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Abstract: Effective facility asset management requires specific skills and tools to optimize the use of
limited resources, making a decision support system essential. This research introduces a comprehen-
sive decision support system, which is a framework organized into three models: the criticality model,
the rehabilitation model, and the optimum criticality model to manage the rehabilitation of facility
assets. The criticality model utilizes the Analytical Hierarchy Process (AHP) to assess the group of
assets. Emphasizing criticality as a central management factor, this model lays the foundation for
subsequent decision-making. The rehabilitation model employs an Artificial Neural Network (ANN),
integrating Customer Level of Service (CLoS), Technical Level of Service (TLoS), and asset criticality
to determine appropriate rehabilitation actions. NeuralTools 7.5 is leveraged for precise predictions of
rehabilitation strategies tailored to specific assets. The third model, optimum criticality, focuses on
prioritizing rehabilitation activities within the constraints of limited budgets. Lingo 20.0 is utilized
to optimize rehabilitation activities, considering budget limitations and other constraints, offering a
strategic approach to maximize the impact of available resources. This integrated framework provides
decision-makers with a systematic and data-driven approach to facility management, enhancing
the efficiency and effectiveness of rehabilitation actions. An academic building was chosen as a
hypothetical example to implement the three models and suggest the essential considerations for
managing both the academic building itself and other infrastructure assets. The results obtained
demonstrate that the principles and methodologies encapsulated in this project can be extrapolated
and scaled up for application to large-scale infrastructure assets, ensuring the sustenance of the
requisite level of service and the management of acceptable risk on a broader scale.

Keywords: facility management; Analytical Hierarchy Process (AHP); Artificial Neural Network
(ANN); rehabilitation methods; level of service

1. Introduction

Working in a facility for eight hours a day requires a healthy environment. A typi-
cal facility consists of numerous assets that provide specific services. Examples of such
assets include elevators, HVAC, doors, water and wastewater systems, electrical systems,
security systems, and others. A study conducted by [1] identified that 38% of variations in
productivity are attributed to the workplace environment. Therefore, maintaining facility
assets leads to a satisfactory experience for facility users and increases their productiv-
ity. Currently, there is no standardized system that provides an optimum maintenance
program. Instead, each organization has specific practices, some of which are discussed
in Section 3.1. In addition to limited resources, a major consideration is that a facility
includes various asset types—mechanical, electrical, and structural—and each type en-
compasses several individual assets. These assets vary in sizes, shapes, capacities, and
locations, necessitating different programs throughout their life cycles. The output of
any developed system should provide a straightforward solution: maintain current and
future assets to deliver the required services within the constraints of limited resources.
On the other hand, decision-makers overseeing infrastructure assets request billions of
dollars annually to maintain their infrastructure, aiming to achieve the required level of
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service while minimizing risks [2]. The primary challenge in this context is the limitation
of available budgets. However, it is crucial to first identify the necessary rehabilitation
actions and then prioritize these actions to effectively manage the available budget. The
required rehabilitation actions, categorized into five types, no action, operational, minor
maintenance, major maintenance, and replacement [3], are determined and prioritized
based on the consequences of failure, specifically the criticality of an asset. This research
emphasizes that criticality serves as the central management basis for infrastructure assets.
This study is structured into three models: the criticality model, the rehabilitation model,
and the optimum criticality model. The first model aims to determine the criticality level
of individual assets, considering their groupings and impacts on economic, operational,
social, and environmental aspects. The Analytical Hierarchy Process (AHP) is employed
to develop the criticality of assets in this model. In the second model, an Artificial Neural
Network (ANN) is utilized to identify the rehabilitation action for assets. The second model
incorporates Customer Level of Service (CLoS), Technical Level of Service (TLoS), and
the criticality of assets to determine the appropriate rehabilitation action for each asset.
NeuralTools 7.5 [4] is applied to predict the rehabilitation action of specific assets. The
third model, utilizing Lingo 20.0 [5], focuses on achieving optimum criticality to prioritize
rehabilitation activities based on budget constraints and other limitations while minimizing
the total criticality of assets in the optimization process.

2. Objectives

The primary aim of this study is to prioritize rehabilitation activities for academic
facility, considering the available budget and various constraints, which encompass no
action, operational, minor maintenance, major maintenance, and replacement. Additional
objectives include:

(1) Identify the criticality of the facility’s assets;
(2) Prioritize rehabilitation actions to minimize the overall criticality of the facility’s assets;
(3) Incorporate facility users’ complaints into the decision-making process.

Moreover, the ongoing research concentrates on facility assets with established main-
tenance programs and an available budget. Ensuring the satisfaction of facility users is
crucial to maintaining the required level of services provided by these facility assets.

3. Background
3.1. Facility Maintenance Practices

Many organizations (such as academic, medical, and municipal sectors) adhere to
specific asset maintenance policies. These assets are categorized into groups and subgroups,
with maintenance types delineated as planned versus unplanned. Moreover, there exists a
prioritization of maintenance activities. A gap analysis based on a set of questionnaires is
conducted to compare current practices with established standards [6]. It is determined that
the differences between both are not big with respect to maintenance types, encompassing
predictive, preventive, proactive, reactive, planned, program, improvement, corrective,
breakdown, and breakdown emergency. Priorities of building maintenance from stake-
holders’ perspectives were analyzed [7], and the maintenance programs are divided into
structural, architectural, electrical, and mechanical. Maintenance programs are categorized
by [8] into routine maintenance (HVAC, plumbing, electrical, painting, carpentry, lock/key,
and general maintenance), preventive maintenance (structural elements), and deferred
maintenance (it will be scheduled as needed). The prioritization of these maintenances is
on emergency, urgent, priority, and routine schedules. A priority of rehabilitation matrix,
which is 5 × 5, was developed by [9] based on criticality and likelihood. Additionally, in-
spection requirements of facilities have been identified according to a checklist form, which
encompasses nine criteria: safe and orderly operating conditions, fire safety, earthquake
safety, electrical safety, chemical storage, hazardous waste, compressed gases, building
structures, and miscellaneous [10].
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3.2. Criticality

Criticality, or consequences of failure [3], pertains to the outcomes or impacts arising
from the malfunction, breakdown, or failure of a system, component, process, or entity.
Comprehending the consequences of failure is vital in various fields, such as engineering,
risk management, and decision-making, as it aids in evaluating the potential risks and im-
plications linked to a failure event. Criticality may be categorized into four types: economic,
operational, social, and environmental [11]. Criticality is studied by several researchers as a
decision tool for infrastructure maintenance programs. A criticality model was developed
for the predictive maintenance of the bridge group [12]. The model includes deterioration,
optimal maintenance, penalty cost function, group maintenance, and scheduling models,
ultimately resulting in the ranking of bridges based on their criticalities. Criticality was
employed to assess the impact of a rail component system [13]. In a separate study, a
criticality model for a distribution water network was formulated [14]. The model relies
on four integrated indices: water age degradation, pressure decrease, economic value loss,
and supply shortage. Applying a risk framework conducted by [15], the criticality model
for sewer pipes considers their conditions and prioritizes maintenance activities by taking
into account economic, social, and environmental factors.

3.3. Rehabilitation Selection Methods

The selection of rehabilitation methods has been studied extensively by several re-
searchers. MAUT is selected for the best rehabilitation methods of infrastructure assets [16],
rehabilitation of the historic bridges [17], the optimal alternative of rehabilitation of a
drainage channel [18]. A dynamic programming model was used by [19] in order to se-
lect the alternative rehabilitation of water networks. MINLP is utilized [10] to select the
best rehabilitation methods for the water distribution network. Mechanistic Analysis and
Field Diagnosis, applied by [20], were utilized to select the best rehabilitation methods
for road pavement, while a holistic approach, as suggested by [21], was employed for
sewer rehabilitation segments based on the cost-effectiveness of the method. The authors
in [22] stated that the optimal combination of scheduled and unscheduled maintenance
to ensure occupant contentment is an appropriate solution. The majority of the studies,
such as the one estimating the early cost of a concrete bridge using an ANN model [23],
and a study by [24] identifying the ANN as an effective method, focus on cost estimation,
including predicting the Construction Cost Index (CCI). An integration model of an ANN
and AHP, developed by [25], was employed to estimate the cost of road networks, and [26]
utilized an ANN to predict the final cost of the construction project. The authors in [27]
used an ANN to predict the cost budgeting in the auction process, while [28] carried out
an investigation on the effect of communication on rework in construction projects. The
estimation of annual maintenance for the infrastructure assets with the aid of an ANN
was considered by [29]. The required cost for roof maintenance systems was predicted
by [30]. Other researchers utilized an ANN for the scheduling process. The application of
an ANN and neuro-fuzzy for construction scheduling was studied by [31]. The authors
in [32] predicted the construction contract duration for construction projects. An optimum
scheduling model using an ANN was developed by the authors in [33]. According to a
study by [34], the prediction of project duration using an ANN was improved, and an
optimal scheduling model for the rehabilitation of water pipes can be obtained with respect
to different constraints, as mentioned by [35]. Other studies, such as [36], used artificial
neural networks (ANNs) to address various construction topics, including the development
of a mathematical model to estimate the condition of water distribution networks. The
estimation of project effort was carried out by [37] using an ANN. A risk assessment model
for infrastructure projects was developed by [38] using a BP-ANN algorithm. The sustain-
ability index for water management was assessed with the utilization of an ANN [39]. A
hybrid ANN was developed by [40] to evaluate the sustainability of construction projects.
Based on the previous literature review, the criticality of facility assets is not employed
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as a central management factor for (1) selecting the necessary rehabilitation methods and
(2) executing these rehabilitations by the available budget and other constraints.

4. Research Contributions

The research significantly contributes to the field of facility management by introduc-
ing an innovative decision support system meticulously designed to address the criticality
of facility assets. This includes precise criticality assessment, data-driven rehabilitation
strategies, and strategic optimization of rehabilitation activities, all within the constraints
of budget limitations. The developed system effectively balances key infrastructure pa-
rameters, namely the level of service, risk, condition, performance, and available budget.
Achieving this balance presents a considerable challenge for researchers, managers, and
decision-makers, as it requires the delivery of an acceptable level of services to users while
minimizing associated risks and adhering to budget constraints. Criticality emerges as the
pivotal factor in this study for achieving balance among these parameters. This involves
initially determining the criticality of assets, followed by selecting suitable rehabilitation
measures in alignment with the criticality and level of service. Finally, rehabilitation activi-
ties by considering the minimum total criticality of the facility, the available budget, and
other pertinent constraints were executed. Importantly, the developed system is adaptable
for application to large-scale infrastructure, such as bridges, dams, and linear networks,
with some necessary modifications expected as part of future work stemming from this
research. Implementation of this methodology requires access to data, analytical tools, and
software, as outlined in Section 5.

5. Research Methodology

To develop the decision support system, criticality is chosen as the central element,
enabling the comprehension of the repercussions of asset failure and the employment of a
method for selecting rehabilitation to uphold the necessary level of service. Nevertheless,
the primary challenge lies in the constraints of limited resources to execute the necessary
rehabilitation. Consequently, the current methodology is divided into three models: (1) crit-
icality model, (2) rehabilitation model, and (3) optimum criticality model. Figure 1 depicts
the methodology of the current research.
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The flow between the three models is clearly illustrated in Figure 2. Upon the addition
of a new asset to the system, its criticality level is determined based on the criticality model
and is subsequently used in the rehabilitation model to identify the necessary rehabilitation
method and cost. These outputs serve as inputs for the optimum criticality model, which
assesses the feasibility of carrying out the rehabilitation in the current cycle, considering
the existing constraints. When maintenance is performed on an asset, the outcome serves
as input to train the Artificial Neural Network (ANN) rehabilitation model. If maintenance
is not feasible in the current cycle, it is deferred to the next cycle, restarting the process
from the beginning.
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5.1. Criticality Model

In the current research, criticality is categorized into five levels: very low, low, medium,
high, and extreme criticality. The assessment of asset criticality relies on the generic asset
group types and the specific impacts of individual assets, as depicted in Figure 3. Asset
groups exhibit varying criticalities, making it unnecessary for the selection of rehabilitation
types (no action, operational, minor maintenance, major maintenance, and replacement) to
be uniform. The second parameter is the specific effects of individual assets, considering
the four categories mentioned in the previous section: (1) economic losses, representing
the value of the asset in providing services and the losses incurred in the surroundings;
(2) operational losses, involving inefficient processes leading to resource wastage; (3) social
impact, such as lower levels of user engagement and satisfaction; and (4) environmental
impact, resulting from the inability to operate in certain areas. It is important to note that
the asset’s location is a crucial factor in determining its criticality. However, this aspect is
encompassed within the four criteria of the current model, and as such, there is no necessity
to introduce it as a new criterion. In practice, during inspections, the asset’s location is taken
into consideration within the existing four criteria to determine its criticality level. The first
parameter, generic, and the second parameter, specific, can be integrated to determine the
final value of the individual asset’s criticality. By multiplying the generic weight (assigned
to asset groups) by the specific score (related to individual assets), the criticality value can
be represented using Equation (1).

Cri (value) = Wk ×
4

∑
j=1

Sij (1)
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Consequently, the criticality level can be determined as follows:

Cri (level) =

(
4 ×

Cri (value) − Cri(min.)

Cri(max.) − Cri(min.)

)
+ 1 (2)

where Cri (value) is the criticality value of asset ith; Cri ∈ /N = {1, 2, . . . . . . , 5}; Cri (level)
is the criticality level of asset ith (rounding to the nearest integer, “1” min. and “5” max.);
Wk is the weight of the asset group; Sij is the score of the specific asset; i is number of an
individual asset (an integer value, “1” to “n”); k is the number of an asset group (an integer
value of “1” to “6”) for structural, mechanical, electrical, safety, equipment, and others (for
educational building); and j is the number of criticality criteria (an integer value of “1” to
“4”) for economic, pperational, social, and environment.
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To implement the criticality model, three sources are utilized: a literature review (as
discussed in the previous section), the author’s expertise and judgment, and maintenance
reports from various facilities. To ensure the maintenance of the building is at an accept-
able level of service and risk, six asset groups are established, involving the identification
process of reviewing tens of maintenance reports related to academic buildings. However,
distinct groupings need to be considered for other infrastructure assets, such as bridges,
roads, dams, and water and sewer networks. The six asset groups identified are structural,
mechanical, electrical, safety, equipment, and others. Examples of these groups are illus-
trated in Figure 2. Logically, the criticality of each group differs from the others, resulting
in distinct criticality values for specific assets compared to others. To ascertain the weights
of the asset groups (Wk), the utilization of a decision-making theory (such as AHP, MAUT,
SMART, etc.) is valuable. Additionally, expert judgment, particularly from maintenance
experts, is essential to derive the ultimate weights for these groups. The examination of
maintenance reports for several buildings serves as a crucial source for identifying the
specific criticality scores of assets (Sij) concerning the four criteria (economic, operational,
social, environment). For instance, the criticality of a light bulb is less than that of a roof.
The resultant criticality level, which is obtained from Equation (2), ranging from “1” to “5”,
is used in the rehabilitation model.
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5.2. Rehabilitation Model

The ultimate rehabilitation method is determined using the Artificial Neural Network
(ANN), and Figure 4 illustrates the structure of the ANN model. Utilizing the ANN for
predicting the necessary rehabilitation action is particularly suitable due to the vast amount
of data that can be used for training and testing, enabling accurate predictions throughout
the useful life of the assets.

Buildings 2024, 14, x FOR PEER REVIEW 7 of 18 
 

of the asset groups (Wk), the utilization of a decision-making theory (such as AHP, MAUT, 

SMART, etc.) is valuable. Additionally, expert judgment, particularly from maintenance 

experts, is essential to derive the ultimate weights for these groups. The examination of 

maintenance reports for several buildings serves as a crucial source for identifying the 

specific criticality scores of assets (Sij) concerning the four criteria (economic, operational, 

social, environment). For instance, the criticality of a light bulb is less than that of a roof. 

The resultant criticality level, which is obtained from Equation (2), ranging from “1” to 

“5”, is used in the rehabilitation model. 

5.2. Rehabilitation Model 

The ultimate rehabilitation method is determined using the Artificial Neural Net-

work (ANN), and Figure 4 illustrates the structure of the ANN model. Utilizing the ANN 

for predicting the necessary rehabilitation action is particularly suitable due to the vast 

amount of data that can be used for training and testing, enabling accurate predictions 

throughout the useful life of the assets. 

 
 

 

 

Figure 4. Predicted rehabilitation method using an ANN. 

The network is divided into five layers. An input layer, three hidden layers, and an 

output layer. Table 1 includes the parameters of each layer. Layer (1) encompasses all as-

sets within the academic building. 

Table 1. ANN layers. 

Node No. 

Layer No. 

L1: 

Asseti 

L2: 

CLoS 

L3: 

TLoS 
L4: Criticality 

L5: 

Rehabilitation Method 

Database 

Inspector Assessment/ 

Questionnaire: 

Building user 

Inspector 

Assessment 
Equation (2) 

ANN 

(Train, Test, and Predict)  

Node 1 Asset 1 1: Very Poor 1: Very Poor 1: Very Low 1: No Action 

Node 2 Asset 2 2: Poor 2: Poor 2: Low 2: Operational 

Node 3 Asset 3 3: Medium 3: Medium 3: Medium 3: Minor maintenance 

Node 4 Asset 4 4: Good 4: Good 4: High 4: Major Maintenance 

Node 5 Asset 5 5: Excellent 5: Excellent 5: Extreme 5: Replacement 

Node….. Asset….     

Node n−1 Asset n−1     

Node n Asset n     
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The network is divided into five layers. An input layer, three hidden layers, and an
output layer. Table 1 includes the parameters of each layer. Layer (1) encompasses all assets
within the academic building.

Table 1. ANN layers.

Node No.

Layer No.

L1:
Asseti

L2:
CLoS

L3:
TLoS L4: Criticality L5:

Rehabilitation Method

Database
Inspector Assessment/
Questionnaire:
Building User

Inspector
Assessment Equation (2) ANN

(Train, Test, and Predict)

Node 1 Asset 1 1: Very Poor 1: Very Poor 1: Very Low 1: No Action

Node 2 Asset 2 2: Poor 2: Poor 2: Low 2: Operational

Node 3 Asset 3 3: Medium 3: Medium 3: Medium 3: Minor maintenance

Node 4 Asset 4 4: Good 4: Good 4: High 4: Major Maintenance

Node 5 Asset 5 5: Excellent 5: Excellent 5: Extreme 5: Replacement

Node. . ... Asset. . ..

Node n−1 Asset n−1

Node n Asset n

The group type is not displayed since criticality is determined at the activity asset
level rather than the group level. When a new asset is added to the database, the model
will determine the predicted action (no action, operational, minor maintenance, major
maintenance, and replacement). Examples within this layer include an electrical distribu-
tion panel, #1 (from the electrical group), a window, #7 (from the structural group), and
an elevator, #5 (from the mechanical group). It is important to note that each asset has a
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unique critical value determined using Equation (2), and Layer (2) comprises the Customer
Level of Service (CLoS), directly derived from user complaints, periodic questionnaires, or
acquired directly by the inspector during regular inspections. The adopted scale ranges
from 1.0 to 5.0, where “1” represents very poor, “2” poor, “3” medium, “4” good, and “5”
excellent service. The third layer is the Technical Level of Service (TLoS), determined by the
technical inspector on a similar scale of 1.0 to 5.0. Again, “1” represents very poor, “2” poor,
“3” medium, “4” good, and “5” excellent service. Layers 2 and 3 may be assessed by the
same inspector in the absence of complaints or a questionnaire during regular inspections.
Additionally, the method of asset inspection varies, ranging from simple visual inspections
to the use of sophisticated and expensive tools (though beyond the scope of this research).
Layer 4 represents the criticality level on a scale from “1” to “5”, determined using Equation
(2). Layer 5 indicates the required rehabilitation action based on five options: (1) no action,
(2) operational, for issues solvable through operational activities, (3) minor maintenance,
(4) major maintenance, or (5) replacement, essential to avoid the criticality. Some assets
necessitate only operational measures, like cleaning, while others may require a combina-
tion of operational actions and replacement, as in the case of fixing a faulty light bulb. For
the majority of assets, their required actions are unknown until the results are obtained,
necessitating the use of software to simulate thousands of scenarios for determining the
most suitable rehabilitation action when dealing with extensive data. A manual solution
may be employed if the organization’s policy dictates the rehabilitation action based on a
What-If Scenario. In this scenario case, three parameters—CLoS, TLoS, and criticality—are
considered, each with five values ranging from 1 to 5. The rehabilitation action is then
determined based on the combination of values from these three parameters, resulting in
(53 = 125) possible combinations that necessitate specific rehabilitation actions. However,
it is important to note that the rehabilitation action is uniform for all asset groups and
individual assets. When considering the six groups of assets, there are (6 × 53 = 750)
combinations, and an infinite number of combinations result when an individual asset is
considered instead of a group of assets. For the current research, NeuralTools 7.5 [4] is
employed to determine the required rehabilitation.

5.3. Optimum Criticality

With budget constraints impacting asset maintenance, identifying rehabilitation prior-
ities through optimum criticality becomes crucial, especially for large-scale infrastructure
assets, like bridges, dams, linear networks, etc., where cost and time constraints are sig-
nificant. However, for facilities, a cost constraint is necessary, and a time constraint is
considered optional. In this research, the objective is to minimize the total criticality value,
which is the sum of criticality values for all assets, under the constraints of the available
budget, with no consideration for time constraints. With budget constraints impacting asset
maintenance, identifying rehabilitation priorities through optimum criticality becomes
crucial. In the case of large-scale infrastructure assets, like bridges, dams, linear networks,
etc., cost and time constraints are significant. However, for facilities, a cost constraint is
necessary, and a time constraint is considered optional. In this research, a time constraint
is not considered. The objective is to minimize the total criticality value, which is the
sum of criticality values for all assets under the constraints of the available budget. The
required data include the criticality value and rehabilitation cost, while the rehabilitation
action is a binary value (Yes/No). Additionally, the emergency budget can be financed
through two sources: a reserved percentage from the available budget, an external fund, or
a combination of both. If a specific percentage is earmarked from the available budget, a
corresponding constraint should be incorporated. Lingo 20 [2] is employed to execute the
optimization model. The objective is defined in Equation (3), and the complete model is
presented below:

Objective : Min TCr =
n

∑
i=1

Cri × Xi ; (3)

Under the following constraints:
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TC = ∑n
i=1 Ci × Xi ; “Total cost of rehabilitation with respect to the constraints”.

AB ≥ TC + EB; “Available budget is less than or equal to the required total cost and the
emergency budget retention”.
@BIN(Xi); “Rehabilitation action: [X = 1, yes] or [X = 0, no]”.
CC = ∑n

i=1 Ci ; “Total cost of rehabilitation without constraints”.
De f = CC − TC; “Deficit cost due to the available budget constraint”.
EB = Y × AB; “Emergency budget expressed as a percentage of the available budget”.
! Criticality Data; Cri = [. . .. . .. . .. . ..];
! Cost Data; Ci = [. . .. . .. . .. . ..];
! Available budget Data, AB = [. . .. . .. . .];
! Emergency Budget percentage Data; Y = [. . .. . .. . .];
End;

It is noteworthy that the available budget for the academic building may be allocated
on a weekly, monthly, or longer basis, limiting the current rehabilitation actions to the scope
of the present budget. Other rehabilitation activities can be deferred to the subsequent
budget cycle.

6. Model Implementation
6.1. Data Assumptions

To apply the developed models, a hypothetical example is introduced (Appendix A)
based on an academic building, taking into account the following considerations:

i. Reviewing several facility maintenance reports from actual and previous studies
to gain a comprehensive understanding of individual assets, maintenance types,
maintenance costs, required levels of services, and maintenance priorities.

ii. Selecting one asset from each of the six asset types to ensure a variety of assets, with
criticalities are easily identifiable. As illustrated in Figure 2, there are six asset groups
(structural, mechanical, electrical, safety, equipment, and others), each further divided
into individual assets. For example, “structure” is a group of assets, while “door1,
door2, . . ., window1, window2, . . .” are individual assets under the structure group.

iii. Choosing thirty assets, with five individual assets from each asset type. It is worth not-
ing that a facility typically includes tens of assets, depending on the facility type and
size. The selection of thirty assets is for the purpose of illustrating the implementation
of the three models (Table 2).

iv. Operating the current system at the asset level, not the component level. For exam-
ple, the HVAC system is considered one asset, without delving into the specifics of
HVAC components.

v. Completion of CLoS and TLoS is depicted in Figure 4, and the objective is to focus on
criticality, while the process, estimating, and calculating CLoS and TLoS are out of the
scope of this research.

Table 2. Asset groups and selected assets.

i Structure i Mechanical i Electrical i Safety i Equipment i Others

1 Roof 1 6 HVAC 1 11 Board 1 16 Extinguisher 1 21 Medical Equipment 1 26 Parking 1

2 window 1 7 Elevator 1 12 Wiring type 1 17 Sprinkler 1 22 Class Furniture 1 27 Plant 1

3 door 1 8 Washroom 1 13 Light 1 18 Smoke Detector 1 23 Lab 1 28 Amenity 1

4 wall 1 9 Boiler 1 14 Switch 1 19 Alarm 1 24 Visual system type 1 29 Waste removal
type 1

5 stair 1 10 Pump 1 15 Breaker 1 20 Fall Protection 1 25 Material type 1 30 Statue 1

6.2. Criticality Model

According to Equation (1), two parameters are necessary to calculate the criticalities of
the thirty assets, which are specified below.
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6.2.1. Asset Group Weight (Wk)

By employing AHP, the weights of the six asset groups are presented in Table 3. Based
on the author’s expertise, the pairwise comparison under the diagonal is filled. A survey
questionnaire administered to experts in this field could enhance the accuracy of the asset
group weights. The remaining calculations were performed using the AHP process [41].

Table 3. Asset Group Weight (Wk) using AHP.

Str. Mec. Elec. Saf. Eq. Oth. Wk λ CR Consistency Check

Str. 1.00 2.00 2.00 0.50 4.00 4.00 0.26 6.29

[ 6.25−6
5 ]

1.24

Mec. 0.50 1.00 1.00 0.50 2.00 1.00 0.13 6.24

Elec. 0.50 1.00 1.00 0.33 2.00 2.00 0.14 6.28

Saf. 2.00 2.00 3.00 1.00 2.00 2.00 0.29 6.39

Eqp. 0.25 0.50 0.50 0.50 1.00 1.00 0.08 6.18

Oth. 0.25 1.00 0.50 0.50 1.00 1.00 0.10 6.14

Sum. = 1.00 Avg. = 6.25 4% CR < 10% OK

The results indicate that safety has the maximum weight, accounting for 29%, while
the other asset group has the minimum weight of 10%. The process is verified concerning
the consistency ratio (CR = 4% < 10%). Thus, the first parameter is obtained.

6.2.2. Asset Score (Sij)

The scores for the 30 assets are directly provided by the experts, which is the author
in this example, utilizing a scale from “1” to “5”. The criticality score of each individual
asset is determined based on the four criticality criteria (economic, operational, social, and
environment) according to Equation (1). Table 4 displays the results of the criticality values
for the 30 assets. These values are then transformed to a scale of 1 to 5, indicating the
criticality level of each asset, according to Equation (2). For instance, the criticality level of
Roof 1 (i = 1) is determined according to the following:

Cr1(value) = W1 ×
4

∑
j=1

S1j = 0.26 × [4 + 3 + 2 + 3] = 3.17 (criticality value)

Hence, Cr1(level) =
(

4 × 3.17 − 0.38
4.91 − 0.38

)
+ 1 = 3.46 = 3.0(criticality level)

The result shows that the criticality of door 1 is medium criticality.

Table 4. Criticality level.

Assets Xi Weight (Wk)
Score (Sij) Criticality Value

(Cri)
Criticality Level

(1–5)Economic Operational Social Enviromental

AHP Expert Judgment Equation (1) Equation (2)

A1: Structure

0.26

Roof 1 X1 4 3 2 3 3.17 3

window 1 X2 2 3 3 4 3.17 3

door 1 X3 1 2 1 2 1.59 2

wall 1 X4 3 3 4 2 3.17 3

stair 1 X5 1 2 2 2 1.85 2
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Table 4. Cont.

Assets Xi Weight (Wk)
Score (Sij) Criticality Value

(Cri)
Criticality Level

(1–5)Economic Operational Social Enviromental

AHP Expert Judgment Equation (1) Equation (2)

A2: Mechanical

0.13

HVAC 1 X6 3 5 3 5 2.07 2

Elevator 1 X7 5 4 2 2 1.68 2

Washroom 1 X8 2 5 5 3 1.94 2

Boiler 1 X9 3 4 4 3 1.81 2

Pump 1 X10 1 5 2 2 1.30 2

A3: Electrical

0.14

Board 1 X11 4 4 2 1 1.50 2

Wiring type 1 X12 2 2 1 1 0.82 1

Light 1 X13 1 3 3 1 1.09 2

Switch 1 X14 2 4 2 1 1.23 2

Breaker 1 X15 1 5 2 2 1.36 2

A4: Safety

0.29

Extinguisher 1 X16 2 3 2 1 2.31 3

Sprinkler 1 X17 5 4 3 3 4.34 4

Smoke Detector 1 X18 4 5 4 2 4.34 4

Alarm 1 X19 3 2 1 1 2.02 2

Fall Protection 1 X20 5 5 5 2 4.91 5

A5: Furniture &
Equipment

0.08

Medical
Equipment 1 X21 3 3 5 2 1.10 2

Class Furniture 1 X22 2 5 3 2 1.02 2

Lab 1 X23 5 5 5 5 1.70 2

Visual system
type 1 X24 2 4 3 1 0.85 1

Material type 1 X25 4 3 4 5 1.36 2

A6: Others

0.10

Parking 1 X26 4 5 5 3 1.63 2

Plant 1 X27 2 2 5 5 1.34 2

Amenity 1 X28 3 2 1 1 0.67 1

Waste removal
type 1 X29 4 5 5 5 1.82 2

Statue 1 X30 1 1 1 1 0.38 1

Cri(min) 0.38 1

Cri(max) 4.91 5

Cri(max − min) 4.53 4

6.3. Rehabilitation Model

NeuralTools 7.5 [1] is employed, as shown in Figure 5, to forecast the rehabilitation
action based on CLoS, TLoS, and criticality. The current network type is a Probabilistic
Neural Network since the current variables are numeric. Door 1 (i = 1), HVAC 1 ((i = 6)),
and Electrical Board 1 (i = 11) are selected to predict the rehabilitation actions, while the
rehabilitation actions for the other 27 assets have already been identified by the manager
and their teams. Additionally, the Customer Level of Service (CLoS), Technical Level of
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Service (TLoS), and the outcomes of the criticality model for the 30 assets are assumed to
be available. A total of 80% of the provided data are utilized for model training, while
the remaining 20% are used for testing. The predicted rehabilitation actions are as follows:
Door 1 requires operational action (result is 2), HVAC 1 requires major maintenance (result
is 4), and Electrical Board 1 requires operational action (result is 2). The final report
indicates that the percentage of failed testing is zero, suggesting that there is no need to
enhance the current model. However, it should be noted that this result is not guaranteed
when hundreds of assets are employed in Layer 1; this outcome may change, necessitating
improvement; for example, changing the type of Net.
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6.4. Optimum Criticality Model

With a constrained monthly budget and a requirement for 30 rehabilitation actions
to maintain the building’s assets for the specific month, optimization becomes essential
to select rehabilitation activities with the highest priorities. In the current scenario, the
available monthly budget is 35,000 USD, the required total cost for all rehabilitation activi-
ties is 55,400 USD, which is estimated according to the rehabilitation activities, and 10%
needs to be reserved for the emergency budget. Additionally, three crucial rehabilitation
activities must be undertaken as per the request of high management: HVAC 1 (i = 6), Fall
Protection 1 (i = 20), and Parking 1 (i = 26). Consequently, X6, X20, and X26 are assigned
a value of “1” when entering the model constraints, as depicted in Figure 6. The model
class employed is Mixed Integer Linear Programming (MILP), as shown in Figure 7. The
objective is to minimize the total criticality of the rehabilitation activities. Considering a
shortfall of (55,400 − 35,000 + 0.1 × 35,000 = 23,900 USD) and factoring in the cost of the
three rehabilitation activities (17,000 USD), there is 14,500 USD available. Following the
execution of Lingo 20.0 (LINDO Systems Inc., Chicago, IL, USA, 2023), the results indicate
that twenty-one rehabilitation activities can be completed, with six actions deferred to
the next month when the new budget becomes available. These deferred assets include
(Stairs 1; i = 5), (Medical Equipment 1; i = 21), (Class Furniture; i = 22), (Visual system type
1; i = 24), (Material type 1; i = 25), and (Waste Removal 1; i = 29). The detailed results are
presented in the solution report (Figure 8). The total criticality value of the 30 assets is 67.
After the rehabilitation of 21 assets, the criticality is expected to decrease to 11. Thus, the
objective is accomplished within the constraints of limited resources.
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7. Practical and Managerial Implications of This Study

While this research introduces a comprehensive decision support system framework
organized into criticality, rehabilitation, and optimum criticality models to manage the
rehabilitation of facility assets, it is pertinent to emphasize the significant practical and
managerial implications of such novel work. Prominent among these implications is im-
proved decision-making, as the decision support system provides a structured framework
for decision-making related to the rehabilitation of facility assets. It incorporates multiple
models, such as the criticality model, rehabilitation model, and optimum criticality model,
which help in assessing the criticality of assets, planning rehabilitation strategies, and opti-
mizing resource allocation. This enables managers to make more informed and data-driven
decisions, leading to improved asset management outcomes. Essentially, utilizing the deci-
sion support system can assist managers in effectively evaluating the criticality of facility
assets. This allows them to prioritize rehabilitation efforts based on the assets’ importance
and potential impact on overall operations. By focusing resources on critical assets, the
decision support system helps improve asset performance, reliability, and longevity. The
novel decision system not only helps in optimizing the allocation of resources for asset
rehabilitation but also considers factors like asset criticality, condition assessment, and
available budget to determine the optimal allocation of finances, labor, and materials.
This helps in maximizing the utilization of available resources and ensuring that they are
allocated to the most important and impactful rehabilitation activities. Another notable
implication of this research is its tendency to ensure cost effectiveness, as the systematic
approach provided by the decision support system can lead to cost savings in the long run.
By accurately assessing asset criticality, planning rehabilitation strategies, and enabling
proactive maintenance, the system helps prevent unexpected failures and costly repairs,
ultimately reducing unplanned downtime, emergency repairs, and associated costs. More
so, the decision support system can help in evaluating the risks associated with facility
assets and their potential failure modes, as managers can accurately identify high-risk as-
sets that require immediate consideration. Accordingly, this approach can help to promote
and safeguard the safety and consistency of facility operations. Overall, the development
of a comprehensive decision support system for managing the rehabilitation of facility
assets brings many practical and managerial benefits, including improved decision-making,
greater asset performance, resource optimization, cost savings, risk management, safety
and reliability, and long-term planning.
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8. Conclusions

In the context of limited resources, the criticality of an asset plays a crucial role
in managing infrastructure assets, establishing a direct connection to both the required
rehabilitation and its priority, thereby becoming a cornerstone for infrastructure asset
management. This paper delves into the significance of criticality in general infrastructure
and specifically for academic buildings. Notably, the developed models exhibit flexibility,
enabling their adaptation to other infrastructure assets, like bridges and roads, with specific
modifications, such as introducing time constraints to the optimization model for optimal
scheduling. The results derived from these models are essential for assisting building
managers in selecting and prioritizing rehabilitation activities based on various factors,
including user complaints, available budget, emergency budget, and urgent requests
from high management. It is important to note that the current research is constrained to a
standard facility with regular assets, such as an academic building, and does not encompass
sophisticated assets designed for specific purposes. The example presented, limited to
only thirty assets out of potentially tens, serves as a practical illustration for implementing
the developed models and obtaining clear results; however, the models exhibit flexibility
and can be applied to a larger scale with hundreds of assets. Furthermore, it is worth
considering future work at the component level, especially for extensive infrastructure
projects like bridges, dams, and linear networks.
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Appendix A

The data presented in this study are purely hypothetical and used for illustrative
purposes only, not derived from actual observations, measurements, or experiments. The
purpose of including hypothetical data is to demonstrate potential outcomes and facilitate
discussions regarding the theoretical aspects of the research. It is important to note that
while the hypothetical data have been constructed to align with the objectives of this study,
they do not represent real-world measurements or empirical findings; the results obtained
from analyzing these hypothetical data should be interpreted within the context of the
theoretical framework and the specific assumptions created for this research.
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