataset: Calculate the mean point by averaging
the coordinates of each dimension p Coordinates of the mean point

p = (x, y, z)

3. Construction of covariance matrix: Constructing the covariance matrix C:

C =
1
n

n

∑
i−1

(pi − p)(pi − p)T (1)

4. Calculate eigenvalues and eigenvectors: Solve for the covariance matrix C and the
corresponding eigenvectors of the covariance matrix λ1, λ2, λ3 and the corresponding
eigenvectors v1, v2, v3 of the covariance matrix.

5. Determine the principal eigenvectors: Find the largest eigenvalue λmax Corresponding
eigenvector vmax:

λmax = max(λ1, λ2, λ3)

6. Determine the segmentation dimension: Based on the vmax component of the data to
determine the principal direction of the

D =


x if |vx| ≥

∣∣vy
∣∣ and |vx| ≥ |vz|

y if
∣∣vy
∣∣ > |vx| and

∣∣vy
∣∣ ≥ |vz|

z if |vz| > |vx| and |vz| >
∣∣vy
∣∣ (2)

where D is the selected segmentation dimension.

2.3. Adaptive Segmentation Step

During the segmentation process, the AKDT algorithm uses an adaptive approach
to dynamically adjust the segmentation step size according to the data density and data
volume size of the current node.

In relatively sparse data regions, based on the low density characteristics of the data,
fine-grained segmentation does not produce significant geometric detail gains, but leads
to reduced query efficiency and increased storage resource consumption. Each newly
generated tree node is accompanied by an incremental data structure maintenance cost,
which increases the computational complexity of the algorithm. Therefore, in order to
trade-off efficiency and accuracy, a larger segmentation step size strategy is adopted to
avoid generating too many nodes, to achieve structural simplicity and save computational
and storage resources.

In relatively dense regions of data, the use of too large a step size can lead to over-
merging, making some of the details of dense data regions be lost. For this reason, a smaller
segmentation step size is used, allowing the algorithm to perform finer subspace division
in dense regions. This approach not only guarantees the realism and detail representation
of the model, but also helps to balance the structure of the tree and further improve the
efficiency of the algorithm.

Steps for calculating the adaptive segmentation step:

1. Calculate the data density gradient: First, define the global data point collection
Pglobal , the total volume where the global data point collection is located Vglobal , the
number of global data points Nglobal , the set of data points in the current subspace
Plocal , the volume in which the local data point set is located Vlocal , the number of



Buildings 2023, 13, 2309 7 of 19

local data points Nlocal . Global average data density Dglobal and local data density
Dlocal can be defined, respectively, as:

Dglobal =
Nglobal
Vglobal

Dlocal = Nlocal
Vlocal

(3)

Gradient of data density G is:

G = Dlocal − Dglobal (4)

2. Determination of Thickness Thresholds: Define β as the deviation coefficient; calculate
the threshold of consistency θ, which is given by:

θ = β× Dglobal (5)

3. Assessment of data heterogeneity: In order to assess the degree of dispersion of
the data, for localized datasets Plocal , the standard deviation is calculated σ with
the formula

σ =

√√√√ 1
Nlocal − 1

Nlocal

∑
i=1

(xi − µ)2 (6)

Among others, the xi is the number of Plocal ; the µ is the mean value of the data points
in Plocal .

4. Calculate the difference in data density: Calculate the data consistency difference D,
data consistency gradient G, and the preset threshold of the denseness gradient θ
difference between:

D = G− θ (7)

5. Calculate the adaptive step size: Use the Sigmoid function to D maps to the (0, 1)
interval, where k is a constant Sbase is the base step size, and the adaptive step size
S is:

S = Sbase ×
(

1− 1
1 + e−(G−θ)

)
× (1 + k× σ) (8)

2.4. Optimal Segmentation Hyperplane Determination Methods

The Materials and Methods should be described with sufficient details to allow others
to replica

Combining the data density gradient and the heterogeneity of the data, this paper
constructs an energy function to evaluate possible segmentation points, which provides a
mathematical criterion for determining the segmentation hyperplane and quantifies the
quality of the segmentation to ensure that we can comprehensively assess the appropriate-
ness of the segmentation points [30,31].

With the adaptive segmentation step, we select a series of candidate segmentation
points, which are then evaluated using an energy function. Finally, the segmentation point
with the lowest energy value is considered optimal, and combined with the previously
determined segmentation dimension D, it is finally determined that the location of the
segmentation point parallel to the D dimension is the segmentation hyperplane.

Steps to determine the hyperplane

1. Split the set of candidate points: Use an adaptive step size S to select a candidate set
of segmentation points, with pstart as the starting point on the dimension, and the set
of candidate points Psamples is denoted as

Psamples = {pi | pi = pstart + i× S, i = 0, 1, 2, . . .}



Buildings 2023, 13, 2309 8 of 19

2. Calculation of data density gradient: For the candidate segmentation point p, where
p ∈ Psamples , we first delineate a segmentation point centered on p center and an
adaptive segmentation step S as the radius of the hypersphere. The data points
contained in the hypersphere form the set Plocal (p). The number of points is Nlocal (p)
and the volume is Vlocal (p).

Dglobal =
Nglobal
Vglobal

Dlocal (p) = Nlocal (p)
Vlocal (p)

The gradient of data consistency G(p) is defined as:

G(p) = Dlocal (p)− Dglobal

3. Assessing data heterogeneity: For the localized dataset Plocal (p), we compute the
standard deviation σ(p), which is used to assess the data dispersion:

σ(p) =

√√√√ 1
Nlocal (p)− 1

Nlocal (p)

∑
i=1

(xi − x)2 (9)

Among other things, the xi is the number of Plocal (p); the x is the mean value of the
data points in Plocal (p). the average of the a p data points in.

4. Define the energy function: To find the optimal splitting point, we define the following
energy function.

E(p) = w1 · G(p) + w2 · σ(p) (10)

Of these, w1 and w2 are the weights.
5. Split hyperplane: The point with the smallest value of the energy function is the

optimal segmentation point p:

p = arg min
p∈Psamples

E(p) (11)

The equation of the partition hyperplane is expressed as D = pD where D is the
adjudicated division dimension D ∈ (x, y, z).

2.5. Redundant Triangle Mesh Merging Method

The Materials and Methods should be described with sufficient details to allow others
to replica.

Consider that when spatially dividing a 3D model, the triangular facets that are split in
the model form multiple smaller triangular facets. We consider re-merging these redundant
triangles after segmentation.

First, redundant triangles are labeled, and when the segmentation is over, triangular
facets with such labeling are looked up within the leaf nodes. Then, determine whether
they can be merged based on whether they are adjacent and whether their normal vectors
are the same. If the conditions are satisfied, we merge their shared vertices and update the
data structure of the triangles.

Meanwhile, after the merging process, we also need to remove redundant triangles and
update the index of triangles within the leaf nodes in order to ensure the consistency and
accuracy of the data. In this way, we avoid excessive redundant triangles while ensuring
the integrity of the model.

Steps to merge triangular facets:

1. Marking redundant triangles: Let the set of integral triangles be T. In the spatial
division process, for any triangle t ∈ T, if it is partitioned, a new set of triangle



Buildings 2023, 13, 2309 9 of 19

segments is produced Tt
split . Set flags for redundant triangle facets: flag (t′) = split,

∀t′ ∈ Tt
split .

2. Labeled triangle segments merged: All triangles within the leaf node are Tnode , where

the set of labeled triangles is Tsplit
node ⊆ Tnode . For the triangles in the Tsplit

node triangles
in the set, do the following.

(1) Adjacent Triangle Determination:

For two triangles t1, t2 ∈ Tsplit
node the Their adjacency conditions are denoted as:

Adjacent(t1, t2)⇔ E1 ∩ E2 6= ∅ (12)

where E1, E2 are, respectively, the sets of edges of t1, t2.

(2) Normal vector determination:

If t1, t2 are adjacent, then they have the same normal vector condition:

SameNormal(t1, t2)⇔ N1 = N2 (13)

where N1, N2 are the normal vectors of t1, t2.

(3) Vertex Merge:

If Adjacent(t1, t2) and SameNormal(t1, t2) are both true, then perform a vertex merge:

Vmerge = V1, shared = V2, shared

where Vmerge denotes the merged vertices, V1, shared and V2, shared are the shared
vertices of t1 and t2.

3. Update leaf node data: Clear the marking of triangles within leaf nodes: flag (t′) = none.
∀t′ ∈ Tnode and remove redundant triangles and update the index of the triangle.

2.6. Termination Condition Weighting Function

To ensure that the algorithm stops under suitable conditions, a termination condition
weighting function is designed in this paper. Starting with the amount of data in the node,
if the number of data points within the node is too low, it means that there is no need to
subdivide this node further. In addition, we also limit the maximum depth of the tree in
order to avoid the negative impact of an overly deep tree structure on the computational
efficiency. The data density gradient is also considered, which reflects the difference in
distribution density between the local data and the overall data; if this difference is too
small, there is no need for further subdivision. Data heterogeneity was also considered,
and when the standard deviation was below a certain value, it indicated that the data in
this region had homogenized and no further subdivision was needed.

Finally, the algorithm also takes into account the amount of change in the energy
function; if the change in the energy function is small after several consecutive splits, it
means that the splits will not have a significant effect. These weights express the importance
of different conditions for the termination of the algorithm, ensuring that the algorithm can
be terminated at the right time for optimal optimization.

1. Node data volume: If the amount of data in a node falls below a particular threshold,
it is no longer subdivided. We remember that the number of data points in a node is
N, then the termination condition is:

N < Nmin

where Nmin is the preset minimum number of data points.



Buildings 2023, 13, 2309 10 of 19

2. Tree Depth: In order to avoid computational inefficiency caused by a tree that is too
deep, we set a maximum depth of Hmax. The current depth of the tree is H, and the
termination condition is

H ≥ Hmax

3. Data density gradient: Data density gradient G can express the difference in distribu-
tion density between local and global data points. If the absolute value of G is below
a certain interval, it means that the data distribution in the region has been relatively
uniform. The termination condition is

|G|< ε1

where ε1 is a predefined threshold for thick density gradient.
4. Data heterogeneity: The heterogeneity of the data can be represented by the standard

deviation of the data σ to indicate it. If the standard deviation of the data is σ, it
is below a certain threshold; this means that the data are evenly distributed. The
termination condition is

σ < ε2

where ε2 is the preset data heterogeneity threshold.
5. The amount of change in the energy function: The amount of change in the energy

function ∆E. If ∆E (the amount of change in the energy function) is less than a certain
threshold, it indicates that segmentation no longer leads to significant information
gain, it indicates that the segmentation no longer leads to a significant information
gain. The termination condition is

|∆E|< ε3

where ε3 is a preset broad value for the amount of change in the energy function.
6. Termination condition function: Define the following weights: wN , wH , wG, wσ, wE are

the weights of the corresponding conditions, respectively. The termination weighting
condition function is.

F = wN · fN(N) + wH · fH(H) + wG · fG(G) + wσ · fσ(σ) + wE · fE(∆E) (14)

Finally, the termination condition is: If F ≥ δ, where δ is a preset threshold that can be
set as desired. When the termination condition function F is greater than or equal to δ, the
algorithm terminates.

3. Results
3.1. Experimental Setup

In order to verify the actual rendering effect of the AKDT algorithm on pipeline
BIM models, we built an experimental environment for testing. On the server side, we
configured hardware devices equipped with Intel Xeon E5-2630 processors dedicated to
publishing BIM data. On the client side, we used a laptop equipped with i7-10875H CPU
and RTX2060 GPU to observe the experiment.

In order to ensure that the experimental results could fully reflect the performance
of the AKDT algorithm under different data sizes, we selected four pipeline BIM models
for testing, as shown in Table 1. We first tested the AKDT algorithm for its graphical
rendering results. At the same time, its rendering effect is compared with the classical
Octree algorithm. In order to quantify the performance of the AKDT algorithm, two widely
used algorithms in the field of graphics, Octree and BVH (Bounding Volume Hierarchy)
tree, are selected as control groups. Three key performance metrics, the initial loading time
on the Web side, the change in frame rate during dynamic rendering, and the response time
during interaction, are identified as the reference standards for evaluating the performance
of the AKDT algorithm.



Buildings 2023, 13, 2309 11 of 19

Table 1. Experimental dataset.

Data Name Model Size Number of Faces Thumbnail

Office Building 126 MB 861,327

Buildings 2023, 13, x FOR PEER REVIEW 11 of 19 
 

ured hardware devices equipped with Intel Xeon E5-2630 processors dedicated to pub-
lishing BIM data. On the client side, we used a laptop equipped with i7-10875H CPU and 
RTX2060 GPU to observe the experiment. 

In order to ensure that the experimental results could fully reflect the performance of 
the AKDT algorithm under different data sizes, we selected four pipeline BIM models for 
testing, as shown in Table 1. We first tested the AKDT algorithm for its graphical rendering 
results. At the same time, its rendering effect is compared with the classical Octree algo-
rithm. In order to quantify the performance of the AKDT algorithm, two widely used al-
gorithms in the field of graphics, Octree and BVH (Bounding Volume Hierarchy) tree, are 
selected as control groups. Three key performance metrics, the initial loading time on the 
Web side, the change in frame rate during dynamic rendering, and the response time dur-
ing interaction, are identified as the reference standards for evaluating the performance of 
the AKDT algorithm. 

Ultimately, we provide a clear, structured, and quantitative assessment of the effec-
tiveness of the AKDT algorithm in real-world applications through a series of comparative 
experiments. 

Table 1. Experimental dataset. 

Data Name Model Size Number of Faces Thumbnail 

Office Building 126 MB 861,327 

 

Outpatient Building 452 MB 4,946,136 

 

Parking Garage 1043 MB 9,367,512 

 

Urban Pipe Network 2067 MB 18,467,380 

 

3.2. Visualization Effects 
In order to test the visualization of the AKDT algorithm in web browsers, experi-

mental validation was performed. As shown in Figure 3, these data were rendered using 
the AKDT algorithm in combination with WebGL technology. 

Outpatient Building 452 MB 4,946,136

Buildings 2023, 13, x FOR PEER REVIEW 11 of 19 
 

ured hardware devices equipped with Intel Xeon E5-2630 processors dedicated to pub-
lishing BIM data. On the client side, we used a laptop equipped with i7-10875H CPU and 
RTX2060 GPU to observe the experiment. 

In order to ensure that the experimental results could fully reflect the performance of 
the AKDT algorithm under different data sizes, we selected four pipeline BIM models for 
testing, as shown in Table 1. We first tested the AKDT algorithm for its graphical rendering 
results. At the same time, its rendering effect is compared with the classical Octree algo-
rithm. In order to quantify the performance of the AKDT algorithm, two widely used al-
gorithms in the field of graphics, Octree and BVH (Bounding Volume Hierarchy) tree, are 
selected as control groups. Three key performance metrics, the initial loading time on the 
Web side, the change in frame rate during dynamic rendering, and the response time dur-
ing interaction, are identified as the reference standards for evaluating the performance of 
the AKDT algorithm. 

Ultimately, we provide a clear, structured, and quantitative assessment of the effec-
tiveness of the AKDT algorithm in real-world applications through a series of comparative 
experiments. 

Table 1. Experimental dataset. 

Data Name Model Size Number of Faces Thumbnail 

Office Building 126 MB 861,327 

 

Outpatient Building 452 MB 4,946,136 

 

Parking Garage 1043 MB 9,367,512 

 

Urban Pipe Network 2067 MB 18,467,380 

 

3.2. Visualization Effects 
In order to test the visualization of the AKDT algorithm in web browsers, experi-

mental validation was performed. As shown in Figure 3, these data were rendered using 
the AKDT algorithm in combination with WebGL technology. 

Parking Garage 1043 MB 9,367,512

Buildings 2023, 13, x FOR PEER REVIEW 11 of 19 
 

ured hardware devices equipped with Intel Xeon E5-2630 processors dedicated to pub-
lishing BIM data. On the client side, we used a laptop equipped with i7-10875H CPU and 
RTX2060 GPU to observe the experiment. 

In order to ensure that the experimental results could fully reflect the performance of 
the AKDT algorithm under different data sizes, we selected four pipeline BIM models for 
testing, as shown in Table 1. We first tested the AKDT algorithm for its graphical rendering 
results. At the same time, its rendering effect is compared with the classical Octree algo-
rithm. In order to quantify the performance of the AKDT algorithm, two widely used al-
gorithms in the field of graphics, Octree and BVH (Bounding Volume Hierarchy) tree, are 
selected as control groups. Three key performance metrics, the initial loading time on the 
Web side, the change in frame rate during dynamic rendering, and the response time dur-
ing interaction, are identified as the reference standards for evaluating the performance of 
the AKDT algorithm. 

Ultimately, we provide a clear, structured, and quantitative assessment of the effec-
tiveness of the AKDT algorithm in real-world applications through a series of comparative 
experiments. 

Table 1. Experimental dataset. 

Data Name Model Size Number of Faces Thumbnail 

Office Building 126 MB 861,327 

 

Outpatient Building 452 MB 4,946,136 

 

Parking Garage 1043 MB 9,367,512 

 

Urban Pipe Network 2067 MB 18,467,380 

 

3.2. Visualization Effects 
In order to test the visualization of the AKDT algorithm in web browsers, experi-

mental validation was performed. As shown in Figure 3, these data were rendered using 
the AKDT algorithm in combination with WebGL technology. 

Urban Pipe Network 2067 MB 18,467,380

Buildings 2023, 13, x FOR PEER REVIEW 11 of 19 
 

ured hardware devices equipped with Intel Xeon E5-2630 processors dedicated to pub-
lishing BIM data. On the client side, we used a laptop equipped with i7-10875H CPU and 
RTX2060 GPU to observe the experiment. 

In order to ensure that the experimental results could fully reflect the performance of 
the AKDT algorithm under different data sizes, we selected four pipeline BIM models for 
testing, as shown in Table 1. We first tested the AKDT algorithm for its graphical rendering 
results. At the same time, its rendering effect is compared with the classical Octree algo-
rithm. In order to quantify the performance of the AKDT algorithm, two widely used al-
gorithms in the field of graphics, Octree and BVH (Bounding Volume Hierarchy) tree, are 
selected as control groups. Three key performance metrics, the initial loading time on the 
Web side, the change in frame rate during dynamic rendering, and the response time dur-
ing interaction, are identified as the reference standards for evaluating the performance of 
the AKDT algorithm. 

Ultimately, we provide a clear, structured, and quantitative assessment of the effec-
tiveness of the AKDT algorithm in real-world applications through a series of comparative 
experiments. 

Table 1. Experimental dataset. 

Data Name Model Size Number of Faces Thumbnail 

Office Building 126 MB 861,327 

 

Outpatient Building 452 MB 4,946,136 

 

Parking Garage 1043 MB 9,367,512 

 

Urban Pipe Network 2067 MB 18,467,380 

 

3.2. Visualization Effects 
In order to test the visualization of the AKDT algorithm in web browsers, experi-

mental validation was performed. As shown in Figure 3, these data were rendered using 
the AKDT algorithm in combination with WebGL technology. 

Ultimately, we provide a clear, structured, and quantitative assessment of the effectiveness
of the AKDT algorithm in real-world applications through a series of comparative experiments.

3.2. Visualization Effects

In order to test the visualization of the AKDT algorithm in web browsers, experimental
validation was performed. As shown in Figure 3, these data were rendered using the AKDT
algorithm in combination with WebGL technology.

Meanwhile, under the condition of keeping the loading time constant, we compared
the rendering effect of the AKDT algorithm with the traditional Octree algorithm. As
shown in Figure 4, the results indicate that the pipeline BIM model optimized by the AKDT
algorithm presents a clearer effect visually, and the overall structure of the model and the
geometric structure of the edges are completely rendered.

Further, as shown in Figure 5, after the BIM model has been spatially divided by the
AKDT algorithm, the semantic information of the model can be completely displayed, and
the parameters of the subcomponents are displayed normally.

We also brought the viewpoint closer and tested the visualization of the AKDT algo-
rithm when dealing with large-scale and geometrically complex BIM models. As shown in
Figure 6, the AKDT algorithm is still able to provide clear and accurate visualizations.



Buildings 2023, 13, 2309 12 of 19Buildings 2023, 13, x FOR PEER REVIEW 12 of 19 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. (a,b) Visualization of Office Building; (c,d) Visualization of Outpatient Building; (e,f) Vis-
ualization of Parking Garage; (g,h) Visualization of Urban Pipe Network. 

Meanwhile, under the condition of keeping the loading time constant, we compared 
the rendering effect of the AKDT algorithm with the traditional Octree algorithm. As 
shown in Figure 4, the results indicate that the pipeline BIM model optimized by the 
AKDT algorithm presents a clearer effect visually, and the overall structure of the model 
and the geometric structure of the edges are completely rendered. 

Figure 3. (a,b) Visualization of Office Building; (c,d) Visualization of Outpatient Building; (e,f) Visu-
alization of Parking Garage; (g,h) Visualization of Urban Pipe Network.



Buildings 2023, 13, 2309 13 of 19Buildings 2023, 13, x FOR PEER REVIEW 13 of 19 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. (a,c,e) Visualization of the AKDT algorithm; (b,d,f) Visualization of the octree algorithm. 

Further, as shown in Figure 5, after the BIM model has been spatially divided by the 
AKDT algorithm, the semantic information of the model can be completely displayed, and 
the parameters of the subcomponents are displayed normally. 

  
(a) (b) 

Figure 4. (a,c,e) Visualization of the AKDT algorithm; (b,d,f) Visualization of the octree algorithm.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 19 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. (a,c,e) Visualization of the AKDT algorithm; (b,d,f) Visualization of the octree algorithm. 

Further, as shown in Figure 5, after the BIM model has been spatially divided by the 
AKDT algorithm, the semantic information of the model can be completely displayed, and 
the parameters of the subcomponents are displayed normally. 

  
(a) (b) 

Buildings 2023, 13, x FOR PEER REVIEW 14 of 19 
 

  
(c) (d) 

Figure 5. (a–d) Pipe Semantic Information. 

We also brought the viewpoint closer and tested the visualization of the AKDT algo-
rithm when dealing with large-scale and geometrically complex BIM models. As shown 
in Figure 6, the AKDT algorithm is still able to provide clear and accurate visualizations. 

 
(a) (b) 

  
(c) (d) 

Figure 6. (a–d) Visualization of Complex and Confined Pipelines. 

3.3. Comparative Analysis 
3.3.1. Initial Loading Time 

As shown in Figure 7, we used four datasets of different sizes and initialized the ren-
dering in a web environment that kept the network bandwidth and computational re-
sources consistent. The loading time measurements are timed from the beginning of the 
data request until the model is fully rendered on the screen to end the timing. The results 
show that the AKDT algorithm significantly outperforms the other two algorithms in 
terms of loading time, especially when dealing with large-scale datasets. 

Figure 5. (a–d) Pipe Semantic Information.



Buildings 2023, 13, 2309 14 of 19

Buildings 2023, 13, x FOR PEER REVIEW 14 of 19 
 

  
(c) (d) 

Figure 5. (a–d) Pipe Semantic Information. 

We also brought the viewpoint closer and tested the visualization of the AKDT algo-
rithm when dealing with large-scale and geometrically complex BIM models. As shown 
in Figure 6, the AKDT algorithm is still able to provide clear and accurate visualizations. 

 
(a) (b) 

  
(c) (d) 

Figure 6. (a–d) Visualization of Complex and Confined Pipelines. 

3.3. Comparative Analysis 
3.3.1. Initial Loading Time 

As shown in Figure 7, we used four datasets of different sizes and initialized the ren-
dering in a web environment that kept the network bandwidth and computational re-
sources consistent. The loading time measurements are timed from the beginning of the 
data request until the model is fully rendered on the screen to end the timing. The results 
show that the AKDT algorithm significantly outperforms the other two algorithms in 
terms of loading time, especially when dealing with large-scale datasets. 

Figure 6. (a–d) Visualization of Complex and Confined Pipelines.

3.3. Comparative Analysis
3.3.1. Initial Loading Time

As shown in Figure 7, we used four datasets of different sizes and initialized the
rendering in a web environment that kept the network bandwidth and computational
resources consistent. The loading time measurements are timed from the beginning of the
data request until the model is fully rendered on the screen to end the timing. The results
show that the AKDT algorithm significantly outperforms the other two algorithms in terms
of loading time, especially when dealing with large-scale datasets.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 19 
 

 
Figure 7. Initial Loading Time on the Web Side. 

3.3.2. Frame Rate 
We used two pipeline BIM models, the smallest-sized outpatient building and the 

largest-sized urban pipeline network, as experimental data, and gradually reduced the 
viewpoints from a distance of 300 m to 1 m for the outpatient building model, and from a 
distance of 500 m to 1 m for the urban pipeline network model, and recorded the render-
ing frame rates at each specific distance point. The analysis of the results shows that the 
frame rate for all algorithms decreases with decreasing viewpoint distance for both data, 
which is due to the increase in model details in the view. 

As shown in Figure 8, for the outpatient building data, the curve of the algorithm is 
smooth, and the AKDT algorithm is able to maintain more than 50 frames at a viewpoint 
distance of more than 100 m and around 40 frames at a viewpoint distance of less than 10 
m compared to the other algorithms. 

 
Figure 8. Frame Rate Changes During Dynamic Rendering (Office Building). 

As shown in Figure 9, for the urban pipe network data, the frame rate fluctuates sig-
nificantly because of the large model size and complex pipe structure. However, the aver-
age frame rate of AKDT algorithm is still higher than other algorithms, and it can keep 
more than 50 frames when the viewpoint distance is more than 300 m, and can still keep 
about 30 frames when it is 50 m. 

Figure 7. Initial Loading Time on the Web Side.

3.3.2. Frame Rate

We used two pipeline BIM models, the smallest-sized outpatient building and the
largest-sized urban pipeline network, as experimental data, and gradually reduced the



Buildings 2023, 13, 2309 15 of 19

viewpoints from a distance of 300 m to 1 m for the outpatient building model, and from a
distance of 500 m to 1 m for the urban pipeline network model, and recorded the rendering
frame rates at each specific distance point. The analysis of the results shows that the frame
rate for all algorithms decreases with decreasing viewpoint distance for both data, which is
due to the increase in model details in the view.

As shown in Figure 8, for the outpatient building data, the curve of the algorithm is
smooth, and the AKDT algorithm is able to maintain more than 50 frames at a viewpoint
distance of more than 100 m and around 40 frames at a viewpoint distance of less than
10 m compared to the other algorithms.

Buildings 2023, 13, x FOR PEER REVIEW 15 of 19 
 

 
Figure 7. Initial Loading Time on the Web Side. 

3.3.2. Frame Rate 
We used two pipeline BIM models, the smallest-sized outpatient building and the 

largest-sized urban pipeline network, as experimental data, and gradually reduced the 
viewpoints from a distance of 300 m to 1 m for the outpatient building model, and from a 
distance of 500 m to 1 m for the urban pipeline network model, and recorded the render-
ing frame rates at each specific distance point. The analysis of the results shows that the 
frame rate for all algorithms decreases with decreasing viewpoint distance for both data, 
which is due to the increase in model details in the view. 

As shown in Figure 8, for the outpatient building data, the curve of the algorithm is 
smooth, and the AKDT algorithm is able to maintain more than 50 frames at a viewpoint 
distance of more than 100 m and around 40 frames at a viewpoint distance of less than 10 
m compared to the other algorithms. 

 
Figure 8. Frame Rate Changes During Dynamic Rendering (Office Building). 

As shown in Figure 9, for the urban pipe network data, the frame rate fluctuates sig-
nificantly because of the large model size and complex pipe structure. However, the aver-
age frame rate of AKDT algorithm is still higher than other algorithms, and it can keep 
more than 50 frames when the viewpoint distance is more than 300 m, and can still keep 
about 30 frames when it is 50 m. 

Figure 8. Frame Rate Changes During Dynamic Rendering (Office Building).

As shown in Figure 9, for the urban pipe network data, the frame rate fluctuates
significantly because of the large model size and complex pipe structure. However, the
average frame rate of AKDT algorithm is still higher than other algorithms, and it can keep
more than 50 frames when the viewpoint distance is more than 300 m, and can still keep
about 30 frames when it is 50 m.

Buildings 2023, 13, x FOR PEER REVIEW 16 of 19 
 

 
Figure 9. Frame Rate Changes During Dynamic Rendering (Urban Pipe Network). 

The AKDT algorithm renders with a higher average frame rate and a smaller frame 
rate drop, indicating that it is better optimized and performs more stably in the face of 
viewpoint changes. 

3.3.3. Interaction Response Time 
As shown in Figure 10, in this experiment, we performed interactive operations such 

as rotation, scaling, and translation for different sizes of pipeline BIM models and com-
pared the performance of the AKDT algorithm with other algorithms in terms of average 
response time. 

By analyzing the experimental results, we observe that the AKDT algorithm provides 
faster response times at all dataset sizes. Regardless of whether the data are small or large, 
the AKDT algorithm responds more efficiently to interaction operations, resulting in a 
smoother and faster interaction experience with the model. 

 
Figure 10. Response Time During Interaction. 

4. Discussion 
This paper presents the AKDT algorithm, a Web3D rendering optimization algorithm 

for pipeline BIM models. The algorithm uses an adaptive strategy based on BSP Tree for 
spatial partitioning of pipeline BIM models, considering that the pipeline BIM model has 

Figure 9. Frame Rate Changes During Dynamic Rendering (Urban Pipe Network).



Buildings 2023, 13, 2309 16 of 19

The AKDT algorithm renders with a higher average frame rate and a smaller frame
rate drop, indicating that it is better optimized and performs more stably in the face of
viewpoint changes.

3.3.3. Interaction Response Time

As shown in Figure 10, in this experiment, we performed interactive operations
such as rotation, scaling, and translation for different sizes of pipeline BIM models and
compared the performance of the AKDT algorithm with other algorithms in terms of
average response time.

Buildings 2023, 13, x FOR PEER REVIEW 16 of 19 
 

 
Figure 9. Frame Rate Changes During Dynamic Rendering (Urban Pipe Network). 

The AKDT algorithm renders with a higher average frame rate and a smaller frame 
rate drop, indicating that it is better optimized and performs more stably in the face of 
viewpoint changes. 

3.3.3. Interaction Response Time 
As shown in Figure 10, in this experiment, we performed interactive operations such 

as rotation, scaling, and translation for different sizes of pipeline BIM models and com-
pared the performance of the AKDT algorithm with other algorithms in terms of average 
response time. 

By analyzing the experimental results, we observe that the AKDT algorithm provides 
faster response times at all dataset sizes. Regardless of whether the data are small or large, 
the AKDT algorithm responds more efficiently to interaction operations, resulting in a 
smoother and faster interaction experience with the model. 

 
Figure 10. Response Time During Interaction. 

4. Discussion 
This paper presents the AKDT algorithm, a Web3D rendering optimization algorithm 

for pipeline BIM models. The algorithm uses an adaptive strategy based on BSP Tree for 
spatial partitioning of pipeline BIM models, considering that the pipeline BIM model has 

Figure 10. Response Time During Interaction.

By analyzing the experimental results, we observe that the AKDT algorithm provides
faster response times at all dataset sizes. Regardless of whether the data are small or large,
the AKDT algorithm responds more efficiently to interaction operations, resulting in a
smoother and faster interaction experience with the model.

4. Discussion

This paper presents the AKDT algorithm, a Web3D rendering optimization algorithm
for pipeline BIM models. The algorithm uses an adaptive strategy based on BSP Tree for
spatial partitioning of pipeline BIM models, considering that the pipeline BIM model has
special spatial characteristics, most of which are manifested as longitudinal or transverse
linear structures. In the actual pipeline laying process, pipelines often follow a fixed spatial
direction, and multiple pipe segments are arranged in the same direction with dense spatial
distribution. This means that, compared with other BIM models, the vertices of the pipeline
BIM model show significant denseness on the spatial coordinate axis, and the direction of
the vertex distribution is highly fitted to the direction of the spatial coordinate axis.

Based on the above analysis, the AKDT algorithm first analyzes the optimal segmen-
tation dimensions with respect to the geometric characteristics of the pipeline BIM. The
goal of this strategy is to ensure that the segmentation hyperplane conforms to the main
distribution direction of the underground pipeline BIM model. This strategy not only
reduces the depth of the tree, but also improves the efficiency of the algorithm. Second, the
segmentation step size is dynamically adjusted in the recursive process of the AKDT algo-
rithm so that it can flexibly adapt to the data density and distribution of different regions
and carry out meticulous spatial segmentation in dense regions, while avoiding excessive
subdivision in sparse regions, so as to effectively optimize the segmentation process. In
order to further optimize the segmentation effect, we introduce an energy function which



Buildings 2023, 13, 2309 17 of 19

combines the optimal segmentation dimension and adaptive step size to determine the
optimal segmentation hyperplane. This process integrally considers the density gradient
and heterogeneity of the data to ensure the uniform distribution of the data and the balance
of the tree structure to achieve a reasonable adaptive effect. In addition, in order to maintain
the integrity of the model, the generation of redundant data was avoided. We merged the
redundant triangles generated due to segmentation. Finally, we designed a termination
condition function that combines multiple factors to ensure that the AKDT algorithm stops
at the right time, thus achieving the best optimization results and saving resources at the
same time.

5. Conclusions

Experiments demonstrate that the algorithm proposed in this study offers significant
advantages over traditional methods.

The AKDT algorithm’s rendering optimization ensures that the pipeline BIM model
is vividly presented on the web platform. The entirety of the model’s structure, edge
geometry, and semantic information remains intact. Notably, there is no loss in the model’s
geometric or semantic details due to spatial segmentation.

In terms of initial loading time, the AKDT algorithm surpasses traditional methods.
On average, it reduces the rendering time by over 11% across the experimental dataset.
This efficiency is particularly evident with larger datasets, where the rendering time is
reduced by nearly 18%.

When considering frame rate, tests conducted at different viewpoint distances indicate
that the algorithm enhances the rendering frame rate by an average of over 8% for smaller
datasets. This rate remains stable, averaging above 45 FPS. For larger datasets, the frame
rate increases by an average of over 5%. However, there are some fluctuations due to the
sheer volume of large data and the limitations of computer hardware, but the average
frame rate is still over 30 FPS.

Regarding interaction response time, the AKDT algorithm proves to be faster. It
reduces the interaction response time by over 14% compared to other methods. Further-
more, with larger datasets, the algorithm optimizes the response, cutting down the time by
nearly 17%.

The algorithm’s efficiency in spatially managing pipeline BIM models enhances the
visualization and browsing smoothness of these models on web browsers. This leads
to optimized rendering. In practical applications, it can elevate the efficiency of staff
operations, management, and maintenance of the pipeline BIM model. Additionally,
the algorithm positively influences the development of digital twin technology and the
integration of BIM + GIS.

However, there are areas for further optimization in this research. The algorithm is
primarily designed as an optimization strategy for the geometric features of pipeline BIM
models, making it ideal for rendering these models but somewhat limited for other BIM
models. In addition, the study mainly considers rendering optimization on PCs. With
the increasing use of mobile devices in practical applications, optimizing the rendering of
pipeline BIM models on these devices is another aspect to consider.

Author Contributions: Conceptualization, X.W. and L.H.; Methodology, X.W. and T.S.; Software,
X.W. and X.Y.; Validation, X.W. and H.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Research Project of CHINA ACADEMY OF RAILWAY
SCIENCES CORPORATION LIMITED (grant no. 2022YJ299). The authors wish to extend their sincere
thanks for the support from CHINA ACADEMY OF RAILWAY SCIENCES CORPORATION LIMITED.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Buildings 2023, 13, 2309 18 of 19

References
1. Chen, Y.; Huang, D.; Liu, Z.; Osmani, M.; Demian, P. Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for

Sustainable Building Development within the Smart City. Sustainability 2022, 14, 10028. [CrossRef]
2. Daniotti, B.; Masera, G.; Bolognesi, C.M.; Lupica Spagnolo, S.; Pavan, A.; Iannaccone, G.; Signorini, M.; Ciuffreda, S.; Mirarchi,

C.; Lucky, M.; et al. The Development of a BIM-Based Interoperable Toolkit for Efficient Renovation in Buildings: From BIM to
Digital Twin. Buildings 2022, 12, 231. [CrossRef]

3. Ivson, P.; Moreira, A.; Queiroz, F.; Santos, W.; Celes, W. A Systematic Review of Visualization in Building Information Modeling.
IEEE Trans. Visual. Comput. Graph. 2020, 26, 3109–3127. [CrossRef] [PubMed]

4. Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds.). Building Information Modeling: Why? What? How? In Building Information
Modeling; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–24.

5. Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information
Modelling (BIM) Uptake: Clear Benefits, Understanding Its Implementation, Risks and Challenges. Renew. Sustain. Energy Rev.
2017, 75, 1046–1053. [CrossRef]

6. Zou, Y.; Kiviniemi, A.; Jones, S.W. A Review of Risk Management through BIM and BIM-Related Technologies. Saf. Sci. 2017,
97, 88–98. [CrossRef]

7. Yang, A.; Han, M.; Zeng, Q.; Sun, Y. Adopting Building Information Modeling (BIM) for the Development of Smart Buildings: A
Review of Enabling Applications and Challenges. Adv. Civ. Eng. 2021, 2021, 8811476. [CrossRef]

8. Marzouk, M.; Elmaraghy, A. Design for Deconstruction Using Integrated Lean Principles and BIM Approach. Sustainability 2021,
13, 7856. [CrossRef]

9. Wang, Y.; Zhang, L.; Yu, H.; Tiong, R.L.K. Detecting Logical Relationships in Mechanical, Electrical, and Plumbing (MEP) Systems
with BIM Using Graph Matching. Adv. Eng. Inform. 2022, 54, 101770. [CrossRef]

10. Pan, Z.; Yu, Y.; Xiao, F.; Zhang, J. Recovering Building Information Model from 2D Drawings for Mechanical, Electrical and
Plumbing Systems of Ageing Buildings. Autom. Constr. 2023, 152, 104914. [CrossRef]

11. Hu, Z.-Z.; Tian, P.-L.; Li, S.-W.; Zhang, J.-P. BIM-Based Integrated Delivery Technologies for Intelligent MEP Management in the
Operation and Maintenance Phase. Adv. Eng. Softw. 2018, 115, 1–16. [CrossRef]

12. Li, M.; Xiong, X.; Yin, Q. Smart City Construction Visual Simulation Application Based on Intelligent BIM Technology. Int. J.
Pattern Recognit. Artif. Intell. 2021, 35, 2155014. [CrossRef]

13. Shekargoftar, A.; Taghaddos, H.; Azodi, A.; Nekouvaght Tak, A.; Ghorab, K. An Integrated Framework for Operation and
Maintenance of Gas Utility Pipeline Using BIM, GIS, and AR. J. Perform. Constr. Facil. 2022, 36, 04022023. [CrossRef]

14. Tang, L.; Chen, C.; Li, H.; Mak, D.Y.Y. Developing a BIM GIS–Integrated Method for Urban Underground Piping Management in
China: A Case Study. J. Constr. Eng. Manag. 2022, 148, 05022004. [CrossRef]

15. Huang, Y.; Peng, H.; Fang, X.; Xing, T. A Research on Data Integration and Application Technology of Urban Comprehensive
Pipe Gallery Based on Three-Dimensional Geographic Information System Platform. IET Smart Cities 2023, 5, 111–122. [CrossRef]

16. Tang, B.; Chen, Z.; Hefferman, G.; Pei, S.; Wei, T.; He, H.; Yang, Q. Incorporating Intelligence in Fog Computing for Big Data
Analysis in Smart Cities. IEEE Trans. Ind. Inform. 2017, 13, 2140–2150. [CrossRef]

17. Deng, S.; Ma, S.; Zhang, X.; Zhang, S. Integrated Detection of a Complex Underground Water Supply Pipeline System in an Old
Urban Community in China. Sustainability 2020, 12, 1670. [CrossRef]

18. Tao, L.; Ding, P.; Lin, H.; Wang, H.; Kou, W.; Shi, C.; Li, S.; Wu, S. Three-Dimensional Seismic Performance Analysis of Large and
Complex Underground Pipe Trench Structure. Soil Dyn. Earthq. Eng. 2021, 150, 106904. [CrossRef]

19. She, J.; Chen, B.; Tan, J.; Zhao, Q.; Ge, R. 3D Building Model Simplification Method Considering Both Model Mesh and Building
Structure. Trans. GIS 2022, 26, 1182–1203. [CrossRef]

20. Li, Q.; Sun, X.; Yang, B.; Jiang, S. Geometric Structure Simplification of 3D Building Models. ISPRS J. Photogramm. Remote Sens.
2013, 84, 100–113. [CrossRef]

21. She, J.; Gu, X.; Tan, J.; Tong, M.; Wang, C. An Appearance-Preserving Simplification Method for Complex 3D Building Models.
Trans. GIS 2019, 23, 275–293. [CrossRef]

22. Garland, M.; Heckbert, P.S. Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 24–28 July 1997; pp. 209–216.

23. Wei, Y.; Wu, L.; Sun, B.; Zhu, X. Improved QEM Simplification Algorithm Based on Discrete Curvature and a Sparseness
Coefficient. In Proceedings of the 2014 International Conference on IT Convergence and Security (ICITCS), Beijing, China, 28–30
October 2014; pp. 1–5.

24. Ma, T.; Gong, G.; Yan, J. A 3D model simplification algorithm based on edge-collapse. In Proceedings of the IEEE 10th International
Conference on Industrial Informatics, Beijing, China, 25–27 July 2012; pp. 776–779.

25. Dassi, F.; Ettinger, B.; Perotto, S.; Sangalli, L.M. A Mesh Simplification Strategy for a Spatial Regression Analysis over the Cortical
Surface of the Brain. Appl. Numer. Math. 2015, 90, 111–131. [CrossRef]

26. Samet, H. An overview of quadtrees, octrees, and related hierarchical data structures. Theor. Found. Comput. Graph. CAD 1988,
40, 51–68.

27. Dietrich, A.; Gobbetti, E.; Yoon, S.-E. Massive-Model Rendering Techniques: A Tutorial. IEEE Comput. Graph. Appl. 2007, 27,
20–34. [CrossRef] [PubMed]

28. Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]

https://doi.org/10.3390/su141610028
https://doi.org/10.3390/buildings12020231
https://doi.org/10.1109/TVCG.2019.2907583
https://www.ncbi.nlm.nih.gov/pubmed/30932840
https://doi.org/10.1016/j.rser.2016.11.083
https://doi.org/10.1016/j.ssci.2015.12.027
https://doi.org/10.1155/2021/8811476
https://doi.org/10.3390/su13147856
https://doi.org/10.1016/j.aei.2022.101770
https://doi.org/10.1016/j.autcon.2023.104914
https://doi.org/10.1016/j.advengsoft.2017.08.007
https://doi.org/10.1142/S0218001421550144
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001722
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002323
https://doi.org/10.1049/smc2.12056
https://doi.org/10.1109/TII.2017.2679740
https://doi.org/10.3390/su12041670
https://doi.org/10.1016/j.soildyn.2021.106904
https://doi.org/10.1111/tgis.12907
https://doi.org/10.1016/j.isprsjprs.2013.07.006
https://doi.org/10.1111/tgis.12518
https://doi.org/10.1016/j.apnum.2014.10.007
https://doi.org/10.1109/MCG.2007.154
https://www.ncbi.nlm.nih.gov/pubmed/18027795
https://doi.org/10.1016/0169-7439(87)80084-9


Buildings 2023, 13, 2309 19 of 19

29. Yang, L.; Cheng, J.C.P.; Wang, Q. Semi-Automated Generation of Parametric BIM for Steel Structures Based on Terrestrial Laser
Scanning Data. Autom. Constr. 2020, 112, 103037. [CrossRef]

30. Kolmogorov, V.; Zabin, R. What Energy Functions Can Be Minimized via Graph Cuts? IEEE Trans. Pattern Anal. Mach. Intell. 2004,
26, 147–159. [CrossRef]

31. Boykov, Y.; Veksler, O.; Zabih, R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell.
2001, 23, 1222–1239. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.autcon.2019.103037
https://doi.org/10.1109/TPAMI.2004.1262177
https://doi.org/10.1109/34.969114

	Introduction 
	Background 
	Related Research 
	Relevant Concepts 
	Article Content 

	Materials and Methods 
	Description of The AKDT Algorithm 
	Segmentation of Dimensions Based on PCA 
	Adaptive Segmentation Step 
	Optimal Segmentation Hyperplane Determination Methods 
	Redundant Triangle Mesh Merging Method 
	Termination Condition Weighting Function 

	Results 
	Experimental Setup 
	Visualization Effects 
	Comparative Analysis 
	Initial Loading Time 
	Frame Rate 
	Interaction Response Time 


	Discussion 
	Conclusions 
	References

