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Abstract: This study aimed to evaluate the static response of prestressed reinforced concrete beams
strengthened in their flexure and shear properties using different strengthening techniques, steel
plates, and externally bonded woven carbon fiber fabric (WCFF). The experimental work involved
testing twenty large-scale prestressed reinforced concrete beams with a length of 3000 mm, and
cross-sections measuring 400 mm in height and 200 mm in breadth were cast in the factory and tested
in the laboratory. Four beams without prestressing served as the reference beams; two unbonded pre-
tensioned beams served as the control beams, and the remaining fourteen beams were strengthened
with steel plates and externally bonded woven carbon fiber fabric (WCFF). Eight of the beams were
strengthened with 4 mm thick steel plates and tested under a monotonically increasing load with
manual readings recorded. The remaining six beams were strengthened with 0.5 mm thick WCFF
and tested under a monotonically increasing load with manual readings recorded. The variables
considered included the strengthening techniques (FRP composite sheets, steel plates), the types of
strengthening (slices, U-shaped), and the flexural and shear capacities of the strengthened beams.
All the implemented strengthening techniques yielded enhancements in both the flexural and shear
strength outcomes of the beams compared to their respective controls. The most significant increase in
load capacity, whether in terms of ultimate load or first crack load, for the prestressed concrete beams’
flexure properties occurred when strengthening with U-shaped steel plates. Additionally, the greatest
reduction in deflection at the point of reaching the maximum load for the prestressed concrete beams,
in terms of their flexure properties, was observed when strengthening with U-shaped steel plates.
Similarly, the maximum load increase for the prestressed concrete beams, in terms of their shear
properties, was achieved through strengthening with U-shaped woven carbon fiber fabric wrapping.
Furthermore, a finite element model was created to simulate various experimental specimens. The
finite element model’s results exhibited harmony with the experimental results, affirming the efficacy
of the presented finite element model.

Keywords: prestressed; pre-tension; beams; WCFF; steel plates; flexure; shear

1. Introduction

Structure plays an important role in the development of individuals, states, or coun-
tries. A structure consists of three main elements, namely, the beam, the column, and the
slab. All three of these elements have their importance. Beams are one of the most impor-
tant structural elements of any structure; they can be part of a bridge, industrial building,
road, etc. Beams must be designed to carry all types of loads without causing deformation
or cracking of the structure. But, sometimes, beams can be subjected to sudden static loads
that they are not designed to withstand. Because of these sudden loads, beams tend to
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crack [1,2]. This is mainly due to the tension or compression of the beam. Prestressed
concrete beams are used in buildings that need to support heavy loads, such as bridges,
industrial buildings, etc. [3]. These beams have smaller beam depths and better shear
strength. These beams are most commonly used where the span is greatest. Reinforcement
should be applied to protect a beam from cracking due to fatigue loading, reducing the
number and dimensions of cracks. In practice, traditional techniques such as joining steel
plates, concrete encasing, and external restraints are common. Steel plate jacketing of
beams has been successfully used for seismic retrofitting of structures where corrosion is
not a critical issue. Reinforcement using steel plates is a widely adopted method due to its
advantages, including rapid construction, cost-effectiveness, and a notable strengthening
impact, especially for prestressed beams [4]. Typically, steel plates are affixed to the girder
using structural adhesives or epoxy resin and secured to either the tensile edge or the
vulnerable surface of the beam. This integration forms a cohesive force with the beam,
essentially functioning as additional steel bars, thereby enhancing the overall strength [5].
In comparison to reinforcing with bonded fibers, employing steel plates fully exploits the
mechanical properties inherent to steel plates [6]. Steel plates are readily available and
relatively economical [7], possessing characteristics such as uniform stress distribution
and favorable plasticity [8]. Strengthening with steel plates has demonstrated its effec-
tiveness in improving stiffness, minimizing deformation under live loads [9], fortifying
crack resistance [10], and, notably, enhancing the bending [11] and shear performance of
the primary girder [12]. Importantly, this method has no significant impact on a structure’s
appearance or headroom [13]. However, fiber-reinforced polymers (FRP) have emerged as
highly promising materials for both rehabilitating existing reinforced concrete structures
and fortifying new civil engineering constructions [14]. Contemporary composite materials,
utilizing non-metallic continuous fibers, are progressively employed in civil engineering
applications for the purpose of enhancing the structural integrity of buildings [15]. This
preference is attributed to their numerous benefits, including a high strength-to-weight
ratio, robust fatigue resistance, flexibility, ease of handling, and outstanding durability. The
failure mode in terms of the shear properties of a reinforced concrete (RC) beam differs
significantly from flexural failure, with the latter being ductile and the former exhibiting
a brittle and catastrophic nature. In instances where an RC beam lacks sufficient shear
strength or when its shear capacity is lower than the flexural capacity post-strengthening,
addressing shear strengthening becomes imperative. Evaluating the shear capacity of
RC beams intended for flexural strengthening is of utmost importance [16]. Research
exploring the efficacy of externally bonding fiber-reinforced polymer (FRP) plates onto
prestressed concrete beams has yielded evidence showcasing heightened load-carrying
capacity and post-cracking stiffness. The failure mode observed during flexural testing
involved FRP rupture and de-bonding [16–18]. Further experimental investigation into the
static behavior of prestressed concrete beams strengthened with externally bonded glass
fiber-reinforced polymer (GFRP) demonstrated superior performance in terms of ultimate
load, deformation, and ductility indices compared to the control beam [19]. The findings
from these studies strongly advocate for the application of externally bonded FRP, high-
lighting a substantial increase in strength and control over deflection for both reinforced
and prestressed concrete beams [20]. The present study aims to assess the performance
characteristics of prestressed concrete beams reinforced with woven carbon fiber fabric
(WCFF) and steel plates under monotonic loading conditions.

2. Materials and Methods
2.1. Experimental Plan

The experimental plan included testing sixteen large-scale prestressed R.C. beams
in addition to four non-prestressed R.C. beams as reference. The beams were 400 mm in
height, 200 mm in cross-section breadth, and 3000 mm in length. The beam specimens
were divided into four models. The first model was used for flexural testing. The first
model of beam specimen utilized two 12 mm diameter bars for tension reinforcement in
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the longitudinal steel. Additionally, two high-tensile 12.5 mm diameter prestressing wires
with 50 mm eccentricity were incorporated, along with two 10 mm diameter bars as the
hanger bars. Two-legged 10 mm diameter stirrups were spaced at 150 mm intervals. For
shear testing of the second model, the longitudinal steel comprised two 18 mm diameter
bars for tension reinforcement. The prestressing system included two high-tensile 12.5 mm
diameter wires with 50 mm eccentricity. As for the hanger bars, four 22 mm diameter
bars were employed, and two-legged 8 mm diameter stirrups were provided at 300 mm
intervals along the beam. Detailed reinforcement configurations are visually presented in
Figures 1 and 2.
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Figure 1. Reinforcement details of the first model for flexure testing.
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Figure 2. Reinforcement details of the second model for shear testing.

Two prestressed concrete beams without strengthening were considered to be the
control beams; seven beams were strengthened with steel plates, and seven beams were
strengthened with woven carbon fiber fabric (WCFF). Under two-point loading conditions,
all the beams underwent testing, and their performance characteristics were evaluated in
the presence of monotonic loading. The experimental outcomes, including load, deflection,
and crack data, were recorded. For a comprehensive overview of the beams, refer to Table 1.

Table 1. Sample description.

Sample Strengthening Type Connection Type

Flexural strengthening

CF No strengthening (Control beam) -

FB1, FB2 Bottom steel plate (U-shape) Anchors

FB3, FB4 Bottom steel plate Anchors

FB5, FB6 Bottom WCFF (U-Shape) Adhesive

FB7 Bottom WCFF Adhesive

Shear strengthening

CS No strengthening (Control beam) -

SB1, SB2 Steel plate (U-shape) Anchors

SB3, SB4 Steel plate (Straps) Anchors

SB5, SB6 WCFF (U-Shape) Adhesive

SB7 WCFF (Straps) Adhesive

2.2. Material Characteristics

Concrete with a compressive strength of 40 MPa was used when uniaxial compressive
tests on the specimens (150 mm × 150 mm × 150 mm concrete cube) were performed, and
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the average concrete compressive strengths at 7 and 28 days are shown in Table 2. Steel
bars of different diameters (10, 12, 18, and 22 mm) were used for the main reinforcement,
having 440 MPa tensile strength, and steel bars of varying diameters (8 and 10 mm) were
used for the stirrups. Steel plates with a thickness of 4 mm and 345 MPa tensile strength
were used as external reinforcements. Table 3 provides the detailed properties of both the
steel bars and the plates. Prestressing wires with a tensile strength of 1860 MPa were used,
and the detailed properties of the strands are presented in Table 4. Woven carbon fiber
fabric, with a tensile strength of 4300 MPa, was applied to the beam specimens’ surface
using epoxy adhesive. Detailed properties of the Woven Carbon Fiber Fabric are outlined
in Table 5.

Table 2. Compressive strength test results.

Specimen ID Average Cube Compressive
Strength after 7 Days (MPa)

Average Cube Compressive
Strength after 28 Days (MPa)

SB1 25.9 38.6

SB2 25.6 35.6

SB3 27.8 40.8

Table 3. Properties of steel reinforcement.

Reinf. Bar Dia.
(mm)

Plate Thick.
(mm)

Yield
Stress
(MPa)

Ult. Stress
(MPa)

Modulus of
Elasticity

(MPa)

Steel Bars

8 - 470 575 210,000

10 - 450 550 211,000

12 - 440 530 207,000

18 - 490 581 200,000

22 - 492 595 205,000

Steel Plate - 4 345 420 206,000

Table 4. Properties of prestressing strands.

Diameter
(mm)

Tensile
Strength

(MPa)

Mass
(g/m)

Cross-
Sectional

Area (mm2)

Minimum
Breaking
Strength

(kN)

Maximum
Breaking
Strength

(kN)

12.5 1860 726.3 93.0 173.0 199.0

Table 5. Properties of WCFF.

Thickness (mm) Fiber Density
(g\cm3)

Tensile Strength
(MPa)

Ultimate
Elongation

(%)

Elasticity
Modulus

(MPa)

0.131 1.76 4300 1.8 238,000

3. Preparation of Test Beams

Plywood was prepared for the beam samples. Steel reinforcement cages were prepared
for each specimen. The high-tensile steel wire was placed 150 mm below the centerline of
the cross-section. Each beam was provided with two high-tensile steel wires. The high-
tensile steel wires were stretched before the beam specimens were cast. The interior portion
of the plywood was applied with a coating of oil to prevent concrete from adhering to the
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plywood. The required quantity of concrete was mixed in a motorized mixture machine.
The concrete was placed in layers up to the top of the beam specimens, and adequate
compaction was carried out using a needle vibrator to avoid honeycombing. The beam
specimens were demolded after 7 days of casting, and the high-tensile steel wires were
cut. The beam specimens were cured by painting Sika® Antisol® WB, Sika Egypt, El Obour
City, Egypt.

3.1. Strengthening by WCFF

To create a textured surface, coarse sandpaper was employed, and the designated
concrete region was thoroughly cleaned using an air blower to eliminate any dirt or debris
particles. Following the surface preparation process, epoxy resin was meticulously mixed
as per the manufacturer’s instructions. The fabrics were cut to size, ensuring uniform
blending, and the epoxy resin was applied to the concrete surface. Subsequently, the
woven carbon fiber fabric (WCFF) layer was positioned atop the epoxy resin coating. Six
beam specimens were utilized for both flexural and shear tests. Among them, three beam
specimens underwent strengthening with WCFF for the flexural tests, while the remaining
specimens were reinforced with WCFF for the shear tests. The details of the strengthening
process are shown in Figures 3–6.
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3.2. Strengthening by Steel Plates

The concrete surface was cleaned. The steel plates were cut, fixed on the surface of
the concrete beams in the places specified for them, and then punched with a drill. Bolts
were placed in their indicated locations and fixed with a spanner. Eight beam specimens
were used for the flexural and shear tests. Four beam specimens were strengthened with
steel plate for the flexural tests, and the rest of the beam specimens were strengthened with
steel plate straps for the shear tests. The details of the strengthening process are shown in
Figures 7–10.
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Figure 10. (SB3) Shear strengthening using steel straps [U-shaped].

4. Testing Procedure

To evaluate the performance, the prestressed beams reinforced with both steel plates
and woven carbon fiber fabric (WCFF) underwent testing using a two-point loading system
within a 100 ton capacity loading frame. The beam was supported with one end hinged
and the other end equipped with a roller. The application of the load was accomplished
using a hydraulic jack, and load measurements were obtained from the load cell. Refer to
Figure 11 for a visual representation of the beam test setup.
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5. Results and Discussion
5.1. Flexural Test Series

All test results for both the strengthened and non-strengthened beams, in terms of
their flexure properties, are detailed in Table 6, while the load versus deflection graph is
illustrated in Figure 12. The load–deflection curve reveals three distinct behavioral regions.
Initially, the concrete displayed linear–elastic behavior, exhibiting high beam stiffness. As
loading increased, the stresses in the outermost woven carbon fiber fabric (WCFF) and steel
plates elevated the tensile strength of the concrete, resulting in the formation of flexural
cracks in the constant moment area. This led to a decrease in beam stiffness due to flexural
cracking. Notably, the results indicate that strengthening with steel plates outperformed
strengthening with WCFF, enhancing the bearing strength of the prestressed beam by 20%
compared to the WCFF reinforcement. Regarding the max mid-span deflection, the beams
strengthened with steel plates experienced a slight increase, not exceeding 4%, compared
to those reinforced with carbon fiber. Comparing the load–deflection relationships for
the prestressed concrete beams, it becomes evident that strengthening the beams with
U-shaped layers at the bottom significantly improved their load-carrying capacity.
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Table 6. Strength and deformation at various load stages for the flexural test series.

No. Specimen F.C.L
(kN)

Deflection
of F.C.L
(mm)

Maximum
Load (kN)

Deflection
of Maximum
Load (mm)

Strengthening Type Connection
Type

1 CF 58 1.40 264 18.74 (Control beam) -

2 FB1 110 2.84 391 23.46 Bottom steel plate
(U-shape) Anchors

3 FB2 114 2.90 384 23.06

4 FB3 91 1.99 300 24.18
Bottom steel plate Anchors

5 FB4 92 2.02 292 23.24

6 FB5 77 0.90 334 19.25 Bottom WCFF
(U-Shape) Adhesive

7 FB6 78 0.92 341 19.92

8 FB7 74 1.3 308.2 23.2 Bottom WCFF Adhesive
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Figure 12. Relationship between load and deflection for the flexural test series.

5.1.1. Effect of Strengthening at Various Loads

Figure 12 illustrates the impact of woven carbon fiber fabric (WCFF) and steel plates on
various load levels of prestressed concrete beams. Specifically, prestressed concrete beams
strengthened with 0.5 mm thick U-shaped WCFF and WCFF slices demonstrated increases
of 29% and 17%, respectively, at the ultimate load stage compared to the control beam. In
the case of beams strengthened with 4 mm thick U-shaped steel plates and steel plate slices,
there were increases of 48% and 14%, respectively, at the ultimate load stage compared
to the control beam. Notably, beam FB1 exhibited the highest load-carrying capacity,
approximately 1.48 times that of the control beam. The results indicate that prestressed
concrete beams strengthened with U-shaped layers show enhanced load-carrying capacity
ranging from 10% to 30% compared to prestressed concrete beams strengthened with slice
layers, whether strengthened using steel plates or WCFF. This highlights the effectiveness
of U-shaped layers in improving the structural performance of prestressed concrete beams.

5.1.2. Effect of Strengthening on Deflections

The deflection of a prestressed concrete beam is primarily influenced by factors such
as load, length, moment of inertia, and the elastic modulus of concrete. Strengthening
with woven carbon fiber fabric (WCFF) and steel plates contributes to an increase in the
cross-section and rigidity of the prestressed concrete beam. This heightened stiffness
impacts the bending behavior of the wrapped beams across various stages, including pre-
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failure, failure, and post-failure. In particular, at the ultimate load stage, the deflection of
strengthened prestressed concrete beams increased by 25% for 4 mm steel plates (U-shaped)
and 29% for bottom steel plates. Conversely, the deflection for the prestressed concrete
beams strengthened with 0.5 mm woven carbon fiber fabric (U-shaped) and the bottom
woven carbon fiber fabric decreased by 38% and 27%, respectively, compared to the control
beam. These findings underscore the role of strengthening materials and configurations
in influencing the deflection characteristics of prestressed concrete beams, with variations
observed based on the type and placement of the reinforcements.

5.2. Shear Test Series

All the tested prestressed beams exhibited a brittle shear failure mode, characterized by
the development of diagonal tension cracks in the constant shear span. In beams externally
strengthened with woven carbon fiber fabric (WCFF), diagonal cracking was followed
by WCFF debonding, with failure occurring at a significantly higher load than that for
the non-strengthened prestressed beams. In contrast, the beams externally strengthened
with steel plates displayed only diagonal cracking in all the prestressed beams, with no
distortions occurring in the steel plates. The results indicate that strengthening with woven
carbon fiber fabric is more effective than strengthening with steel plates, as it increased
the shear strength capacity of the prestressed beam by 12% compared to strengthening
with steel plates. Regarding the max mid-span deflection, the deflection of prestressed
beams strengthened with woven carbon fiber fabric decreased by 20% compared to the
beams strengthened with steel plates. Detailed results for both the strengthened and non-
strengthened shear beams are presented in Table 7, and the load versus deflection graph is
depicted in Figure 13.

Table 7. Strength and deformation at various load stages for the shear test series.

No. Specimen F.C.L
(kN)

Deflection
of F.C.L
(mm)

Maximum
Load (kN)

Deflection
of Maximum Load

(mm)
Strengthening Type Connection

Type

1 CS 112 1.74 258 2.9 (Control beam) -

2 SB1 182 2.65 412 14.94 Steel plate
(U-Shape) Anchors

3 SB2 175 2.32 407 15.46

4 SB3 120 2.73 291 9.88
Steel plate (Straps) Anchors

5 SB4 114 2.44 286 9.46

6 SB5 148 2.26 462 12.46 WCFF
(U-Shape) Adhesive

7 SB6 144 2.29 456 12.84

8 SB7 133 1.79 374 15.44 WCFF (Straps) Adhesive

5.2.1. Effect of Strengthening at Various Loads

Figure 13 shows the effect of WCFF laminates and steel plates on various load levels
of prestressed concrete beams. The 0.5 mm thick WCFF (U-shaped)- and WCFF straps-
strengthened prestressed concrete beams show increases of 77.9% and 44.9%, correspond-
ingly, at the ultimate load stage in comparison with the control beam. In the case of the
prestressed concrete beams strengthened with 4 mm thick steel plates (U-shaped) and steel
plate straps, the strengthened beams show increases of 58.7% and 11.8%, correspondingly,
at the ultimate load stage in comparison with the control beam.

5.2.2. Effect of Strengthening on Deflections

The deflection of the strengthened prestressed concrete beams increased at the ultimate
load stage for the 4 mm steel plates (U-shaped) and steel plate straps by 424.14% and
233.44%, respectively. The prestressed concrete beams straightened using 0.5mm WCFF
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(U-shaped) and straps of WCFF exhibited increases of 336.2% and 432.4% in the deflection
comparison with the control beam.
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6. Failure Modes and Cracking Patterns

Figures 14 and 15 show the tested beams’ failure modes for the flexural and shear test
series. An inspection of Figure 14 suggests that all the beams experienced flexural failure,
and Figure 15 suggests that all the beams experienced shear failure. For the flexural test
series, the presence of the steel plates and WCFF (U-shaped) at the bottom of beams FB1
and FB2 limited the propagation of flexural cracks. The rest of the various strengthening
techniques for prestressed concrete beams did not limit the propagation of flexural cracks.
Beams FB3, FB4, and FB7 failed in a compressive mode by crushing concrete, while beams
FB5 and FB6 failed in a tensile mode by means of a rupture in the WCFF. As for the shear
test series, the presence of U-shaped steel plates for the prestressed concrete beams (SB1,
SB2) led to a reduction in the propagation of shear cracks, while the different strengthening
techniques for prestressed concrete beams did not limit the propagation of shear cracks.
Beams SB5, FB6, and FB7 failed in shear compression failure by crushing in the concrete
and rupturing in the WCFF, while beams FB3 and FB4 failed in shear compression failure
by crushing in the concrete only.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 24 
 

5.2.1. Effect of Strengthening at Various Loads 
Figure 13 shows the effect of WCFF laminates and steel plates on various load levels 

of prestressed concrete beams. The 0.5 mm thick WCFF (U-shaped)- and WCFF straps-
strengthened prestressed concrete beams show increases of 77.9% and 44.9%, correspond-
ingly, at the ultimate load stage in comparison with the control beam. In the case of the 
prestressed concrete beams strengthened with 4 mm thick steel plates (U-shaped) and 
steel plate straps, the strengthened beams show increases of 58.7% and 11.8%, correspond-
ingly, at the ultimate load stage in comparison with the control beam. 

5.2.2. Effect of Strengthening on Deflections 
The deflection of the strengthened prestressed concrete beams increased at the ulti-

mate load stage for the 4 mm steel plates (U-shaped) and steel plate straps by 424.14% and 
233.44%, respectively. The prestressed concrete beams straightened using 0.5mm WCFF 
(U-shaped) and straps of WCFF exhibited increases of 336.2% and 432.4% in the deflection 
comparison with the control beam. 

6. Failure Modes and Cracking Patterns 
Figures 14 and 15 show the tested beams’ failure modes for the flexural and shear 

test series. An inspection of Figure 14 suggests that all the beams experienced flexural 
failure, and Figure 15 suggests that all the beams experienced shear failure. For the flex-
ural test series, the presence of the steel plates and WCFF (U-shaped) at the bottom of 
beams FB1 and FB2 limited the propagation of flexural cracks. The rest of the various 
strengthening techniques for prestressed concrete beams did not limit the propagation of 
flexural cracks. Beams FB3, FB4, and FB7 failed in a compressive mode by crushing con-
crete, while beams FB5 and FB6 failed in a tensile mode by means of a rupture in the 
WCFF. As for the shear test series, the presence of U-shaped steel plates for the prestressed 
concrete beams (SB1, SB2) led to a reduction in the propagation of shear cracks, while the 
different strengthening techniques for prestressed concrete beams did not limit the prop-
agation of shear cracks. Beams SB5, FB6, and FB7 failed in shear compression failure by 
crushing in the concrete and rupturing in the WCFF, while beams FB3 and FB4 failed in 
shear compression failure by crushing in the concrete only. 

 

 

 

 
Figure 14. Cracks of the samples in failure mode for the flexural test series. 

  

Figure 14. Cracks of the samples in failure mode for the flexural test series.



Buildings 2024, 14, 29 11 of 24Buildings 2024, 14, x FOR PEER REVIEW 11 of 24 
 

 

 

 

 
Figure 15. Cracks of the samples in failure mode for the shear test series. 

7. Simulation Finite Element Model 
Finite element modeling (FEM) has become a widely employed method for studying 

the structural behavior of various elements. Numerous software packages have been de-
veloped to numerically analyze the structural response to flexural and shear stresses using 
finite element (FE) techniques. In this study, to gain a comprehensive understanding of 
the behavior of reinforced concrete beams under flexural and shear conditions, an FE 
model was created to simulate different specimens. Abaqus/CAE was utilized for the anal-
ysis in this study. Abaqus/CAE is a versatile analysis product that employs a standard 
static FE formulation. It is well-suited to modeling various loading conditions, including 
ramping loading and uniform static pressures. Additionally, it is highly efficient in han-
dling highly nonlinear problems, especially those involving changing contact conditions, 
such as forming simulations. The FE model analysis was constructed based on the geo-
metric, structural specifications, and material properties of the experimented beam mod-
els mentioned earlier. This approach provides a valuable tool for simulating and under-
standing the complex structural behavior of reinforced concrete beams subjected to flex-
ure and shear stresses [21]. 

7.1. Finite Element Modeling 
To construct the finite element (FE) model, a 3D FE mesh was generated for the con-

crete beams, wires, strengthening steel plates, reinforcement bars, and woven carbon fiber 
fabric (WCFF). Three main types of elements were used—solid elements, truss elements 
(wire elements), and shell elements—via the following steps: 
1. Concrete beams were modeled using solid elements, specifically the C3D8R or brick 

elements. 
2. Reinforcement bars and stirrups were modeled using the T3D2 element, which rep-

resents truss elements. These elements were embedded in the concrete blocks. 
3. WCFF were modeled using conventional shell elements. Two types of shell elements 

were employed—S8R5 for thin-shell elements and S8R for thick-shell elements. 
This combination of solid, truss, and shell elements allows for a detailed and accurate 

representation of the complex geometry and material interactions in the FE model. The 
chosen elements are tailored to the specific characteristics of each component, enabling a 
comprehensive simulation of the structural behavior of the reinforced concrete beams and 
their strengthening elements. 

7.2. Material Modeling 
In the modeling of the reinforced concrete (RC) beams, various material models were 

applied, and, while efforts were made to specify material properties for all the elements, 
obtaining high-quality material data, especially for more complex models like material 

Figure 15. Cracks of the samples in failure mode for the shear test series.

7. Simulation Finite Element Model

Finite element modeling (FEM) has become a widely employed method for studying
the structural behavior of various elements. Numerous software packages have been devel-
oped to numerically analyze the structural response to flexural and shear stresses using
finite element (FE) techniques. In this study, to gain a comprehensive understanding of the
behavior of reinforced concrete beams under flexural and shear conditions, an FE model
was created to simulate different specimens. Abaqus/CAE was utilized for the analysis in
this study. Abaqus/CAE is a versatile analysis product that employs a standard static FE
formulation. It is well-suited to modeling various loading conditions, including ramping
loading and uniform static pressures. Additionally, it is highly efficient in handling highly
nonlinear problems, especially those involving changing contact conditions, such as form-
ing simulations. The FE model analysis was constructed based on the geometric, structural
specifications, and material properties of the experimented beam models mentioned earlier.
This approach provides a valuable tool for simulating and understanding the complex
structural behavior of reinforced concrete beams subjected to flexure and shear stresses [21].

7.1. Finite Element Modeling

To construct the finite element (FE) model, a 3D FE mesh was generated for the concrete
beams, wires, strengthening steel plates, reinforcement bars, and woven carbon fiber fabric
(WCFF). Three main types of elements were used—solid elements, truss elements (wire
elements), and shell elements—via the following steps:

1. Concrete beams were modeled using solid elements, specifically the C3D8R or brick
elements.

2. Reinforcement bars and stirrups were modeled using the T3D2 element, which repre-
sents truss elements. These elements were embedded in the concrete blocks.

3. WCFF were modeled using conventional shell elements. Two types of shell elements
were employed—S8R5 for thin-shell elements and S8R for thick-shell elements.

This combination of solid, truss, and shell elements allows for a detailed and accurate
representation of the complex geometry and material interactions in the FE model. The
chosen elements are tailored to the specific characteristics of each component, enabling a
comprehensive simulation of the structural behavior of the reinforced concrete beams and
their strengthening elements.

7.2. Material Modeling

In the modeling of the reinforced concrete (RC) beams, various material models were
applied, and, while efforts were made to specify material properties for all the elements,
obtaining high-quality material data, especially for more complex models like material
damage properties, proved challenging. The accuracy and reliability of the results are
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inherently limited by the precision and comprehensiveness of the available material data.
For modeling RC beams, the following three material models were used:

1. Concrete material model: The concrete damaged plasticity model available in Abaqus
was employed to model concrete.

2. Reinforcement bars: An elastic–plastic model was used to represent the reinforcement
bars embedded in the concrete elements.

3. Woven carbon fiber fabric (WCFF): An elastic-lamina model was used to simulate
the WCFF.

Tables 8 and 9 detail the concrete elastic properties and parameters for the concrete
damaged plasticity model used in the analysis. Two types of steel reinforcement were
utilized: high-tensile bars with diameters of 22, 18, 12, and 10 mm to represent the main
longitudinal reinforcement bars and steel bars with diameters of 10 mm and 8 mm to
represent the stirrups. Table 10 presents the properties of the steel reinforcement used to
model the longitudinal bars and the stirrups. The WCFF was modeled as an orthotropic
elastic lamina in Abaqus, incorporating characteristics such as Young’s modulus (E1, E2),
Poisson’s ratio (Nu12), shear modulus (G12, G13, G23), and stress limit (sub-option-fail
stress), as outlined in Table 11. These material models and properties contributed to a
comprehensive representation of the behavior of the different components in the FE model.

Table 8. Elastic properties of concrete.

Parameter Model (1) Model (2) Model (3)

Mass density, kg/m3 2400 2400 2400

Modulus of elasticity (Es), MPa 17,864 22,736.58 23,424.77

Poisson’s ratio (υ) 0.14 0.16 0.17

Table 9. Concrete damaged plasticity parameters.

Parameter Dilation Angle Eccentricity fb0/fc0 K Viscosity p.

Model (1) 41 0.8 1.16 0.667 0.000001

Model (2) 49 0.04 1.18 0.667 0.000001

Model (3) 37 0.1 1.16 0.667 0.000001

Table 10. Elastic properties of steel reinforcement.

Parameter High Tensile Normal–Mild

Mass density, kg/m3 7859 7859

Modulus of elasticity (Es), MPa 210,000 203,000

Poisson’s ratio (υ) 0.3 0.3

Yield stress, MPa 490 470

Ultimate stress, MPa 581 575

Elongation, % 15 23

Table 11. Properties of the WCFF material.

Parameter WCFF

Mass density, kg/m3 1760

Modulus of elasticity (E1), MPa 238,000

Modulus of elasticity (E2), MPa 238,000

Poisson’s ratio (Nu12) 0.23



Buildings 2024, 14, 29 13 of 24

Table 11. Cont.

Parameter WCFF

Shear modulus (G12), MPa 7800

Shear modulus (G13), MPa 7800

Shear modulus (G23), MPa 7800

Stress limit (tensile strength), MPa 4300

Thickness, mm 0.131

7.3. Boundary Conditions

In the Abaqus model tree, boundary conditions can be added using * the load options
and choosing * to create a boundary condition. A fixation was made for the two steel
parts that represent roller supports in all directions, relying on the interaction between
the concrete beam and the roller’s surface to reach the closest possible behavior to the
experimented samples, as shown in Figure 16.
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7.4. Finite Element Model Results for the Flexural Test Series
7.4.1. Control Beam (CF)

In the flexural damage test, the control beam with cables experienced ultimate failure
at a load of 266.44 kN. The initiation of the first crack occurred at a load of 63.27 kN.
Figure 17 visually represents the crack pattern observed in the control beam with cables
(CF) after testing. This figure provides insights into the nature and extent of cracking
within the beam. For a further analysis of the structural response, Figure 18 illustrates the
maximum deflection of the control beam. The maximum deflection for the sample reached
32.63 mm, while the average mid-span deflection was 8.62 mm. These measurements help
us characterize the deformation and overall performance of the control beam under the
applied loading conditions.
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Figure 18. The max deflection of the FE model for control beam CF.

7.4.2. Addition of Steel Plate and WCFF (U-Shaped) to the Tension Side (FB1, FB5)

In the flexural damage tests, the beams equipped with a U-shaped steel plate and
woven carbon fiber fabric (WCFF) experienced ultimate loads of 402.55 kN and 335.75 kN,
respectively. The initiation of the first crack occurred at loads of 120.76 kN and 83.93 kN
for the U-shaped steel plate and WCFF models, respectively. Figure 19 visually depicts the
crack patterns observed in FB1 and FB5 after testing. These figures provide insights into the
failure modes and crack propagation within the beams. For a more detailed understanding
of stress distribution, Figure 20 showcases the stress distribution of the steel plate and
WCFF in the FB1 and FB5 models, respectively.
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Figure 20. The stress distribution: (a) steel plate stress for FB1; (b) WCFF stress for FB5.

7.4.3. Addition of Steel Plate and WCFF to the Tension Side (FB3, FB7)

In the flexural damage tests, the beams equipped with a steel plate and woven carbon
fiber fabric (WCFF) experienced ultimate loads of 318.22 kN and 312.22 kN, respectively.
The initiation of the first crack occurred at loads of 95.46 kN and 79.61 kN for the steel plate
and WCFF models, respectively. Figure 21 visually depicts the crack patterns observed in
FB3 and FB7 after testing. These figures provide insights into the failure modes and crack
propagation within the beams. For a more detailed understanding of stress distribution,
Figure 22 showcases the stress distribution of the steel plate and WCFF in the FB3 and FB7
models, respectively.
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(CS) after testing, providing insights into the nature and extent of cracking within the 
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7.5. Finite Element Model Results for the Shear Test Series
7.5.1. Control Beam (CS)

In the shear damage test, the control beam with cables experienced ultimate failure
at a load of 270.23 kN. The initiation of the first crack occurred at a load of 122.95 kN.
Figure 23 visually represents the crack pattern observed in the control beam with cables
(CS) after testing, providing insights into the nature and extent of cracking within the
beam. For a further analysis of the structural response, Figure 24 presents the maximum
deflection of the control beam. The maximum deflection for the sample reached 8.48 mm,
and the average deflection at mid-span was 3.87 mm. These measurements contribute to
characterizing the deformation and overall performance of the control beam under the
applied shear loading conditions.
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Figure 24. The max deflection of FE model for control beam CS.

7.5.2. Addition of Steel Plate and WCFF U-Shaped (SB1, SB5)

In the shear damage tests, the beams equipped with a U-shaped steel plate and
woven carbon fiber fabric (WCFF) experienced ultimate loads of 460.88 kN and 460.88 kN,
respectively. The initiation of the first crack occurred at loads of 193.57 kN and 161.31 kN
for the U-shaped steel plate and WCFF models, respectively. Figure 25 visually depicts the
crack patterns observed in SB1 and SB5 after testing, providing insights into the failure
modes and crack propagation within the beams. For a more detailed understanding of
stress distribution, Figure 26 showcases the stress distribution of the steel plate and WCFF
in the SB1 and SB5 models, respectively.
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7.5.3. Addition of Steel Plate and WCFF Straps (SB3, SB7)

In the shear damage tests, the beams equipped with steel plates and woven carbon fiber
fabric (WCFF) straps experienced ultimate loads of 281.55 kN and 397.37 kN, respectively.
The initiation of the first crack occurred at loads of 126.70 kN and 143.05 kN for the steel
plate and WCFF straps models, respectively. Figure 27 visually depicts the crack patterns
observed in SB3 and SB7 after testing, providing insights into the failure modes and crack
propagation within the beams. For a more detailed understanding of stress distribution,
Figure 28 showcases the stress distribution of the steel plate and WCFF in the SB3 and SB7
models, respectively.
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8. Comparison between FEM and Experimental Test Results
8.1. Ultimate Loads

Figure 29 provides a comparison of the ultimate failure loads between the experimental
and finite element modeling (FEM) results for both flexure- and shear-tested beams. The
differences in the ultimate loads between the experimental and FEM results are reported
for various beam configurations. For the control beam in the flexure test series (CF) and
the control beam in the shear test series (CS), the differences in the ultimate loads were
approximately 3% and 5%, respectively. For the beams strengthened, with respect to their
flexural properties, using steel plates and WCCF wrapping (FB1, FB3, FB5, and FB7) the
differences in the ultimate loads between the experimental and FEM results were around
3%, 5%, 2%, and 1%, respectively. For the beams strengthened, with respect to their shear
properties, using steel plates and WCCF wrapping (SB1, SB3, SB5, and SB7) the differences
in the ultimate loads between the experimental and FEM results were approximately
17%, 14%, 1%, and 6%, respectively. These differences in the ultimate loads between the
experimental and FEM results provide insights into the accuracy and reliability of the finite
element model in predicting the structural behavior of the tested beams under both flexure
and shear conditions.
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Figure 29. Comparison between experimental and FEM results of ultimate loads for (a) flexure-tested
beams and (b) shear-tested beams.

8.2. Max Deflection

Figure 30 illustrates a comparison of the maximum deflection between the experimen-
tal and finite element modeling (FEM) results for both the flexure- and shear-tested beams.
The differences in the maximum deflection between the experimental and FEM results are
reported for various beam configurations. For the control beam in the flexure test series (CF)
and the control beam in the shear test series (CS), the differences in the maximum deflection
were approximately 2% and 2%, respectively. For the beams strengthened, with respect to
their flexure properties, using steel plates and WCCF wrapping (FB1, FB3, FB5, and FB7)
the differences in the maximum deflection between the experimental and FEM results were
around 12%, 1%, 4%, and 5%, respectively. For the beams strengthened, with respect to
their shear properties, using steel plates and WCCF wrapping (SB1, SB3, SB5, and SB7) the
differences in the maximum deflection between the experimental and FEM results were
approximately 8%, 8%, 0.3%, and 10%, respectively. These differences in the maximum
deflection between the experimental and FEM results provide insights into the accuracy
and reliability of the finite element model in predicting the deformation characteristics of
the tested beams under both flexure and shear conditions.
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Figure 30. Comparison between experimental and FEM results of max deflection for (a) flexure-tested
beams and (b) shear-tested beams.

9. Conclusions

From the experimental and numerical studies that were carried out on prestressed
reinforced concrete beams strengthened with external steel plates and woven carbon fiber
fabric, the following conclusions can be drawn:

• In summary, all strengthening techniques led to notable improvements in both flexural
and shear strength outcomes when compared to the respective control beams. Specifi-
cally, the use of U-shaped steel plates resulted in significant increases between 57%
and 97% in the first crack loads and between 14% and 48% in the ultimate loads for the
prestressed concrete beams, strengthened with respect to their flexural properties. Like-
wise, woven carbon fiber fabric (WCFF) wrapping demonstrated increases between
27% and 35% in the first crack loads and between 17% and 29% in the ultimate loads.

• In terms of deflection, U-shaped steel plates and WCFF wrapping contributed to
increases ranging from 25% to 29% and 27% to 38%, respectively, compared to the
control beams.

• For prestressed concrete beams, strengthened with respect to their shear properties,
the application of U-shaped steel plates yielded increases between 2% and 63% in the
first crack loads and between 11% and 60% in the ultimate loads. WCFF wrapping, in
turn, showed increases between 19% and 32% in the first crack loads and between 45%
and 79% in the ultimate loads.

• Furthermore, the finite element model’s results demonstrated congruence with the
experimental outcomes, affirming the efficacy of the presented model. Notably, the
maximum difference in the ultimate load for the prestressed concrete beams, strength-
ened with respect to their flexural properties, was approximately 5%, and the mid-span
deflection showed a variance of about 9%.

Based on the conclusions of the current study the following recommendations are made
for future research in woven carbon fiber fabric (WCFF) flexural and shear strengthening:

• Strengthening of pre-tension concrete beams could be carried out using more layers
and angles of woven carbon fiber fabric (WCFF) wrapping.

• Strengthening of pre-tension concrete beams could be achieved using externally
bonded hybrid fiber-reinforced polymer (HyFRP) laminates.
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