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Abstract: In order to alleviate the increasing serious urban waterlogging problem, the rainstorm
resistance of a new self-compacting recycled pervious concrete (NSRPC) under the coupling of
freeze–thaw (F-T) and fatigue is studied. The once-in-a-century rainfall was simulated, and the
rainstorm resistance of NSRPC was evaluated mainly through the ponding depth and drainage
time. In addition, the mechanical properties (compressive strength and flexural strength), mass
loss rate and relative dynamic elastic modulus of NSRPC during F-T and fatigue coupling were
measured. The microstructure of NSRPC was observed by scanning electron microscopy, and its
deterioration mechanism was analyzed. The results show that the fatigue load aggravates the F-T
damage of NSRPC in the later stage. With the increase in the number of fatigue cycles, the loss rate of
compressive strength and flexural strength of NSRPC increases continuously, and the permeability
coefficient decreases first and then increases. With the increase in the number of freeze–thaw and
fatigue cycles, the mass loss rate increases gradually, and the relative dynamic elastic modulus
decreases gradually. After the coupling of fatigue and F-T cycles, the minimum mass loss of NSRPC
is only 2.14%, and the relative dynamic elastic modulus can reach 86.2%. The increase in the number
of fatigue cycles promotes the generation and expansion of micro-cracks and provides more channels
for water to invade the matrix. Under the action of rainstorm in the 100-year return period, the
maximum ponding depth of NSRPC with steel fiber content is 84 mm, and the drainage time is
7.1 min, which meets the needs of secondary highway. This study will provide theoretical basis for
improving the service life and drainage capacity of urban drainage pavement in cold areas.

Keywords: recycled pervious concrete; rainstorm resistance; fatigue; freeze–thaw cycle

1. Introduction

In the field of urban transport infrastructure, traditional impervious pavements cover
most of the natural surface [1–4]. Due to the low permeability and air permeability of tradi-
tional pavement, most of the rainwater is difficult to reach the natural surface, preventing
the exchange in heat and moisture between soil and air [5]. Cities have poor regulation of
temperature and humidity, and the urban heat island effect is becoming more prominent.
During rainfall, the water cannot permeate the soil and reach the surface, leading to a
decrease in groundwater levels and a continuous increase in surface runoff [6]. In China,
currently, two-thirds of the region is facing the risk of urban flooding [7], and over 62% of
cities have experienced heavy rainfall-induced flooding disasters [8]. It is estimated that
by 2050, the economic losses caused by heavy rainfall-induced flooding will increase to
158 billion dollars [9], which is a grave situation.

Owing to the porous structure and superior permeability of pervious concrete, numer-
ous nations are advocating for its substitution of impervious setting concrete and tarmac
roads, aiming to mitigate the damages brought about by flash floods [10]. Contrasted
with impervious roads, the use of pervious concrete surfaces can diminish run-off by up
to 93% [11]. Amid heavy rainfall, pervious concrete pavements cannot solely minimize
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run-off but abolish most of the storm run-off genesis [12]. Meanwhile, pervious concrete
has achieved success in light load traffic areas such as parking lots and footpaths [13,14].
In contrast with conventional concrete, the strength and durability of pervious concrete
are generally inferior, hence limiting its scope of application [15]. A novel high-strength
pervious concrete was proposed, which through the introduction of vertical artificial pore
channels within a high-strength concrete matrix not only maintains considerable resilience,
but the continuous vertical channels simultaneously yield outstanding permeability as
well [16]. Based on the aforementioned research, a novel self-compacting recycled pervious
concrete (NSRPC) is produced in this study, by introducing self-compacting concrete as
a substrate, and employing 100% recycled coarse aggregate as a replacement for natural
aggregate. NSRPC ensures permeability through the introduction of man-made channels,
thereby negating the need to reduce fine aggregates to enhance porosity. Moreover, it ex-
udes a high degree of permeability (>2 cm/s) and strength (>50 MPa), with its permeability
coefficient being tenfold that of traditional pervious concrete, and its strength being twice
as strong in the same porosity [17]. Concurrently, it possesses exceptional durability; given
the durability coefficient, NSRPC can be employed in cold climates for up to 100 years [18].
Compared to traditional pervious concrete, NSRPC demonstrates improved clog resistance,
with most clogging materials successfully traversing the channels instead of remaining
within the NSRPC paths. Due to these exemplary characteristics, NSRPC holds the poten-
tial for utilization in sophisticated environments subjected to fatigue or freeze–thaw (F-T)
cycles, such as airport runways, highways, and bridge decks. Importantly, this facilitates
the use of pervious concrete in heavy-duty roads.

In China, almost half of regions fall within cold zones [19] with the deterioration
caused by F-T cycles being one of the major reasons for the limited application of per-
vious concrete [20,21]. The substantial porosity of pervious concrete contributes to the
degree of damage it sustains in F-T conditions being significantly more severe than typical
concrete [22]. Upon freezing, the free water within the cement paste between the coarse ag-
gregates in the pervious concrete expands, leading to the generation of micro-cracks. With
increasing frequency of F-T cycles, the incidence of these cracks multiplies, culminating in
structural damage [13,23]. As time advances, fines accumulate on the surface, progressively
blocking the pores of the pervious pavement with low F-T durability [24], substantially
mitigating the pavement’s permeability [25]. Furthermore, due to the substantial specific
surface area, there is an abundance of capillary pores within pervious concrete. The ex-
pansion force generated by water freezing in low-temperature environments leads to an
accumulated damage within the pervious concrete causing aggregates or mortars to peel off
and reside in the highly curved channels, thus hindering its permeability and reducing rain-
fall flood resistance. Feo et al. [20] examined the frost resistance and flexural performance
of concrete with distinct steel fiber (SF) capacities (0%, 1.25 vol.%, and 2.5 vol.%) and found
that steel fiber-reinforced concrete has superior crack resistance and energy absorption
capability compared to ordinary concrete. Hesami et al. [26] modified pervious concrete
using 0.5% SF and found that the flexural strength of the fortified pervious concrete was ap-
proximately 22% higher than that of the unmodified mix, while the permeability remained
almost constant. Thus, SF is effective in improving the frost resistance of pervious concrete.
However, there is a notable scarcity of reports on the frost resistance of pervious concrete
with continuous pores; this then necessitates the exploration of the appropriateness of SF
in such concrete.

Pervious concrete pavement is predominantly employed in areas subject to lighter
traffic loads, such as pedestrian walkways, parking lots, and park precincts, while it is
sparingly utilized for higher-grade roadways. This is invariably due to the suboptimal
initial performance characteristics of pervious concrete [27,28]. A surfeit of engineering
practice has unveiled that pervious concrete pavements are susceptible to fatigue or recur-
rent load-induced degradation, often prematurely manifesting maladies, such as thermal
shrinkage cracks and damp shrinkage cracks [29]. On a plethora of heavy traffic arteries,
large-scale exfoliation of the pervious pavement’s surface occurs often within less than five
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years. Numerous roadways commence manifesting damages, disfigurations, and deteriora-
tion shortly after service inception. This deleteriously impacts the lifespan of pavement
and substantially diminishes its longevity and permeability. Research findings indicate that
early-stage maladies of pervious concrete pavements are predominantly correlated with
fatigue or recurrent loading, which has emerged as the most significant and prevalent type
of damage [30]. One principal cause of the aforementioned degradation is that the pervious
pavement surface possesses poor fatigue resistance and lacks robustness to adequately
resist the vehicular load-induced shear stress on the pervious concrete pavement surface,
leading to problems like aggregate exfoliation or loosening, subsequently resulting in
surface damage [31]. Consequently, studying the fatigue resistance of pervious concrete
pavements holds considerable importance and is anticipated to contribute positively to
mitigate the occurrence of early-stage maladies in pervious concrete pavements.

This study carries out an analysis of the impact on mechanical characteristics, perme-
ability, and F-T durability of NSRPC containing five different proportions of SF, simulating
a deluge with a return period of 100 years and a duration of 60 min. The evaluation of
the rainstorm resistance of NSRPC under the coupling of (F-T) and fatigue is based on the
ponding depth and drainage time. In addition, the frost resistance of NSRPC was evalu-
ated by mass loss rate and relative dynamic elastic modulus. Finally, the microstructure of
NSRPC after the coupling of F-T and fatigue was observed by scanning electron microscopy,
and its deterioration mechanism was analyzed.

2. Experimental Program
2.1. Materials

Recycled coarse aggregate (RCA), purchased from a solid waste treatment firm in
Changzhou, China, was meticulously cleansed, dried, and sifted in a laboratory environ-
ment to secure fraction with a granular size of 5–16 mm. The macroscopic appearance
and grading curve of the RCA are vividly portrayed in Figure 1a,b, respectively. The
physical properties of the RCA were tested in strict accordance with Chinese standard
GB/T 25177-2010 [32], the results of which are tabulated in Table 1. River sand featuring a
fineness modulus of 2.3 was utilized as fine aggregate. Ordinary Portland cement (OPC)
with a strength grade of P.O 52.5, fly ash, and silica fume were employed as binding ma-
terials. Figure 2 presents the particle distribution of each binding material. The chemical
composition of the binding materials can be referred to in Table 2. Furthermore, SF with
a diameter of 0.2 mm, length of 5 mm, and tensile strength of 2850 MPa were imbued to
enhance the mechanical properties of the concrete. Moreover, superplasticizer (SP) was
adopted to improve the workability of the concrete.
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Figure 1. Macrostructure and grading curve of RCA: (a) macrostructure, (b) grading curve.
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Table 1. Physical properties of RCA.

Properties Apparent
Density (kg/m3)

Bulk Density
(kg/m3)

Water
Absorption (%)

Crushing Index
(%)

RCA 2567 1237 6.6 14.5

Buildings 2024, 14, x FOR PEER REVIEW 4 of 21 
 

 
Figure 2. Particle size distributions of OPC, fly ash, and silica fume. 

Table 1. Physical properties of RCA. 

Properties Apparent Density (kg/m3) Bulk Density (kg/m3) Water Absorption (%) Crushing Index (%) 
RCA 2567 1237 6.6 14.5 

Table 2. Chemical compositions of OPC, fly ash, and silica fume (%). 

Item CaO SiO2 Al2O3 Fe2O3 SO3 MgO TiO2 K2O 
OPC 53.73 21.46 9.65 5.73 3.22 3.07 0.64 0.67 
Fly ash 3.74 52.61 28.13 3.55 1.79 1.22 0.96 1.73 
Silica fume 0.07 95.78 0.23 0.12 0.02 - 0.02 - 

2.2. Mix Proportion and Specimen Preparation 
In this experiment, the target strength for NSRPC is set at 60 MPa with a filling ability 

achieving SF2. Five different SF dosages were selected, namely 0, 0.5 vol.%, 1 vol.%, 1.5 
vol.%, and 2 vol.%, with the specific mix proportions provided in Table 3. The fabrication 
of specimens employed the method of pre-embedded rebar with designed holes. That is, 
rebar was firstly inserted into pre-determined concrete molds, which was followed by 
pouring the mixed material into the mold, and the rebar was pulled out before the final 
setting. It is noteworthy that the pre-embedded rebar length should be greater than 1.5 
times the concrete width; otherwise, the rebar is likely to fall off in the hole during pour-
ing. The porosity of NSRPC is set at 1.13% with a rebar diameter of 3 mm, and the speci-
mens of two sizes prepared were 100 mm × 100 mm × 400 mm and 100 mm × 100 mm × 
100 mm, with hole distributions of 4 × 16 and 4 × 4 respectively. The model and physical 
diagram of the specimen is depicted in Figure 3. After shaping, the specimens were placed 
into a standard curing room for 24 days. Upon completion of curing, they were soaked in 
clean water for 4 days to reach a state of saturation before removal. 

Table 3. Mix proportion of NSRPC (kg/m3). 

Mixtures RCA Sand Water Cement Fly Ash Silica Fume SF SP Slump (mm) 
0-PC 770 840 189 387 89 60 0 4.7 146 
0.5-SF-PC 770 840 189 387 89 60 39 4.7 134 
1-SF-PC 770 840 189 387 89 60 78 4.7 127 
1.5-SF-PC 770 840 189 387 89 60 117 4.7 120 
2-SF-PC 770 840 189 387 89 60 156 4.7 108 

0.1 1 10 100 1000
0

2

4

6

OPC cumulative volume
Fly ash cumulative volume
Silica fume cumulative volume

 OPC differential volume
 Fly ash differential volume
 Silica fume differential volume

Partical size (µm)

D
iff

er
en

tia
l v

ol
um

e 
(%

)

Mean size = 15.66 µmMean size = 2.43 µm

Mean size = 9.64µm

0

20

40

60

80

100

C
um

ul
at

iv
e 

vo
lu

m
e 

(%
)

Figure 2. Particle size distributions of OPC, fly ash, and silica fume.

Table 2. Chemical compositions of OPC, fly ash, and silica fume (%).

Item CaO SiO2 Al2O3 Fe2O3 SO3 MgO TiO2 K2O

OPC 53.73 21.46 9.65 5.73 3.22 3.07 0.64 0.67
Fly ash 3.74 52.61 28.13 3.55 1.79 1.22 0.96 1.73
Silica fume 0.07 95.78 0.23 0.12 0.02 - 0.02 -

2.2. Mix Proportion and Specimen Preparation

In this experiment, the target strength for NSRPC is set at 60 MPa with a filling
ability achieving SF2. Five different SF dosages were selected, namely 0, 0.5 vol.%, 1 vol.%,
1.5 vol.%, and 2 vol.%, with the specific mix proportions provided in Table 3. The fabrication
of specimens employed the method of pre-embedded rebar with designed holes. That
is, rebar was firstly inserted into pre-determined concrete molds, which was followed by
pouring the mixed material into the mold, and the rebar was pulled out before the final
setting. It is noteworthy that the pre-embedded rebar length should be greater than 1.5 times
the concrete width; otherwise, the rebar is likely to fall off in the hole during pouring. The
porosity of NSRPC is set at 1.13% with a rebar diameter of 3 mm, and the specimens of
two sizes prepared were 100 mm × 100 mm × 400 mm and 100 mm × 100 mm × 100 mm,
with hole distributions of 4 × 16 and 4 × 4 respectively. The model and physical diagram
of the specimen is depicted in Figure 3. After shaping, the specimens were placed into a
standard curing room for 24 days. Upon completion of curing, they were soaked in clean
water for 4 days to reach a state of saturation before removal.

Table 3. Mix proportion of NSRPC (kg/m3).

Mixtures RCA Sand Water Cement Fly Ash Silica
Fume SF SP Slump

(mm)

0-PC 770 840 189 387 89 60 0 4.7 146
0.5-SF-PC 770 840 189 387 89 60 39 4.7 134
1-SF-PC 770 840 189 387 89 60 78 4.7 127
1.5-SF-PC 770 840 189 387 89 60 117 4.7 120
2-SF-PC 770 840 189 387 89 60 156 4.7 108
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2.3. Test Methods
2.3.1. Mechanical Properties Test

Employing the electro-hydraulic servo universal testing machine and in alignment
with GB/T 50081-2019 [33], the initial compressive and flexural strengths of the NSRPC
is examined as well as following 300 F-T cycles. The dimensions of the specimens under
examination are 100 mm × 100 mm × 100 mm, with loading pace, respectively, being
0.8 MPa/s and 0.08 MPa/s. It is crucial to denote that the samples used to test the com-
pressive and flexural strengths of the NSRPC post F-T and fatigue cycles are derived from
specimens sized at 100 mm × 100 mm × 400 mm; their cutting surface is delineated in
Figure 4. The specific cutting method is to cut the specimen into 4 parts along the cutting
surface with a cutting machine.
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2.3.2. Freeze–Thaw Cycle and Fatigue Coupling Test

The F-T cycle experiment was conducted in accordance with GB/T 50082-2009 [34],
where the temperature range for freezing and thawing extended from (−18 ± 2 ◦C) to
(5 ± 2 ◦C). The mass of the specimens, as well as the dynamic modulus of elasticity, was
measured after every 50 cycles of freezing and thawing. Subsequent calculations pertaining
to the mass loss percentage and relative dynamic modulus of elasticity were carried out by
Equations (1) and (2), respectively. It is imperative to note that encountering each instance
of removing the specimen from the F-T chamber for testing, the specimen’s position should
be inversed prior to proceeding with subsequent F-T examinations.
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relative dynamic elastic modulus (n) =
f 2
n

f 2
0
× 100% (1)

mass loss rate (n) =
m0 − mn

m0
× 100% (2)

where relative dynamic elastic modulus (n) is the relative dynamic elastic modulus after
n F-T cycles (%), mass loss rate (n) is the mass loss rate after n F-T cycles (%), fn is the
transverse fundamental frequency after n F-T cycles (Hz), mn is the mass after n F-T cycles
(kg), f0 is the initial transverse fundamental frequency (Hz), and m0 is the initial mass (kg).

At present, China’s transportation is characterized by axle loading and overloading.
When the stress level surpasses 0.5, the internal fissures within the concrete pavement
persistently broaden, eventually leading to the fracture of the concrete roadway. Concrete
pavements in certain areas under heavy loading experience stress levels as high as 0.6 under
vehicular loads, leading to substantial cup-shaped destruction of the concrete pavement.
Accordingly, the NSRPC was subjected to 2 × 105 iterations of flexural fatigue testing under
a sinusoidal wave shape, at a frequency of 10 Hz, with a stress level of 0.6 (S = f max/f f),
and a minimum stress ratio of 0.2 (Smin = f min/f f). The fatigue testing for the NSRPC is
illustrated in Figure 5.
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2.3.3. Heavy Rainfall Experiment

The current experiment selected a heavy rainfall with a return period of 100 years for
flood resistance design. The duration of the storm is a span of 60 min, which is suitable for
the majority of urban drainage systems [35]. Figure 6a showcases the apparatus employed
for the artificial simulation of rainfall. Prior to the experiment, preservation film is wrapped
around the impervious surface surrounding the specimens. Subsequently, the wrapped
test blocks are positioned upon the support frame of the catchment tank, which is crafted
from cylindrical acrylic sheet. The intensity of the rainfall alters every five minutes with
the specifics of the rainfall intensity depicted in Figure 6b.

2.4. Microstructure Test

The microscopic structures of NSRPC post the coupling of F-T and fatigue cycles were
inspected utilizing a scanning electron microscope (Regulus-8100). Samples, each measur-
ing approximately 5 mm × 5 mm × 3 mm, were meticulously selected from NSRPC, which
was followed by a 24 h drying process within an oven set at 60°C. Prior to examination,
each sample underwent a gold-spraying treatment. The course of the experiment entailed
observing the transition zones and micro-cracks present within each specimen.
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Figure 6. Heavy rainfall experiment: (a) artificial rain device, (b) average rainfall intensity.

3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Compressive Strength

The compressive strength of NSRPC under the coupling of F-T and fatigue cycles
is illustrated in Figure 7. Figure 7a reveals that with the increase in fatigue cycles, the
compressive strength of the NSRPC before F-T cycles first experiences a surge before
plummeting. When the number of fatigue cycles reached 5 × 104, the compressive strength
of 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC ascended by 2.9%, 2.6%, 1.2%, 0.6%,
and 1.1%, respectively, compared to their initial strengths. This could be ascribed to the
fact that at a lower number of fatigue cycles, the fatigue load facilitated the preliminary
healing of cracks within the concrete matrix, reducing the generation of cracks. In the
ensuing F-T processes, the channels for water transportation consistently dwindled, thereby
slightly enhancing frost resistance of NSRPC [36,37]. Nevertheless, with the escalation of
the number of fatigue cycles, the exerted fatigue load engendered numerous novel micro-
cracks within the NSRPC [38], providing a greater number of transportation routes for the
penetration of water during F-T cycles. This led to previously isolated pores becoming
interconnected [39].

After 300 F-T cycles, the compressive strength of NSRPC exhibited varying degrees of
attenuation. Before fatigue cycles, the compressive strength of 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-
SF-PC, and 2-SF-PC diminished by 34.3%, 28.4%, 22.7%, 17.1%, and 19.9%, respectively. As
fatigue cycles increase, the detrimental impact of F-T cycle on the compressive strength of
NSRPC intensified. At fatigue iterations of 2 × 105, the compressive strength of 0-PC, 0.5-SF-
PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC deteriorated by 41.5%, 30.9%, 28.7%, 20.5%, and 22.2%,
respectively, compared with their pristine states prior to the F-T cycle. This implies that
fatigue cycling exacerbated the F-T damage on NSRPC. Concurrently, continuous interior
deterioration of the NSRPC matrix due to fatigue cycling lead to a decrease in inherent
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cement matrix strength along with declining effective adhesive strength between the matrix
and the aggregate, establishing permeation pathways for moisture, hence engendering
suboptimal frost resistance of NSRPC [40]. With respect to all NSRPCs, the compressive
strength continues to escalate with an increase in the concentration of SF, despite the
damaging effects of combined fatigue and F-T cycling. The SF may counteract some tensile
stress during fatigue, thereby decreasing the genesis of fatigue cracks and consecutively
enhancing the compressive strength of NSRPC [41,42]. The subsequent loss rate in NSRPC
compressive strength as a result of combined fatigue and F-T cycles is depicted in Figure 8.
It reveals that the loss rate of 0-PC compressive strength reaches 24% after F-T cycling, while
the loss rate of untarnished 0-PC is a mere 14%. Similar trends were observed with other
mixtures, strongly insinuating that F-T cycling exacerbates the loss of NSRPC’s compressive
strength. To summarize, compared with unexposed NSRPC, following 2 × 105 fatigue
and 300 F-T cycles, the compressive strength of 0-PC drops by 49.9%, while 1.5-SF-PC only
experiences a 26.4% decline.
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Figure 7. Compressive strength after coupling of fatigue and F-T cycles: (a) before F-T cycles; (b) after
300 F-T cycles.
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Figure 8. Compressive strength loss rate of NSRPC with the number of fatigue cycles before and after
F-T: (a) before F-T cycles; (b) after 300 F-T cycles.

3.1.2. Flexural Strength

Contrary to its compressive strength, the NSRPC primarily resists bending moments
via cross-sections oriented parallel to the pores, as delineated in Figure 9. The flexural
strength of NSRPC following different F-T cycles and fatigue is represented in Figure 10.
The flexural strength of NSRPC, without undergoing fatigue and F-T cycles, exceeds
6 MPa, thereby sufficiently meeting the bending requirements of heavy-load traffic roads
(≥5 MPa). Relative to the NSRPC unexposed to fatigue and F-T effects, following two
hundred thousand fatigue cycles and 300 F-T cycles, the flexural strength of 0-PC fell by
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51.5%, whilst that of 1.5-SF-PC declined merely by 29.7%. Such a phenomenon substantiates
the fact that the incorporation of SF amplifies the fatigue and F-T durability of NSRPC.
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Figure 9. The cross-section of NSRPC: (a) vertical to channel; (b) parallel to channel.
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Figure 10. Flexural strength of NSRPC after coupling of fatigue and F-T cycles: (a) before F-T cycles;
(b) after 300 F-T cycles.

When fatigue cycles were at 0, the flexural strength of 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-SF-
PC, and 2-SF-PC fell, respectively, by 26.6%, 20.3%, 19.4%, 16.2%, and 17.7% post-F-T cycles.
When fatigue cycles escalated to 2 × 105, the flexural strengths of the aforementioned
specimens reduced, respectively, by 31.1%, 23.6%, 20.6%, 17.4%, and 22.5%. Figure 11
illustrates the loss rate of flexural strength of NSRPC before and after F-T cycles against
fatigue cycles, thereby revealing that excluding 0-PC, the flexural strength loss rate before
F-T cycles is significantly lower than that after F-T cycles. Such a conclusion emphasizes
the crucial role of fatigue loading prior to F-T cycles in flexural strength; minor variations
in 0-PC may likely instigate the amplified sensitivity of NSRPC toward flexural strength.
When fatigue cycles are relatively smaller before the F-T stage, the discrepancy in the
sectional resistance provided by effective sections is not conspicuous, causing minimal
decline in flexural strength and rendering the variation in NSRPC flexural strength insignif-
icant. For 0-PC, the flexural strength of NSRPC is at its nadir. This can be elucidated by
recognizing that fatigue and F-T damage result in a noteworthy reduction in the effective
cross-sectional area of NSRPC. Such a situation is tantamount to directly diminishing the
tensile area of the lower part of NSRPC, resulting in a considerable fall in bending strength.
A meager effective cross-sectional area is not conducive to the bending strength of NSRPC.
Therefore, to acquire higher strength, it is recommended to moderately increase the SF
dosage in pervious concrete, implying that cracks must evolve incessantly through steel
fiber-reinforced mortar matrix.
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Figure 11. Flexural strength loss rate of NSRPC with the number of fatigue cycles before and after
F-T: (a) before F-T cycles; (b) after 300 F-T cycles.

3.2. Mass Loss Rate

The mass loss rate of NSRPC represents the macroscopic damage effect, and it serves
as one of the pivotal criterion for estimating intrinsic structural damage resultant from F-T
cycles. The mass loss rate of NSRPC, post fatigue and F-T cycles, is delineated in Figure 12.
In accordance with anticipations, amongst all mixtures, 0-PC, post 2 × 105 fatigue combined
with 300 F-T cycles exhibited the highest mass loss rate, at 3.67%, whereas 2-SF-PC was the
lowest, at a mere 2.14%. This intimates that the integration of SF can efficiently attenuate
the mass depletion of NSRPC subsequent to the F-T. In instances where the number of
fatigue cycles was 0, in contrast to the original mass loss rate not exposed to F-T cycles, a
significant increase was observed in mass loss rate for 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC,
and 2-SF-PC, respectively. Moreover, with an enhancement in SF concentration, there was
a gradual decrease in the mass loss rate of NSRPC, suggesting the effective mitigation of
F-T-induced NSRPC mass loss by SF integration. When the F-T cycle was constant, an
upward–downward fluctuation trend was apparent in the mass loss rate of NSRPC as the
fatigue cycles increased. However, when the number of fatigue cycles went beyond 2 × 105,
there was a notable upsurge in the mass loss rate of NSRPC.

In comparison to 0-PC, when experiencing 0 fatigue cycles and 300 F-T cycles, mass loss
quotients of 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC were reduced, respectively. This
asserts that apprehending fatigue, along with the disruptive F-T effects, yields improved
NSRPC durability, mitigates surface mortar particle exfoliation, subsequently curtailing
moisture intrusion, and enhancing its ability to endure F-T cycles. As NSRPC possesses
an expansive surface area owing to artificial pore paths as compared to ordinary concrete,
fortifying these vulnerable regions and reducing their mass loss is paramount for the
long-term durability.

3.3. Relative Dynamic Elastic Modulus

The relative dynamic elastic modulus serves as an indicator of internal damage within
NSRPC, where a higher value signifies greater integrity within the matrix and a lower
degree of damage. Following the combined effects of fatigue and F-T cycles, the relative
dynamic elastic modulus of NSRPC was depicted in Figure 13. As was anticipated, among
all the mixtures, 0-PC exhibited the lowest relative dynamic elastic modulus following
fatigue and F-T cycle effects with its dynamic elastic modulus of conditions being a mere
71.5% after enduring 2 × 105 fatigue cycles and 300 F-T cycles. The highest was found
in 2-SF-PC at 86.2%. When the number of fatigue cycles was 0 and after 300 F-T cycles,
the relative dynamic elastic modulus of 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-
PC had diminished by 19.5%, 14.9%, 11.8%, 6.5%, and 6.2%, respectively. When fatigue
reached 2 × 105 cycles, following F-T cycles, the relative dynamic elastic modulus of 0-PC,
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0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC had receded by 28.5%, 20.2%, 17.9%, 15.8%,
and 13.6%, respectively. Comparable to mass loss rate, alterations to the relative dynamic
elastic modulus were not drastic when the number of fatigue cycles was below 1 × 105.
However, once fatigue surpassed 2 × 105 cycles, a significant plunge in the modulus of
elasticity for NSRPC was observed.
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Figure 12. Mass loss rate after different F-T and fatigue cycles: (a) N = 0, (b) N = 5.0 × 104,
(c) N = 1.0 × 105, (d) N = 1.5 × 105, (e) N = 2.0 × 105.
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Figure 13. Relative dynamic elastic modulus after different F-T and fatigue cycles: (a) N = 0,
(b) N = 5.0 × 104, (c) N = 1.0 × 105, (d) N = 1.5 × 105, (e) N = 2.0 × 105.

In comparison with 0-PC, with 0 fatigue cycles and 300 F-T cycles, the relative dynamic
elastic modulus for 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC witnessed growth of 4.6%,
7.7%, 13.0%, and 13.3%, respectively. Additionally, relative to 0-PC, with fatigue pegged
at 2 × 105 cycles and 300 F-T cycles, the relative dynamic elastic modulus for 0.5-SF-PC,
1-SF-PC, 1.5-SF-PC, and 2-SF-PC inflated by 8.3%, 10.6%, 12.7%, and 14.9%, respectively.
These data show that as the level of SF increased, the dynamic elastic modulus for NSRPC
post F-T cycles consistently ascended. It also points out that the inclusion of SF better
maintains the integrity and lessens the F-T damage of the NSRPC matrix. Coarse aggregates
within traditional pervious concrete are simply bound by a thin layer of mortar, but passage
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ways within NSRPC are filled with hardened concrete. Hence, compared to traditional
pervious concrete, NSRPC exhibits superior fatigue and frost resistance.

3.4. Channel Characteristics
3.4.1. Deformation

Following the coupling of F-T and fatigue cycles, a permeability test was conducted.
To analyze the changes in the permeability of NSRPC after fatigue and F-T cycles, the defor-
mation of the NSRPC pores after F-T and fatigue cycles were examined. Figure 14 illustrates
the relative deformation of the pore structure after different fatigue cycles. Throughout the
different fatigue stages, there is no considerable discrepancy in the permeability of NSRPC,
macroscopically demonstrating no evident destruction or deformation in the pore structure
of NSRPC. The relative deformation predominantly occurs in the region subject to fatigue
loading with relatively low deformation of the pore structure on either side of NSRPC.
When the fatigue cycle is less than 5 × 104, the deformation of the pore structure in the
area of stress concentration is between 3% and 6%, while the deformation on either side is
merely between 1% and 3%, suggesting that the early phase fatigue load has a negligible
impact on the NSRPC pore structure. However, when the fatigue cycle reaches 2 × 105,
a substantial difference in the deformation of the NSRPC pore structure emerges. The
deformation of the pore structure in the area of stress concentration increases to 12–26%,
while the deformation on either side remains nearly unaltered, ranging from 3% to 7%.
This could potentially indicate that the fatigue load principally affects the middle area of
the NSRPC where the stress is concentrated [43].

Buildings 2024, 14, x FOR PEER REVIEW 14 of 21 
 

 
Figure 14. Pore channel deformation after fatigue cycles: (a) N = 5.0 × 104, (b) N = 1.0 × 105, (c) N = 
1.5 × 105, and (d) N = 2.0 × 105. 

3.4.2. Permeability Coefficient 
Figure 15 serves to explicate the alterations in the permeability coefficient of NSRPC 

subject to the coupling of F-T and fatigue cycles. On the basis of the discrepancies in the 
number of fatigue instances, changes in the permeability coefficient may be segregated 
into two individual stages. In the primary phase, characterized by an absence of F-T cy-
cles, the permeability coefficient of all NSRPCs remains virtually unaltered, indicating a 
marginal impact of the fatigue loads on the NSRPC permeability coefficient. During the 
secondary phase, occurring with a conjunction of fatigue and F-T cycles, the permeability 
coefficient manifests a notable initial decrease, which was followed by an increase as the 
number of fatigue instances advances. At a fatigue cycle of 1 × 105, 0-PC, 0.5-SF-PC, 1-SF-
PC, 1.5-SF-PC, and 2-SF-PC experience a decrease in their water permeability coefficients 
by 41.1%, 37.6%, 31.7%, 21.4%, and 27.9%, respectively, in comparison to NSRPC, which 
was devoid of any influence by the F-T effect. This indicates that even though a singular 
fatigue load has a lesser impact on the pore water permeability coefficient, the fatigue 
effect accelerates the formation of micro-cracks within the NSRPC matrix, thus rendering 
additional pathways for water intrusion. Consequently, a higher number of fatigue in-
stances compromises the integrity of NSRPC matrix with the pore architecture facing sig-
nificant F-T damage and consequent obstruction after F-T cycles. An increase in the per-
meability coefficient beyond a fatigue count of 1 × 105 does not denote a reduction in the 
F-T damages inflicted upon the NSRPC but rather indicates severe pore devastation, as 
the majority of the pore mortar detaches, accompanied by crack formation, indirectly en-
larging the pore diameter and enhancing permeability of NSRPC. 

In the ambit of all admixtures, after coupling of F-T and fatigue cycles, the lowest 
permeability coefficient is attributed to the control group, 0-PC, recorded merely at 5.1 
mm/s, whereas 1.5-SF-PC manifests the optimum permeability, the coefficient being 6.8 
mm/s. Even though the permeability coefficients of different admixtures evidenced no 
discernible pattern prior to F-T, all mixtures demonstrated varied degrees of decreased 
permeability at F-T cycle numbers, less than 1 × 105. In summation, the macroscopic per-
meability of NSRPC is marginally affected by fatigue load; however, on a microscopic 
level, the damages to the matrix by fatigue load exacerbate the loss of permeability coeffi-
cient in the subsequent stage. The integration of an appropriate volume of SF can temper 

Figure 14. Pore channel deformation after fatigue cycles: (a) N = 5.0 × 104, (b) N = 1.0 × 105,
(c) N = 1.5 × 105, and (d) N = 2.0 × 105.

3.4.2. Permeability Coefficient

Figure 15 serves to explicate the alterations in the permeability coefficient of NSRPC
subject to the coupling of F-T and fatigue cycles. On the basis of the discrepancies in the
number of fatigue instances, changes in the permeability coefficient may be segregated into
two individual stages. In the primary phase, characterized by an absence of F-T cycles, the
permeability coefficient of all NSRPCs remains virtually unaltered, indicating a marginal
impact of the fatigue loads on the NSRPC permeability coefficient. During the secondary
phase, occurring with a conjunction of fatigue and F-T cycles, the permeability coefficient
manifests a notable initial decrease, which was followed by an increase as the number of
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fatigue instances advances. At a fatigue cycle of 1 × 105, 0-PC, 0.5-SF-PC, 1-SF-PC, 1.5-SF-
PC, and 2-SF-PC experience a decrease in their water permeability coefficients by 41.1%,
37.6%, 31.7%, 21.4%, and 27.9%, respectively, in comparison to NSRPC, which was devoid
of any influence by the F-T effect. This indicates that even though a singular fatigue load has
a lesser impact on the pore water permeability coefficient, the fatigue effect accelerates the
formation of micro-cracks within the NSRPC matrix, thus rendering additional pathways
for water intrusion. Consequently, a higher number of fatigue instances compromises the
integrity of NSRPC matrix with the pore architecture facing significant F-T damage and
consequent obstruction after F-T cycles. An increase in the permeability coefficient beyond
a fatigue count of 1 × 105 does not denote a reduction in the F-T damages inflicted upon
the NSRPC but rather indicates severe pore devastation, as the majority of the pore mortar
detaches, accompanied by crack formation, indirectly enlarging the pore diameter and
enhancing permeability of NSRPC.
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Figure 15. Change in permeability coefficient after coupling of F-T and fatigue cycles: (a) N = 0,
(b) N = 5.0 × 104, (c) N = 1.0 × 105, (d) N = 1.5 × 105, and (e) N = 2.0 × 105.



Buildings 2024, 14, 294 15 of 20

In the ambit of all admixtures, after coupling of F-T and fatigue cycles, the lowest per-
meability coefficient is attributed to the control group, 0-PC, recorded merely at 5.1 mm/s,
whereas 1.5-SF-PC manifests the optimum permeability, the coefficient being 6.8 mm/s.
Even though the permeability coefficients of different admixtures evidenced no discernible
pattern prior to F-T, all mixtures demonstrated varied degrees of decreased permeability
at F-T cycle numbers, less than 1 × 105. In summation, the macroscopic permeability
of NSRPC is marginally affected by fatigue load; however, on a microscopic level, the
damages to the matrix by fatigue load exacerbate the loss of permeability coefficient in
the subsequent stage. The integration of an appropriate volume of SF can temper the
severity of the pore damage, thereby sustaining the permeability coefficient of NSRPC.
Upon exceeding fatigue instances of 1 × 105, almost negligible differences are observed in
the permeability coefficients of all mixtures before and after F-T cycles.

3.5. Rainstorm Waterlogging Resistance
3.5.1. Ponding Depth

As depicted in Figure 16, the ponding depth of NSRPC sets in the coupling of F-T
and fatigue cycles. For mixtures without fatigue cycles, such as 1-SF-PC, 1.5-SF-PC, and
2-SF-PC, the ponding depth is below 40 mm. A tangible impact upon the ponding depth
after the F-T cycles afflicts the surface of NSRPC. With an escalating number of fatigue
cycles, the amassed water height inclines initially and then takes a downturn. An ascension
of the ponding depth by 10.9% was observed after enduring 1 × 105 fatigue cycles, in
comparison to the initial ponding depth without fatigue cycles. When the fatigue cycle
count surpasses 1 × 105, the decline in ponding depth is principally due to two factors.
Firstly, there is an accelerated accumulation speed brought about by intensified torrential
rain, which, in accompaniment with the rising depth of the accumulated water, increases
the water pressure atop the pores potentially rejuvenating F-T damaged pores. The other
likelihood fields the shedding of mortar within the pore subsequent to the fatigue and F-T
cycle, instigating the eruption of fractures between the pores, which indirectly augments
the pore diameter. The highest ponding depth occurs with 0-PC following fatigue and F-T
cycles, whereas 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC and 2-SF-PC exhibit notable detriments to
their surface water build-up as compared to 0-PC following torrential rain. The outcomes
indicate that NSRPC incorporated with a suitable volume of SF show superior resistance
to floodwater in torrential conditions following fatigue and F-T cycles. Furthermore, an
inundated NSRPC surface does not necessarily imply internal flooding, as the permeability
coefficient of NSRPC is more than 20 times the intensity of a centennial torrential downpour
(4.5 mm/min) [44,45]. In simpler terms, the pores of NSRPC are perfectly capable of
eliminating surplus rainfall. The formation of accumulated water typically results from
localized pooling due to the uneven surface of the NSRPC. For 1.5-SF-PC and 2-SF-PC, the
disparity in accumulated water depth, borne out of different periods, appears insignificant.
These findings suggest that upon surpassing the 1.5% SF volume incorporation limit in
NSRPC, the subsequent increase in SF exerts diminishing impacts on the pores of NSRPC,
hence contributing only marginally to the alleviation of ponding depth.

3.5.2. Drainage Time

As illustrated in Figure 17, the drainage time of NSRPC altered under various combina-
tions of fatigue and F-T cycles. After 1 × 105 fatigue cycles and 300 F-T cycles, the drainage
time of 0.5-SF-PC, 1-SF-PC, 1.5-SF-PC, and 2-SF-PC were, respectively, 22.0%, 58.2%, 83.5%,
and 89.0% lower than the reference group. Additionally, the drainage time of all speci-
mens was considerably below the 15-minute stipulation of standard GB 51222-2017 [46],
satisfying the requirements for flood prevention during the utilization period of secondary
roads. The inclusion of SF effectively sustains the integrity of the pores, reduces blockages
produced by F-T or fatigue cycles, and thus upholds permeability and diminishes drainage
time. Remarkably, even without the incorporation of SF, 0-PC still meets the condition
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that standing water dissipates within 15 min, satisfying the operational prerequisites of
secondary roads.
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Figure 16. Ponding depth of NSRPC after coupling of F-T and fatigue cycles.
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3.6. SEM Analysis

As demonstrated in Figure 18, the influence of fatigue and F-T cycle coupling on
the SEM images of NSRPC became evident. Following the exertion from fatigue and
F-T cycles, all admixtures displayed variable degrees of impairment. It was particularly
noticeable in the vicinity of the interfacial transition zone where clear F-T destruction was
discerned. An abundance of micropores and debris emerged adjacent to the mortar of the
0-PC aggregate with few through-cracks appearing on the surface. Furthermore, the surface
of the 0.5-SF-PC also exhibited two perpendicular cracks, which was an indication that
the fatigue load and F-T cycles inflicted noteworthy havoc on the microstructure within
the NSRPC. Regarding the 1-SF-PC and 1.5-SF-PC, both exhibited far less damage than
the 0-PC with SEM images revealing a relatively unscathed matrix devoid of conspicuous
cracks or micropores. This signals that the introduction of an optimal volume of SF aided
in preserving the integrity of the matrix. As for the 2-SF-PC, although its aggregate did
not display noticeable F-T damage, the mortar between the aggregate showed signs of
impairment, with the majority of it disintegrating into debris. This may potentially lead to
partial macroscopic damage and even detachment in NSRPC.
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4. Conclusions

1. The fatigue load exerts a detrimental impact on the compressive and flexural strength
of NSRPC after F-T cycles with the role of SF in bolstering the flexural strength of
NSRPC eclipsing their effect on its compressive strength. As the number of fatigue
cycles increases, the compressive strength of NSRPC is decreasing. After 2 × 105

fatigue and 300 F-T cycles, NSRPC without SF experienced a fall in compressive and
flexural strength by 49.9% and 51.5%, respectively, while the NSRPC including 1.5%
SF suffered a reduction of just 26.4% and 29.7%.

2. In the early stage of fatigue cycle (<1 × 105), the mass loss rate and relative dynamic
elastic modulus of NSRPC changed little. With the increase in the number of fatigue
cycles, the damage degree of NSRPC after F-T is deepened, the mass loss is gradually
increased, and the relative dynamic elastic modulus is gradually reduced. After the
coupling of fatigue and F-T cycles, the minimum mass loss rate of NSRPC is only
2.14%, and the relative dynamic elastic modulus can reach 86.2%.
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3. With the increase in the number of fatigue cycles, the permeability coefficient of
NSRPC after F-T cycles decreases first and then increases. The NSRPC with 1.5% and
2% SF maintains the integrity of the pores in the later stage of fatigue and F-T, so the
permeability coefficient changes little.

4. Even with low SF content (<0.5 vol.%), the NSRPC after fatigue and F-T cycles still has
excellent rainstorm resistance. Under the action of rainstorm in the 100-year return
period, the maximum ponding depth is 84 mm, and the drainage time is 7.1 min,
which meets the requirements of no rainstorm waterlogging during the rainstorm of
the secondary highway.

5. In this study, the pore structure of NSRPC is relatively simple, and the mechanical
properties, durability and rainstorm waterlogging resistance of NSRPC after fatigue or
F-T cycles are quite different. Therefore, NSRPC with different porosity, pore diameter
and pore arrangement should be analyzed in the future research so as to obtain the
rainstorm waterlogging resistance of NSRPC with different porosity, pore diameter
and pore arrangement after fatigue or F-T cycles. More importantly, the pore structure
of NSRPC is an important internal factor affecting its service life. While considering
the permeability, we should also pay attention to the influence of pore structure on
the service life of NSRPC.
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