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Abstract: The daylighting environment in university gymnasiums affects daily teaching and sports
training. However, direct sunlight, glare, and indoor overheating in summer are common problems.
Semi-transparent photovoltaic glass can solve these issues by replacing shading facilities, blocking
solar radiation, and generating electricity. This study examines the influence of different types of CdTe
semi-transparent film photovoltaic glass on the daylighting environment of six typical university
gymnasium skylights. The optimal types of CdTe semi-transparent film photovoltaic glass are deter-
mined by dynamic daylighting performance metrics DA, DAcon, DAmax, and UDI. The results show
that, for instance, centralized rectangular skylights benefit from the 50–60% transmittance type, while
centralized X-shaped skylights require the 70–80% transmittance type to enhance indoor daylighting.
The research results offer specific recommendations based on skylight shapes and photovoltaic glass
types and can provide a reference for the daylighting design of university gymnasium buildings with
different forms of photovoltaic skylights in the future.
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1. Introduction

According to statistics, by 2021, there will be a total of 3012 higher education insti-
tutions in China, including 2756 universities (1270 universities, 1486 junior colleges) and
256 adult education institutions. To meet the daily physical education and training needs,
most colleges and universities build gymnasiums according to national standards. The
daylighting environment in the gymnasium is an important factor influencing people’s
activities [1]. Some studies show that 80% of the information obtained by the sports crowd
comes from the visual information caused by the daylighting environment [2]. At the
same time, the university gymnasiums not only provide the venue for physical education
activities in colleges and universities but also sometimes host some international compe-
titions. For example, some of the venues for the 2008 Beijing Olympic Games are set in
several university gymnasiums in Beijing, which has higher demands on the quality of
the daylighting environment in the gymnasium. The university gymnasium is a tall space
building with a large depth. In order to meet the daylighting requirements, it is necessary
to set up openings for daylighting. The main daylighting methods include side window
daylighting, skylight daylighting, and side window skylight co-daylighting [3,4]. Although
the window structure improves the indoor illumination level, it will bring problems such
as direct sunlight and glare. Also, it can cause indoor overheating in summer and increase
building energy consumption [5–7].

Most of the studies on the light environment aspects of gymnasium buildings mainly
use a single window form and mainly consider the impact on the indoor environmental
objectives by changing parameters such as building shape, shading parameters, window
sizes and materials, and lack of studies on the light environment aspects of gymnasiums
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with different shapes of skylights [1,8–10], and there is a lack of research on different shapes
of skylight gymnasiums in terms of the light environment.

Flat skylight is the most commonly used skylight in university gymnasiums, with
high lighting efficiency, uniform illumination distribution, flexible layout, and low glare
probability. The layout is mainly divided into centralized and uniform distributed skylights;
centralized skylights include centralized rectangular skylights, centralized ribbon skylights,
and centralized X-shaped skylights; uniform distributed skylights include distributed
rectangular skylights, distributed vertical strip skylights, and distributed horizontal strip
skylights, as shown in Figure 1 [3]. For the above different types of skylights, it is necessary
to study their impact on the lighting performance of gymnasium buildings so as to make
up for the deficiency in the study of the gymnasium light environment.
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Building integrated photovoltaic (BIPV) is a technology that integrates solar power
generation products into buildings [11–13]. As a part of the external structure of the build-
ing, BIPV not only has the function of generating electricity, but also has the function of
building components and materials. It can also improve the beauty of the building and
form a perfect unity with the building. As a form of BIPV, solar photovoltaic glass can
replace sunshade facilities to solve the problem of indoor glare caused by direct sunlight. Its
semi-transparency also blocks a certain amount of solar radiation into the room, alleviates
the phenomenon of indoor overheating in summer, and reduces summer cooling power
consumption; the electricity generated can be used for the building itself or the use of the
grid, with great energy saving potential. For instance, in the China National Stadium, one
of the three main venues for the 2008 Beijing Olympics, 24 solar photovoltaic glass panels
are installed on its roof, with a rated output of 100 kW per day, reducing CO2 emissions by
about 94 tons per year. With the progress of photovoltaic technology and the promotion
of building energy conservation, solar photovoltaic glass is very likely to be applied to
the skylight and glass curtain wall structure of the university gymnasium. However, the
existing research on photovoltaic glass modules is mainly focused on energy conserva-
tion [14–22], and the research on indoor daylighting environments of buildings rarely
involves university gymnasiums [23–27]. It is not known whether the actual illumination
level of solar photovoltaic skylights applied in university gymnasiums can meet indoor
daylighting requirements.

In the past 20 years, research has mainly focused on glare and illuminance to establish
reliable indicators for assessing visual comfort [28–31]. Currently, the daylight factor (DF)
static index is widely used in China’s architectural daylighting design field to evaluate
indoor daylighting under ideal CIE cloudy conditions [32]. However, this type of lighting
assessment presents static characteristics, merely reflecting the illumination levels of a
specific day. It fails to capture the variations occurring at different times and seasons,
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thereby limiting the evaluation of building illumination [33]. Based on the development of
Climate-Based Daylight Modeling (CBDM) [34], dynamic daylight metrics have been intro-
duced to assess the annual daylighting performance and are widely adopted worldwide.
Daylight Autonomy (DA) and Useful Daylight Illuminance (UDI) have been proposed as
dynamic metrics to quantify the amount of daylight [29]. However, due to issues such as in-
sufficient lighting and excessive glare, two dynamic daylight metrics, Continuous Daylight
Autonomy (DAcon) and Maximum Daylight Autonomy (DAmax), are also introduced for
comprehensive analysis of indoor lighting conditions.

DA measures the proportion of time that a point in the building meets the minimum
illumination requirement throughout the year. DAcon quantifies the degree of insufficient
lighting below the minimum requirement. DAmax describes the possibility of glare genera-
tion with 10 times the minimum daylighting illumination as a reference value [35]. UDI
measures the proportion of time that a point in the building is in the effective utilization
range during the operating period of the year. Nabil [35] studied building daylighting
environments and categorized indoor illuminance levels into three intervals using 100 lx
and 2000 lx as thresholds. Illumination below 100 lx is considered too low for visual activi-
ties, while illumination between 100 lx and 2000 lx is considered moderate. Illumination
exceeding 2000 lx may cause visual discomfort.

Based on the above four dynamic daylighting evaluation indexes, this paper conducts
dynamic daylighting simulation for six skylight forms common in university gymnasiums,
explores the influence of different types of CdTe thin film photovoltaic glass on building
daylighting, and makes the optimal selection. The noteworthy contributions of this study
extend beyond the elucidation of optimal photovoltaic glass types. By placing empha-
sis on skylight shapes and their specific requirements, our research provides architects
and researchers with concrete recommendations for informing the daylighting design of
university gymnasium structures.

2. Methodology

Firstly, the typical university gymnasium and skylight with different shapes are
modeled, and the material and boundary conditions of the envelope structure are set.
Secondly, the simulation software is used to simulate the dynamic daylighting of CdTe
thin film photovoltaic glass of different transmittance types, and the indoor daylighting
environment is analyzed by obtaining the dynamic daylighting index value. Finally, the
most optimal type of CdTe thin film photovoltaic glass for skylights with six shapes is
summarized. The methodology is presented in Figure 2.
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The basic building is modeled using Rhinoceros 3D software (version 7.4) [36] and
imported to Ladybug and Honeybee plug-in [37] for Grasshopper for dynamic daylighting
simulation and assessment for the actual design. Parameters such as the geometry, size,
and location of the skylight are taken into account in the gymnasium model building, and
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accurate material properties are set in the model to ensure that the simulated results match
the actual environment. The Grasshopper parametric tool [38] has been used to model the
skylight and provide multiple variations for the skylight shape.

After completing the creation of the parametric model, we use the Honeybee plug-in
to perform detailed model property settings, which include the precise definition of the
materials for the building envelope and skylight. In this process, we pay special attention
to the optical properties, reflectance, and glazing transmittance of the building envelope
and skylight materials. We further proceed with the detailed setup of the simulation
boundary conditions. This step covers the generation of the simulation mesh, the setting
of the simulation parameters, and the use of the meteorological file. Ladybug reads
imported meteorological files, correlates Radiance with a parameterized platform through
the Honeybee interface plug-in, generates the simulation mesh and inputs set parameters
into simulation analysis software, and gets visualization data results after calculation.

Dynamic daylighting simulations for different scenarios are carried out using Ladybug
and Honeybee plug-ins. The aim of this phase of the simulation is to evaluate the dynamic
daylighting performance of CdTe thin film photovoltaic glass in different skylight forms
with different transmittance types and to analyze its impact on the indoor daylighting
environment. Through this process, we obtain key data, such as the dynamic daylighting
indexes, which are used to quantitatively evaluate the practical effectiveness of different
transmittance types of CdTe thin film photovoltaic glass in a typical university gymnasium.
This provides an important basis for our subsequent summary of the optimal CdTe thin
film photovoltaic glass types.

Finally, a comprehensive assessment of the indoor daylighting environment is carried
out using dynamic daylighting metrics. This dynamic assessment involves comparing
the performance of CdTe thin-film photovoltaic glass under six different skylight forms to
determine the optimal type of CdTe thin-film photovoltaic glass.

2.1. Software Introduction

In this study, the building was modeled parametrically in the Rhino and Grasshopper.
Grasshopper is a visual programming plugin and one of the leading software tools in
the field of parametric design. We carried out the dynamic daylighting simulation of the
university gymnasium by the Ladybug and Honeybee component, a free and open-source
simulation plugin based on Grasshopper. The core of daylight simulation in Honeybee is
primarily based on the Radiance. Radiance is a validated daylighting simulation engine
that employs a backward raytracing algorithm created by Greg Ward at Lawrence Berkeley
National Laboratory [39]. The accuracy of building performance simulation software has
been verified in detail by predecessors [40].

2.2. Photovoltaic Glass Properties

Solar photovoltaic glass mainly includes crystalline silicon photovoltaic glass [41]
and thin film photovoltaic glass. Crystalline silicon photovoltaic glass is composed of
photovoltaic cells and tempered glass; the internal photovoltaic cell is not transparent; by
controlling the cell gap and edge gap between the double-sided glass to control the sunlight
transmittance, crystalline silicon photovoltaic glass is easy to cause indoor illumination
uneven. Thin film photovoltaic glass includes silicon thin film type [42], compound
semiconductor thin film type [43], new material thin film type battery [44], etc. A nano
Cadmium telluride solar cell (CdTe) is a thin-film solar cell based on the heterogeneous
combination of P-type CdTe and N-type CdS. Compared with traditional solar products,
CdTe has better low-light performance and higher conversion efficiency. Products with
different light transmittance can be made by laser etching, and the structure is shown in
Figure 3.
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In this paper, CdTe thin film photovoltaic glass is taken as the research object to explore
the influence of different types of thin film photovoltaic glass on indoor daylighting in the
university gymnasium. The CdTe thin film photovoltaic glass of 10–80% transmittance
type is set, and the step size is 10%, corresponding to a 90–20% power generation thin
film coverage area ratio, respectively. The minimum coverage ratio of power generation
film is set at 20% because the photovoltaic glass with lower film coverage has too low
revenue. In the following content, 10–80% CT is used to represent the CdTe thin film
photovoltaic glass of 10–80% transmittance type, respectively. Based on the hypothesis
of Miyazaki [45] on thin film photovoltaic cells, the transmittance, thickness, and other
parameters of front and rear panel glass are input into the software Window 7.7, and
the photothermal properties parameters of CdTe thin film photovoltaic glass of different
transmittance types are obtained, as shown in Table 1.

Table 1. Photothermal properties parameters.

Photovoltaic Glass Type Subsequent
Name

Visible
Transmittance Shading Coefficient Solar Heat Gain

Coefficient

10% transmittance type 10% CT 0.091 0.418 0.363
20% transmittance type 20% CT 0.181 0.48 0.417
30% transmittance type 30% CT 0.272 0.541 0.471
40% transmittance type 40% CT 0.363 0.603 0.524
50% transmittance type 50% CT 0.454 0.664 0.577
60% transmittance type 60% CT 0.546 0.725 0.631
70% transmittance type 70% CT 0.637 0.786 0.684
80% transmittance type 80% CT 0.729 0.848 0.738

2.3. Model Parameter

According to the field survey and data analysis of 29 university gymnasiums in China
by predecessors [3] and the Gymnasium Design Standard (JGJ31-2003) [46], the simulated
building, oriented with its long side facing east-west and short side facing north-south,
has a plane size of a 46 m × 70 m rectangle. The competition area within this rectangle
measures 38 m × 44 m, and the building has a height of 18m with fixed stands on both
sides. No side windows were considered, and a gymnasium with an integrated skylight
was modeled to accurately represent the daylighting conditions. The simulation location is
set in Beijing, located in the Chinese daylighting climate zone III. Table 2 shows the natural
light utilization hours and design illuminance in different daylighting climate zones.

According to China National Standard for Daylighting Design of Buildings (GB50033-
2013) [47], for daylighting in class III climate zones and buildings with daylighting grade IV,
the skylight ratio of glazing to floor area is set at 1/13, to calculate the area covered by the
glazing, this ratio is multiplied by the floor area. In our case, the floor area is 3220 square
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meters, and the calculated glass area for each of the six skylight shapes is approximately
248 m2. The indoor interface reflectance is also set according to the real utilization condition,
as shown in Table 3.

Table 2. Hours of natural light utilization in different climatic zones.

Daylighting
Climate Zones

Number of
Stations (lx)

Annual
Average Total
Illuminance

(lx)

Design
Illuminance of

Exterior
Daylight (lx)

The Number of
Hours of Natural
Light Utilization

for Design
Illuminance (h)

Critical
Illuminance of

Exterior
Daylight (lx)

The Number of
Hours of Natural
Light Utilization

for Critical
Illuminance (h)

I 29 48,781 18,000 3356 6000 3975
II 40 42,279 16,500 3234 5500 3921
III 71 37,427 15,000 3154 5000 3909
IV 102 32,886 13,500 3055 4500 3857
V 31 27,138 12,000 2791 4000 3689

Table 3. Indoor interface reflectance.

Type Material Reflectance

Ceiling Concrete and steel
construction 0.2

Wall White paint 0.75
Floor Light color wood floors 0.58

2.4. Simulation Parameter Settings

Based on the China National Standard for Daylighting Design of Buildings (GB50033-
2013), the minimum illuminance level of the gymnasium in the form of top lighting is set
at 150 lx. The height of the calculating plane is set as 1.5 m above the ground to be closer
to the real illumination of the human eye, and a 1 m × 1 m grid is set on the calculating
plane, resulting in a total of 1748 grids, the 3D image of the reference plane grid is shown in
Figure 4. Other relative simulation parameters for RADIANCE are set in Table 4. Ambient
bounces represent the number of reflections between the surfaces. Ambient divisions and
super-samples set the number of samples sent. Ambient resolution deals with the maximum
error, scene dimension, and the sampling cutoff point. The ambient accuracy (-aa) is usually
set to 0.1 to 1, and lower numbers result in better accuracy. The daylight simulation quality
defined in Honeybee is set to a value of 1, which corresponds to medium quality.
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Table 4. Environment parameter settings.

Parameter Setting Value

Quality 1
Ambient bounces 5
Ambient divisions 2048

Ambient super-samples 512
Ambient resolution 512
Ambient accuracy 0.08

Table 5 presents the primary analysis options for the simulations. Based on the above-
mentioned preset simulation conditions, a comprehensive simulation analysis study was
conducted on the indoor lighting environment with different application scenarios of CdTe
thin film photovoltaic glass.

Table 5. Analysis settings in RADIANCE.

Parameter Setting Value

Occupancy schedule 8:00–18:00
Minimum illumination 150 lx

Grid size 1 m × 1 m
Number of grids 1748

3. Results and Discussions
3.1. DA Analysis of Six Shapes of Skylights

The average DA variation curves and varying ranges of DA of six shapes of skylights
under the condition of 10–80% CT photovoltaic glass are shown in Figure 5. The average
DA is obtained by calculating the average of all measuring points on the calculating plane.
A higher average DA in the upper part of the range suggests that there are more measuring
points with adequate daylighting, while a lower average DA in the lower part of the range
indicates that there are more measuring points with inadequate daylighting. Moreover, the
average DA of the six skylight shapes increases as the transmittance of the CT photovoltaic
glass increases.

During the working period from 8 am to 6 pm, when the measured DA is less than
25%, daylighting is considered very poor; when the measured DA is between 25% and 55%,
daylighting is considered insufficient; when the measured DA is between 55% and 75%,
daylighting is considered acceptable; when the measured DA is above 75%, daylighting is
considered ideal [48].

From Figure 5, it can be seen that for the centralized rectangular skylight, distributed
horizontal strip skylight, and distributed vertical strip skylight, when the photovoltaic
glass is 80% CT, all of the measured DA value is above 75%; for the distributed rectangular
skylight and centralized ribbon skylight, when the photovoltaic glass is 70–80% CT, all of
the measured DA value is above 75%; for the centralized X-shaped skylight, there is no
such situation where the DA value of all the measuring points is above 75%. Compared
with distributed skylights, the DA value of centralized skylights has a wider range. The
reason is that some areas are far from directly under the skylight, and the lighting quality
in these areas differs greatly from that directly under the skylight.

To better analyze the indoor daylighting situation of the gymnasium, the detailed DA
values of the six kinds of skylights are shown in Tables 6–11. DA ≥ 75%, 55% ≤ DA < 75%,
25% ≤ DA < 55%, and DA < 25% represent the proportion of measuring points that meet
the requirements of their respective DA to all measuring points.
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Table 6. Detailed data of DA for a centralized rectangular skylight.

Type
Centralized Rectangular Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 30.55% 69.45%
20% CT 9.55% 21.4% 42.91% 26.14%
30% CT 34.5% 31.35% 25.57% 8.58%
40% CT 61.04% 27.8% 10.87% 0.29%
50% CT 83.06% 14.82% 2.12% 0%
60% CT 95.54% 4.46% 0% 0%
70% CT 99.6% 0.4% 0% 0%
80% CT 100% 0% 0% 0%
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Table 7. Detailed data of DA for a distributed rectangular skylight.

Type
Distributed Rectangular Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 28.66% 71.34%
20% CT 0% 25.34% 64.87% 9.97%
30% CT 32.44% 49.03% 18.53% 0%
40% CT 73.68% 24.54% 1.78% 0%
50% CT 94.45% 5.55% 0% 0%
60% CT 99.66% 0.34% 0% 0%
70% CT 100% 0% 0% 0%
80% CT 100% 0% 0% 0%

Table 8. Detailed data of DA for a centralized ribbon skylight.

Type
Centralized Ribbon Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 30.43% 69.57%
20% CT 2.29% 34.1% 51.37% 12.24%
30% CT 41.93% 33.3% 24.43% 0.34%
40% CT 69.5% 26.6% 3.9% 0%
50% CT 89.47% 10.53% 0% 0%
60% CT 99.03% 0.97% 0% 0%
70% CT 100% 0% 0% 0%
80% CT 100% 0% 0% 0%

Table 9. Detailed data of DA for a distributed vertical strip skylight.

Type
Distributed Vertical Strip Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 32.44% 67.56%
20% CT 0% 23.51% 55.21% 21.28%
30% CT 26.95% 45.54% 24.03% 3.48%
40% CT 63.5% 28.49% 8.01% 0%
50% CT 87.87% 10.98% 1.15% 0%
60% CT 97.71% 2.29% 0% 0%
70% CT 99.54% 0.46% 0% 0%
80% CT 100% 0% 0% 0%

Table 10. Detailed data of DA for a centralized X-shaped skylight.

Type
Centralized X-Shaped Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 0% 100%
20% CT 0% 0% 16.65% 83.35%
30% CT 0% 4.46% 56.58% 38.96%
40% CT 3.66% 29.12% 52.06% 15.16%
50% CT 22.2% 37.64% 36.27% 3.89%
60% CT 43.25% 33.81% 22.48% 0.46%
70% CT 60.07% 30.38% 9.44% 0.11%
80% CT 76.66% 19.22% 4.12% 0%
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Table 11. Detailed data of DA for a distributed horizontal strip skylight.

Type
Distributed Horizontal Strip Skylight

DA ≥ 75% 55% ≤ DA < 75% 25% ≤ DA < 55% DA < 25%

10% CT 0% 0% 30.43% 69.57%
20% CT 0% 29.4% 60.93% 9.67%
30% CT 35.58% 41.82% 22.31% 0.29%
40% CT 69.62% 26.72% 3.66% 0%
50% CT 91.65% 8.06% 0.29% 0%
60% CT 98.34% 1.66% 0% 0%
70% CT 100% 0% 0% 0%
80% CT 100% 0% 0% 0%

3.1.1. DA Analysis for Centralized Rectangular Skylight

Detailed data on the DA of centralized rectangular skylights are shown in Table 6.
For 10–30% CT photovoltaic glass, the measured DA is mostly less than 75%, indicating a
poor indoor daylighting environment; for 40–80% CT photovoltaic glass, the DA of more
than half of the measurement points is greater than 75%, indicating that the daylighting
environment of most of the space is better in the gymnasium. Although the DA of more
than half of the 40% CT photovoltaic glass measurement points is greater than 75%, the DA
of more than 10% of the measurement points is less than 55%. To create a better daylighting
environment, 50–80% CT photovoltaic glass is a better choice.

3.1.2. DA Analysis for Distributed Rectangular Skylight

Detailed data of DA of distributed rectangular skylights are shown in Table 7. For
10–20% CT photovoltaic glass, the DA of all measurement points is below 75%, implying
a very poor indoor daylighting environment; for the 40–80% CT photovoltaic glass, the
DA of more than half of the measuring points is greater than 75%, indicating that the
daylighting environment of most of the space is better in the gymnasium. The DA of 30%
CT photovoltaic glass measuring points over 80% is greater than 55%, which belongs to
the acceptable daylighting environment, but the proportion of measuring points with DA
less than 55% is more than 10%. To create a better daylighting environment, 40–80% CT
photovoltaic glass is a better choice.

3.1.3. DA Analysis for Centralized Ribbon Skylight

Detailed data on the DA of centralized ribbon skylights are shown in Table 8. For
10–30% CT photovoltaic glass, the measured DA is mostly less than 75% and shows a
poor daylighting level; for the 40–80% CT photovoltaic glass, the DA of more than half of
the measuring points is greater than 75%, indicating that the daylighting environment of
most of the space is better in the gymnasium. The DA of more than half of the 40% CT
photovoltaic glass measuring points is greater than 75%, and the proportion of measuring
points with DA less than 55% is very small. Therefore, 40–80% CT photovoltaic glass is a
better choice for a centralized ribbon skylight.

3.1.4. DA Analysis for Distributed Vertical Strip Skylight

Detailed data on the DA of distributed vertical strip skylights are shown in Table 9.
For 10–20% CT photovoltaic glass, the DA of all measurement points is less than 75%,
implying a very poor indoor daylighting environment; for 30% CT photovoltaic glass, the
DA of more than 70% measurement points is greater than 55%, but the DA of less than 55%
is relatively high; for the 40–80% CT photovoltaic glass, the DA of more than half of the
measuring points is greater than 75%, indicating that the daylighting environment of most
of the space is better in the gymnasium. Therefore, 40–80% CT photovoltaic glass is a better
choice for a distributed vertical strip skylight.
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3.1.5. DA Analysis for Centralized X-Shaped Skylight

Detailed data on the DA of centralized X-shaped skylights are shown in Table 10. For
10–30% CT photovoltaic glass, the DA of all measurement points is below 75%, indicating
a very poor indoor daylighting environment; for 30–60% CT photovoltaic glass, only
a few measuring points of the DA is greater than 75%, the daylighting environment is
still not ideal; for the 70–80% CT photovoltaic glass, the DA of more than half of the
measuring points is greater than 75%, implying that most of the indoor space has ideal
daylighting. Therefore, 70–80% CT photovoltaic glass is a better choice for a centralized
X-shaped skylight.

3.1.6. DA Analysis for Distributed Horizontal Strip Skylight

Detailed data on the DA of distributed horizontal strip skylights are shown in Table 11.
For 10–20% CT photovoltaic glass, the DA of all measurement points is less than 75%,
implying a very poor indoor daylighting environment; for 30% CT photovoltaic glass, the
DA of more than 70% measurement points is greater than 55%, but the DA of less than
55% is relatively high. Therefore, 40–80% CT photovoltaic glass is a better choice for a
distributed horizontal strip skylight.

3.2. DAcon and DAmax Analysis of Six Shapes of Skylights

Compared with DA, DAcon is a more comprehensive evaluation index for the day-
lighting of buildings. When the DAcon of indoor measuring points is greater than 80%,
the daylighting environment can be considered acceptable even if the indoor illuminance
cannot meet the design requirements. When the proportion of measuring points greater
than 5% of DAmax is relatively high, indoor glare is more likely to occur.

The variation curves of DAcon and DAmax of six shapes of skylights under the
condition of 10–80% CT photovoltaic glass are shown in Figure 6. It can be observed that
the six types of skylights exhibit a similar trend in terms of the variations of the DAmax
and DAcon. According to the variation curves of DAcon and DAmax, the daylighting
of the six shapes of skylights is best as follows: centralized rectangular skylight: 50–60%
CT; distributed rectangular skylight: 40–60% CT; centralized ribbon skylight: 50–60% CT;
distributed vertical strip skylight: 40–50% CT; centralized X-shaped skylight: 70–80% CT;
distributed horizontal strip skylight: 40–50% CT. However, all of them have the potential
to cause glare.
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3.3. UDI Analysis of Six Shapes of Skylights

The variation curves of UDI of six shapes of skylights under the condition of 10–80%
CT photovoltaic glass are shown in Figure 7. It can be seen that with the increase of the
transmittance of CT photovoltaic glass, the proportion of UDI < 100 lx decreases rapidly;
the proportion of 100 lx < UDI < 2000 lx first increased and then decreased except for the
centralized X-shaped skylight, the reason is that the daylighting of the centralized X-shaped
skylight is poor, and the illumination of few indoor measuring points exceeds 2000 lx; the
proportion of UDI > 2000 lx increased slowly.

For centralized rectangular skylight, the best indoor daylighting environment is
50–80% CT; distributed rectangular skylight: 40–80% CT; Centralized ribbon skylight:
40–80% CT; distributed vertical strip skylight: 50–80% CT; Centralized X-shaped skylight:
70–80% CT; distributed horizontal strip: 40–70% CT.

From the simulated results of various daylighting metrics above, it can be observed
that under different skylight forms, there are variations in the degree of change in dynamic
daylighting metrics with the increase in the transmittance of photovoltaic glass. However,
overall, they exhibit similar changing trends. According to a similar study [27], this trend
is also noticeable under different photovoltaic glass conditions in different climatic regions.
Given the diverse skylight forms in this study, when compared to the aforementioned
similar study, variations in the numerical values and degrees of change in each daylight-
ing metric differ due to differences in building types, skylight glass, and other relevant
design parameters.
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In terms of research on different skylight distributions, a similar study [49] is also
present. Focusing on railway stations, this study selected two cities and two different
skylight distribution patterns. From this, it can be observed that each city, under different
skylight distribution patterns, exhibits similar forms of variation in daylighting metrics.
This finding aligns with the discoveries made in our study.

3.4. Optimal Type of Photovoltaic Glass for Six Kinds of Skylight

The actual layout of skylights in university gymnasiums is varied, and the area is
also different. This study simulates six typical shapes of skylight in a typical university
gymnasium. The results cannot be applied to all university gymnasiums. DA, DAcon,
DAmax, and UDI are used to analyze indoor daylighting and select the optimal scheme.
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The optimal CT photovoltaic glass types of centralized rectangular skylight are shown
in Table 12. It can be seen from Table 12 that 50–60% CT photovoltaic glass is the op-
timal type to create a good indoor daylighting environment, which can ensure that the
indoor illumination level meets the minimum requirements for a long time. However,
there is the possibility of glare, and certain shading facilities are needed in the period of
intense sunlight.

Table 12. Optimal type of CT photovoltaic glass for a centralized rectangular skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 50–80% CT

DAcon Proportion of measuring points with
value > 80% 50–80% CT

DAmax Proportion of measuring points with
value > 5% 10–60% CT

UDI Average value within
100–2000 lx 50–80% CT

The optimal CT photovoltaic glass types of distributed rectangular skylights are shown
in Table 13. It can be seen from Table 13 that 40–60% CT photovoltaic glass is the optimal
type to create a good indoor daylighting environment. Shading facilities are needed in the
period of intense sunlight.

Table 13. Optimal type of CT photovoltaic glass for a distributed rectangular skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 40–80% CT

DAcon Proportion of measuring points with
value > 80% 40–80% CT

DAmax Proportion of measuring points with
value > 5% 10–60% CT

UDI Average value within
100–2000 lx 40–80% CT

The optimal CT photovoltaic glass types of centralized ribbon skylight are shown in
Table 14. It can be seen from Table 14 that 50–60% CT photovoltaic glass is the optimal
type to create a good indoor daylighting environment. Shading facilities are needed in the
period of intense sunlight.

Table 14. Optimal type of CT photovoltaic glass for a centralized ribbon skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 40–80% CT

DAcon Proportion of measuring points with
value > 80% 40–80% CT

DAmax Proportion of measuring points with
value > 5% 10–60% CT

UDI Average value within
100–2000 lx 50–80% CT

The optimal CT photovoltaic glass types of distributed vertical strip skylights are
shown in Table 15. It can be seen from Table 15 that 40–50% CT photovoltaic glass is
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the optimal type to create a better indoor daylighting environment. Shading facilities are
needed in the period of intense sunlight.

Table 15. Optimal type of CT photovoltaic glass for a distributed vertical strip skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 40–80% CT

DAcon Proportion of measuring points with
value > 80% 40–80% CT

DAmax Proportion of measuring points with
value > 5% 10–50% CT

UDI Average value within
100–2000 lx 50–80% CT

The optimal CT photovoltaic glass types of centralized X-shaped skylight are shown
in Table 16. It can be seen from Table 16 that 70–80% CT photovoltaic glass is the optimal
type to create a good indoor daylighting environment. However, the possibility of glare
from the centralized X-shaped skylight is very small.

Table 16. Optimal type of CT photovoltaic glass for a centralized X-shaped skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 70–80% CT

DAcon Proportion of measuring points with
value > 80% 70–80% CT

DAmax Proportion of measuring points with
value > 5% 10–80% CT

UDI Average value within
100–2000 lx 70–80% CT

The optimal CT photovoltaic glass types of distributed horizontal strip skylights are
shown in Table 17. It can be seen from Table 17 that 40–50% CT photovoltaic glass is
the optimal type to create a good indoor daylighting environment. Shading facilities are
needed in the period of intense sunlight.

Table 17. Optimal type of CT photovoltaic glass for a distributed horizontal strip skylight.

Daylighting Index Evaluation Methodology Optimal Type

DA Proportion of measuring points with
value ≥ 55% 40–80% CT

DAcon Proportion of measuring points with
value > 80% 40–80% CT

DAmax Proportion of measuring points with
value > 5% 10–50% CT

UDI Average value within
100–2000 lx 40–70% CT

3.5. Verification

In order to verify the accuracy of the results, the gymnasium model is established
in Rhino according to the original scale and compared with the measured results. The
gymnasium is Zhuoer Gymnasium of Wuhan University. The skylight shape is a centralized
ribbon skylight, the ceiling is whitewashed, the wall material is gray sound-absorbing
board, and the floor is wooden. The reflection ratio of the enclosure structure is set according
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to the China National Standard for Daylighting Design of Buildings (GB50033-2013) [48].
The pollution reduction coefficient of the window glass is set as 0.6, and the light-blocking
reduction coefficient of the interior component is set as 0.65. The location distribution of
measuring points is shown in Figure 8.
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Figure 8. Distribution of measuring points for indoor illuminance (Points 1–10).

The measured data are from the literature [3]. The sky condition is rainy, and the
outdoor illumination is 5384 lx. The comparison between measured illumination and
simulated illumination is shown in Figure 9. It can be seen that the measured value is
almost consistent with the simulated value, and the simulated illuminance is slightly
larger than the measured illuminance because of the plane simplification of the seat in the
modeling process.
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3.6. Summary

The optimal types of six different shapes of skylights with CT photovoltaic glass for the
gymnasium are summarized in Table 18. It can be seen that the daylighting environment
of a centralized X-shaped skylight is relatively poor, and CT photovoltaic glass with high
transmittance is needed to ensure indoor daylighting. Different shapes of skylights have a
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certain impact on the daylighting of the gymnasium. The optimal type of CT photovoltaic
glass varies with the skylight shape.

Table 18. Optimal type of CT photovoltaic glass for shapes of skylights.

Skylight Shape Optimal Type

Centralized rectangular skylight 50–60% CT
Distributed rectangular skylight 40–60% CT

Centralized ribbon skylight 50–60% CT
Distributed vertical strip skylight 40–50% CT

Centralized X-shaped skylight 70–80% CT
Distributed horizontal strip skylight 40–50% CT

4. Conclusions

In this paper, Rhino software (version 7.4) is used to model a typical university
gymnasium to explore the impact of six different shapes of CdTe thin film photovoltaic
skylights on the indoor daylighting environment of the university gymnasium. The indoor
daylighting environment of the university gymnasium varies greatly due to the different
shapes of the skylight. Based on the dynamic daylighting evaluation indexes DA, DAcon,
DAmax, and UDI, the optimal types of CT photovoltaic glass suitable for skylights with
different shapes are summarized.

The mean DA of the six shapes of skylight increases with the increase of transmittance
of CT photovoltaic glass. For the centralized rectangular skylight, distributed horizontal
strip skylight, and distributed vertical strip skylight, when the photovoltaic glass is 80%
CT, DA of the competition area is all above 75%; for the distributed rectangular skylight
and centralized ribbon skylight, when the photovoltaic glass is 70–80% CT, the DA of
the competition area is above 75%; for the centralized X-shaped skylight, all types of CT
photovoltaic glass contain areas with DA below 75%. Compared with distributed skylights,
the DA of centralized skylights has a wider distribution range.

With the increase of transmittance of CT photovoltaic glass, DAcon and DAmax
gradually increased. All skylights are prone to glare except the centralized X-shaped
skylights. Therefore, certain shading facilities should be set up during periods of strong
sunlight. The results show that for the centralized rectangular skylight, The optimal type of
CT photovoltaic glass is 50–60% CT, the optimal type of distributed rectangular skylight is
40–60% CT, the optimal type of centralized ribbon skylight is 50–60% CT, the optimal type
of distributed vertical strip skylight is 40–50% CT, the best type of centralized X-shaped
skylight is 70–80% CT, and the optimal type of distributed horizontal strip skylight is
40–50% CT.

At present, there are still few studies on the influence of semi-transparent photovoltaic
skylights on university gymnasium daylighting. The results of this work focus on the
coupled consideration of six different skylight shapes and different types of CT photovoltaic
glass only for the city of Beijing, which is located in the Chinese III lighting climate zone,
and the conclusions drawn may not be applicable to the rest of the lighting climate zones
locations, while the skylight shapes and glass types considered are limited. In the future,
the influence of skylight area, geographical location, building orientation, and other factors
on university gymnasium daylighting should be studied.
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