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Abstract: With the advancement of information technology, energy consumption prediction models
are widely used for various types of buildings (office, residential, and commercial buildings) as guid-
ance during the design and management stages. This article will establish an efficient building energy
consumption prediction model for hotel buildings. To achieve this, we collected 78 architectural
drawings of high-rise hotel buildings to establish 6 kinds of typical energy consumption models
in 2 standard floor layouts and 3 public area levels. Then, on this basis, we used the total energy
consumption calculated by EnergyPlus as an indicator to conduct sensitivity analysis on geometric
feature parameters, internal heat source parameters, and thermal parameters, respectively. Finally, we
generated a building database with 5000 samples through the R programming language to calculate
and verify the energy consumption. As a result, it was proved that the energy consumption of hotel
buildings can be predicted accurately, and that quadratic polynomial regression, with the best accu-
racy and stability, is the most suitable optimization model for hotel energy consumption prediction
in Guangzhou. These conclusions provide a good theoretical basis for the analysis, prediction, and
optimization of energy consumption in high-rise hotel buildings in the future.

Keywords: building energy consumption prediction; high-rise hotel buildings; typical building
models; machine learning

1. Introduction

In response to the fast pace of global urbanization, the consumption of fuels is rapidly
increasing, posing significant environmental and social challenges. Notably, the construc-
tion and upkeep of buildings account for over 40% of the world’s total energy usage, with
one-third of total carbon dioxide emissions [1]. Among various types of buildings—offices,
residences, hospitals, and commercial spaces—hotels stand out as significant energy con-
sumers, with significant potential for energy savings. According to Chung’s research,
hotels consume more energy than any other type of building, surpassing even hospitals at
over 45% of energy consumption [2]. In China, Li’s study on the energy consumption of
210 newly built hotel buildings in Shandong Province revealed that approximately 60% of
hotels are non-energy-saving buildings, with air conditioning accounting for 40% to 51% of
total building energy consumption [3].

To effectively manage energy usage in hotel buildings, it is essential to establish an
energy consumption prediction model that can analyze the energy cost of each building’s
behavior. There are two primary methods for creating such models: physical-model-based
methods (also known as white-box approaches) and data-driven methods (also referred to
as black-box approaches).
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Traditional physical-model-based methods often utilize heat conduction to estab-
lish thermal equilibrium equations to estimate building performance, calculate energy
consumption, and conduct the corresponding analyses. Commonly used software for
physical-model-based energy simulations include TRNSYS, eQuest, DeST, EnergyPlus, and
others [4]. In energy prediction, physical-model-based methods require detailed informa-
tion input, such as the physical characteristics of the building, HVAC systems, equipment
information, and occupant schedules [5]. While this extensive database of information
leads to more accurate predictions, it also makes the modeling process and simulation
calculations more complex and time-consuming.

Data-driven methods are based on pre-existing large amounts of historical data, using
mathematical statistics or machine learning methods to extract data features for energy
consumption analysis and prediction. It can be established solely based on a large amount
of research data and can also be further combined with optimization algorithms to form
optimization models. Machine learning (ML) technology has found widespread application
in building analysis, modeling, and prediction [6]. ML algorithms possess self-learning
capabilities and can rapidly identify optimal solutions, making them suitable for complex
nonlinear problems [7,8]. Numerous studies have employed machine learning for building
energy consumption predictions [9,10]. Furthermore, artificial neural networks (ANN) [11],
support vector machines (SVM) [12], and extreme learning machines [13] are also advanced
data-driven methods for building energy prediction and have already been widely applied
in this field.

For the establishment of energy consumption prediction models, the prediction meth-
ods vary according to the type of building and its thermal environment. Currently, there
are numerous studies on other types of buildings, for example, office buildings [14], resi-
dential buildings [15], hospital buildings [16], and commercial buildings [17]. According
to existing research results, there is relatively little research on the energy consumption of
hotel buildings, and most of them only focus on energy monitoring, statistics, and analysis
of existing cases. However, there is a lack of energy consumption prediction models on
energy-saving design for hotel buildings. Based on this situation, this study chooses ma-
chine learning methods and compares various classic algorithms to determine the fastest
and most accurate prediction model for high-rise hotel buildings in Guangzhou.

2. Materials and Methods

Guangzhou, the capital city of Guangdong province in southern China, spans an
area of 7434.40 km2 and lies between 112.8–114.2◦ E and 22.3–24.1◦ N. Characterized by
ample daylight, abundant rainfall, and a prolonged summer season throughout the year,
Guangzhou experiences a typical climate of hot summers and warm winters. This climatic
zone is marked by considerable solar radiation and minimal fluctuations in temperature
and humidity. Given the persistently high temperatures and humidity levels in Guangzhou,
accurately calculating and effectively managing the energy consumption of hotel buildings
in the city is of the utmost importance.

The purpose of this study is to introduce a widely applicable high-rise hotel building
energy consumption model based on existing building information in Guangzhou or other
cities with a similar climate and to validate the feasibility of machine learning methods
for rapid energy consumption prediction. To achieve these goals, a total of 78 sets of
engineering drawings for high-rise hotels were collected, including 10 from Guangzhou,
9 from other parts of Guangdong Province, 31 from other parts of China, and 28 sets
from unknown locations. During the investigation, it was observed that the regional
characteristics of high-rise hotel buildings were not significant, so all cases were analyzed
without distinguishing between regions.

The research process of this study can be divided into four steps: the first step is to
establish a typical high-rise hotel model after an investigation of architectural drawings.
The second step is to perform sensitivity analysis on all input variables, using the SRC
method to determine the parameters that have a significant impact on the EH. The third
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step is to train a total of 14 kinds of models using 11 common machine learning algorithms,
based on typical hotel building models. As a result, by comparing their EH values, the most
optimal model is selected to establish an energy consumption prediction model. The tools
used in each process are described below:

1. Drawing analysis tools—Statistical methods: Statistical methods are essential for
analyzing data and extracting meaningful insights. The box plot method, regression
analysis, cluster analysis, normal tests, and other techniques can be used to process,
analyze, and extract data. Prior to establishing a typical model, it is crucial to conduct
a correlation test analysis on the data samples to ensure the credibility of the final
selected typical values and calculation methods. This step ensures the scientific nature
of the subsequent research and enables accurate representation of the data.

2. Modeling tools—Parametric modeling: After determining the required variables
and their ranges, the Latin hypercube sampling method [18] is used to randomly
generate building models with different combinations of variable values, and the R
programming language [19] is employed to compile the inputs and generate a building
model database that can be put into software for calculations. This step enables
the creation of a comprehensive database of building models that can be used for
further analysis.

3. Sensitivity analysis tool—Standard regression coefficient method (SRC): The SRC
method is used to determine the sensitivity of parameters to EH by calculating
the value of the SRC. The larger the absolute value of the SRC, the greater the im-
pact of the parameters on EH. If the variable’s SRC is negative, this indicates that
the inputs and outputs have a negative correlation [20]. This analysis helps iden-
tify the most significant parameters that have a significant impact on EH, enabling
further optimization.

4. Simulation calculation tool—EnergyPlus [21]: Simulation calculation tools can obtain
more data in a short period of time and can independently change the variables. This
study uses EnergyPlus to simulate and calculate the energy consumption to establish
a database for analysis and training.

5. Machine learning model—Generalized linear model: In statistics, a generalized linear
model is a generalization of an ordinary linear model, which allows independent vari-
ables to influence dependent variables through linking functions, greatly expanding
the available range of linear regression. In this study, 11 common GLM algorithms
are used to train 14 different models. Evaluation indicators are employed to compare
their performance, and the optimal model is selected for accurate prediction.

3. Results
3.1. Typical Hotel Energy Model Establishment

After conducting a statistical analysis of the drawings of hotel buildings in Guangzhou,
the input parameters of typical hotel building models can be classified into four categories:

1. Architectural geographic information;
2. Building energy equipment information;
3. Internal heat source information;
4. Building geometry information.

The first three types of information are determined according to the “Energy Efficiency
Design Standards for Public Buildings” (GB 50189-2015) in China [22], and the specific
types and value ranges are shown in Table 1. The building geometric information is then
summarized, based on the statistical and research results, and a typical building model
is established.

Due to the large number of building feature factors and their interrelationships in this
study, regression analysis is used to reduce the amount of input variables. If the R2 of 1
variable surpasses 0.8, we can use the regression equation to replace this input variable.
With the help of the box plot method and regression analysis statistics, it can be inferred
that the typical high-rise hotel building mode comprises 14 floors of guest rooms and
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4 floors of public areas, giving 18 floors in total. The guest room floors stand at 3.4 m in
height, while the public area floors measure 4.8 m in height, resulting in a total height
of 66.8 m.

Table 1. Thermal parameters and internal heat source factor variables, along with their values.

Variable Range

Lighting power density of a guest room (Wm−2) 5–7

Lighting power density of a guest floor corridor (Wm−2) 2.5–3.5

Guest floor cooling point (◦C) 24–27

Guest floor heating point (◦C) 20–22

Hot water consumption per person (L) 110–140

Energy efficiency ratio of chillers (%) 530–630

North external window heat transfer coefficient (Wm−2 K−1) 2.0–4.0

South external window heat transfer coefficient (Wm−2 K−1) 2.0–4.0

East external window heat transfer coefficient (Wm−2 K−1) 2.0–4.0

West external window heat transfer coefficient 2.0–4.0

North external window heat gain coefficient 0.18–0.44

South external window heat gain coefficient 0.18–0.44

East external window heat gain coefficient 0.18–0.44

West external window heat gain coefficient 0.18–0.44

Solar radiation absorption coefficient of an external wall 0.35–0.8

Heat transfer coefficient of an external wall (Wm−2 K−1) 0.5–1.5

Solar radiation absorption coefficient of the roof 0.35–0.8

Heat transfer coefficient of the roof (Wm−2 K−1) 0.3–0.9

According to our research on the drawings, there are two types of layout methods for
the guest room floors in high-rise hotel buildings: strip layouts and square layouts. These
layout methods can exhibit contrasting characteristics in terms of geometric space, thermal
performance, and other aspects. In both layout methods, guest rooms can be standardized
to the same unit, based on their weighted average area. Therefore, only the average area
of this unit should be considered. For public areas within hotels, the function type and its
corresponding area are counted. The various parameter values of both guest room and
public area floors are presented in Table 2.

For the strip floor plan, the area of the non-temperature-controlled zone can be ob-
tained through regression analysis:

NCAY = RA × RNY × 0.135 + 65.323

where NCAY is the area of the non-temperature-controlled zone in the strip floor plan, RA
is a single room’s area, and RNY is the number of rooms on one side in the strip floor plan.

For the square floor plan, the area of the non-temperature-controlled zone can be
calculated by:

NCAH = [SLH − 2 × (RL + CW)]× [SWH − 2 × (RL + CW)]

where NCAH is the area of the non-temperature-controlled zone in the square floor plan,
SLH is the length of the square floor plan, RL is a single room’s length, CW is the corridor
width, and SWH is the width of the square floor plan.
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Table 2. Typical model parameters for guest rooms in high-rise hotel buildings.

Parameter Value

Width to length ratio of the room (%) 50
Single room area (m2) 40

Single room length (m) 8.94
Single room width (m) 4.47
Guest floor height (m) 3.4
Number of guest floors 14

Number of rooms on one side of a strip plan 10
Number of rooms on the long side of a square plan 8
Number of rooms on the short side of a square plan 2

Corridor width of the guest floor (m) 2.2
Area ratio of the window to the wall (%) 34

Square floor length (m) 35.76
Square floor width (m) 31.22
Square floor area (m2) 1116.42
Strip floor length (m) 58.05
Strip floor width (m) 20.08

Square guest floor area (m2) 1165.64

Out of the 78 drawings analyzed in this study, 59 drawings contain public area infor-
mation, and 49 drawings provide detailed introductions to the public areas. By dividing
the frequency of each function type of public area into 25% units, we can classify them
into four levels. The first three levels are set in descending order of frequency, while those
falling below 25% are considered special values and are excluded from the calculation. The
statistical results are presented in Figure 1. In the various designs, the areas of the public
spaces range from 400 to 6000 m2, making it challenging for a single value to completely
cover the different levels of public areas in hotel buildings. Therefore, the area of a public
space is counted separately, according to the corresponding function. The statistical results
are then classified according to their levels, as shown in Table 3.
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Table 3. Area of each functional space of the hotel.

Area of L3 (m2) Area of L2 (m2) Area of L1 (m2)
Lobby 1597.5 951.0 433.4
Office 1238.6 461.3 99.5

Restaurant 3026.2 1314.9 439.7
Media Hall 1211.6 676.8 230.2

Meeting Room 799.8 309.2 -
Commercial 554.9 169.5 -

Bathing 577.7 220.8 -
Fitness 173.3 - -

Hairdressing 92.9 - -
Bar 466.0 - -

Kitchen 1008.7 526.0 199.9
Total 3246.9 1367.8 601.1

Non-temperature-controlled area 606.0 301.6 177.4

Other research on typical building models has shown that the spatial location of
public areas has no significant impact on EH when the area is fixed [23,24]. Therefore,
after determining the area, the high-rise hotel podium model can be simplified into simple
geometric shapes. According to statistics, the width-to-length ratios of strip and square
layout podiums are 30% and 80%, respectively.

In summary, a typical building model can be established as having a north-south
orientation, a total of 18 floors, and a total height of 66.8 m. There are 308 guest rooms,
each with an average area of 40 square meters and an aspect ratio of 2:1. There are 20 guest
rooms on each floor, and the corridor width is 2.2 m. Within each guest room, the bathroom
area of 8 m2 accounts for 20% of the total area. For the strip layout model, there are 10 guest
rooms on the north and south sides, divided by the service area in the middle. For the
square layout model, there are 2 guest rooms on the short side and 8 guest rooms on the
long side, with a service area in the middle as well. The ratio of the window-to-wall area
(RWR) for the guest room floor is set at 34%, while for public areas, the average RWR value
is set at 67%, based on the statistical data. The typical geometric models of two types of
high-rise hotels are shown in Figure 2.
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3.2. Sensitivity Analysis

On the basis of the typical hotel building model, EH can be calculated via EnergyPlus.
After that, we can use EH as a metric for conducting sensitivity analyses of the various
parameters, including geometric feature parameters, internal heat source parameters, and
thermal parameters, to verify their influence. Initially, we assume that the relationship
between this parameter and building energy consumption conforms to a linear model,
and then use the standardized regression coefficient (SRC) to determine the fitting effect.
The sensitivity of parameters to energy consumption can be determined by the absolute
value of the SRC, and the larger the absolute value, the more important the parameter is. A
positive value indicates a positive correlation between the parameter and the model output,
while a negative value indicates the opposite.

As the calculation results are extensive, the R programming language was used to
compile and calculate the standard regression coefficients for each parameter. The specific
code segments are provided in Appendices A and B, and the calculation result is shown in
Figure 3.
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Parameters with an SRC greater than 0.5 are considered to have a significant impact
on the total energy consumption of the building, as follows:

1. Geometric feature parameters: Total number of floors (FN), number of rooms on one
side (RNP, LRNQ, SRNQ), area of a single room (RA), temperature-controlled area of
public space (CAH), area ratio of the window to the wall (GWR), and the height of
public areas (PH);

2. Internal heat source parameters: Energy efficiency ratio of chillers (COPn), hot water
consumption (DHW), boiler efficiency (BTE), and guest floor setting for temperature
in summer (STG);

3. Thermal parameters: North external window heat transfer coefficient (Un), east exter-
nal window heat gain coefficient (SHGCe), heat transfer coefficient of the roof (KR),
and heat transfer coefficient of an external wall (KE).

From this, it can be concluded that focusing on the parameters listed above during
the design and management stages of high-rise hotel buildings in Guangzhou and the
surrounding areas can effectively improve the efficiency of energy usage.

3.3. Parametric Prediction Model

The process of establishing an energy consumption prediction model based on machine
learning methods can be briefly described according to the steps shown in Figure 4 [25].
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Figure 4. Steps for establishing a building energy consumption prediction model.

The establishment of a machine learning model requires a large amount of input
data. In this study, a method employing the computer batch generation of models was
used to construct an input database. While generating hotel building models in bulk,
based on the sensitivity analysis results given above, those parameters having a significant
impact on the result were designated as variables, while other input parameters with little
impact were replaced by constants. The geometric parameters were derived from the
typical hotel building model, while the thermal and internal heat source parameters were
calculated using benchmark values, and the meteorological data were taken from the typical
annual meteorological parameters of Guangzhou. The quantitative values and ranges are
shown in Table 4. Given the numerous input data categories and diverse dimensions,
variations between variables could potentially impact the outcomes of certain learning
model calculations. To eliminate these effects and ensure comparability, we utilized the
StandardScaler tool from the Sklearn package to preprocess the data.

Table 4. Variables and quantitative parameters of the energy consumption prediction model database.

Parameter Category Parameter Name and Unit Value or Range

Geometric variable
parameters

Height of public area (m) 3.4–6
Total number of floors 8–24

Area of a single room (m2) 20–60
Number of rooms on one side 8–40

Temperature-controlled area of a public
space (m2) 619–4111

Area ratio of window to wall (%) 10–90

Geometric quantitative
parameters

Area ratio of window to wall in a guest floor (%) 24
Corridor width of a guest floor (m) 2.2

Guest floor height (m) 3.4
Width-to-length ratio of the room (%) 50

Building orientation (angle from north) 0
Area ratio of the north-south window to the wall

in a public area (%) 68

Area ratio of the east-west window to the wall in
a public area (%) 68

Internal heat source
variable parameters

Guest floor cooling point (◦C) 24–28
Hot water consumption per person (L) 110–140
Energy efficiency ratio of chillers (%) 540–630

Boiler efficiency (%) 80–98

Internal heat source
quantitative parameters

Guest floor heating point (◦C) 22
Lighting power density of a guest floor

corridor (Wm−2) 5

Lighting power density of a guest room (Wm−2) 7
Lighting power density of a public area (Wm−2) 10

Public area cooling point (◦C) 22
Public area heating point (◦C) 18
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Table 4. Cont.

Parameter Category Parameter Name and Unit Value or Range

Thermal variable
parameters

North external window heat transfer
coefficient (Wm−2 K−1) 1.8–4.0

East external window heat gain
coefficient (Wm−2 K−1) 0.18–0.44

Solar radiation absorption coefficient of an
external wall 0.35–0.8

Solar radiation absorption coefficient of the roof 0.35–0.8
Heat transfer coefficient of the roof (Wm−2 K−1) 0.3–0.8

Thermal quantitative
parameters

South external window heat transfer
coefficient (Wm−2 K−1) 3.0

West external window heat transfer
coefficient (Wm−2 K−1) 3.0

East external window heat transfer
coefficient (Wm−2 K−1) 3.0

Heat transfer coefficient of an external
wall (Wm−2 K−1) 1.50

South external window heat gain
coefficient (Wm−2 K−1) 0.44

West external window heat gain
coefficient (Wm−2 K−1) 0.44

North external window heat gain
coefficient (Wm−2 K−1) 0.48

According to Table 4, there are 15 types of variables and 20 types of fixed-value data
constructing the database. To guarantee the convergence of the calculation outcomes, the
sampling frequency was set to 2500 times for each of the strip and square layout models. In
total, 5000 energy consumption prediction models generated by random combination sam-
pling were inserted into EnergyPlus for energy consumption simulation. After collecting
the energy consumption (EH) data via the R programming language, the results indicate a
normal distribution with no evident outlier data. The specific outcomes are as follows:

For the strip layout hotel model, the EH ranges from 93.14 to 153.60 kWhm−2, mainly
distributed between 113.82 and 127.10 kWhm−2, with a mean of 120.67 kWhm−2, a me-
dian of 120.24 kWhm−2, and a standard deviation of 9.68, as illustrated in Figure 5a. For
the square layout hotel model, the EH ranges from 111.94 to 152.23 kWhm−2, mainly dis-
tributed between 123.94 and 133.38 kWhm−2, with a mean of 128.74 kWhm−2, a median of
128.38 kWhm−2, and a standard deviation of 6.74, as displayed in Figure 5b.
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At this point, the preliminary work of data collection and organization, data processing,
and variable screening has been completed. Moving forward, appropriate modeling
methods will be determined to refine and train the prediction model, followed by the
relevant evaluation and validation. We selected 14 common machine learning models
and used 5000 sets of generated models as the input dataset. The k-fold cross-validation
method (k = 10) was used to calculate and predict the EH. The average and variance from
ten training sessions were calculated to compare the generalization and stability of different
models, enabling us to identify the optimal model. Table 5 presents the results. After
comparison, it can be inferred that for both datasets, the predictive performance of each
model exhibits a similar trend. Among them, the R2 of quadratic polynomial regression is
above 0.95, and the variance is less than 0.01. Considering its accuracy and stability, this
model was selected. The relationship between the calculated and predicted values is shown
in Figure 6.

Table 5. R2 and variance for predicting total energy consumption per unit area.

Model Code
Strip Layout

Method Model
Square Layout
Method Model

R2 Variance R2 Variance

Polynomial regression PR1 0.93 0.008 0.9 0.014
Quadratic polynomial regression PR2 0.96 0.004 0.95 0.008

k-Nearest neighbors KNN 0.309 0.048 0.567 0.026
Regression decision tree CART 0.436 0.069 0.692 0.036

Elastic network regression EN 0.744 0.018 0.781 0.021
LASSO regression LASSO 0.768 0.021 0.77 0.021
Linear regression LR 0.93 0.009 0.899 0.014
Ridge regression RIDGE 0.93 0.009 0.899 0.014

Gradient boosting AB 0.749 0.026 0.837 0.015
Gradient boosting nearest neighbors ABKNN 0.151 0.072 0.497 0.05

Random forest regression RFR 0.795 0.023 0.875 0.009
Extreme random tree regression ETR 0.814 0.018 0.887 0.01

Gradient boosting regression tree GBR 0.903 0.008 0.921 0.008
Gradient boosting regression ABLR 0.929 0.009 0.893 0.012
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To verify the accuracy of the prediction model, we designated the prediction values
from the typical hotel building model as the benchmark for E0 and compared them with
the EH from the prediction model. A comparison of the results is presented in Table 6.
From the table, it is evident that the bias falls within the range of 2.38% to 8.11%, which is
considered acceptable.

Table 6. Comparison of the prediction and simulated calculation values.

Model Name EH (kWhm−2) E0 (kWhm−2) Bias

Square L1 131.004 121.18 −8.11%
Square L2 136.01 126.54 −7.48%
Square L3 145.05 148.59 2.38%
Strip L1 108.164 116.14 6.76%
Strip L2 125.594 122.87 −2.95%
Strip L3 136.85 141.48 2.94%

To further validate the accuracy and practicality of the prediction model, we compared
the EH from actual hotel projects (both strip and square layouts) with the prediction model.
Prior to using EnergyPlus to calculate the energy consumption of the actual hotel project,
we used the OpenStudio plugin in SketchUp to establish the geometric model according to
the architectural drawings. We then inputted the internal heat source parameters, thermal
parameters, and energy equipment parameters according to the drawings and used the
meteorological parameter file in Guangzhou for simulation. As a result, it was calculated
that the EH from an actual strip layout hotel building project was 152.87 kWhm−2, and the
prediction value was 135.67 kWhm−2, resulting in a bias of 11.25%. The EH from an actual
square layout hotel project was 157.48 kWhm−2, and the predicted value was 148.87 kWhm−2,
resulting in a bias of 5.59%.

From the comparison results, it can be inferred that despite a minor bias between the
prediction model and the actual project, considering such factors as special equipment
and actual personnel activities, the bias remains within an acceptable range. This suggests
that the prediction model demonstrates good predictive capabilities and can accurately
facilitate the numerical analysis of hotel energy consumption.

4. Discussion

Currently, due to the absence of straightforward and efficient rapid evaluation tools, it
is challenging to predict and analyze the energy consumption of high-rise hotel design at a
data level. To address this issue, a hotel building prediction model was developed using
software like the R programming language, EnergyPlus, SketchUp, and more, based on the
machine learning approach. This model aids in accurately predicting thermal performance
at various stages of high-rise hotel building design and management.

However, it is important to note that this model still faces some limitations that need
to be addressed:

1. While establishing the typical model for public areas, the differences in energy con-
sumption characteristics of all functional public areas were not considered. According
to Gu’s research [26], the energy consumption of hotels is mainly related to their
individual architectural characteristics and service levels. In the future, more practical
surveys and research will be conducted and combined with actual situations.

2. In high-rise hotel buildings, there are differences in the external meteorological en-
vironment between floors and rooms, due to differences in vertical height. In other
words, when the building layout, orientation, and indoor thermal environment are
consistent, the energy consumption of rooms will also be different.

3. The energy consumption prediction model established in this article is only applicable
to the Guangzhou area. For hotels in different regions, the research scope could be
further expanded. Therefore, in-depth analysis and exploration can be conducted based
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on the local climate to provide relevant guidance for hotel building design within each
climate zone.

4. At present, many hotel buildings have adopted new energy-saving methods, such
as variable enclosure structures, adaptive control systems, and production capacity
systems. It is hoped that in future research, the effects of various energy-saving methods
can be analyzed.

5. Conclusions

In summary, the establishment of an energy consumption prediction model for high-
rise hotel buildings can be divided into the following three steps:

Firstly, we collected and analyzed 78 sets of drawings of high-rise hotel buildings and
identified 2 common forms of guest floor layout, the strip and square, along with 3 public
area levels. Therefore, in total, six kinds of typical geometric models of high-rise hotel
buildings were generated.

Secondly, based on typical geometric models, the standard regression coefficient (SRC)
method was used to conduct a sensitivity analysis of the geometric feature parameters,
internal heat source parameters, and thermal parameters, respectively. After statistical
analysis, those parameters with a significant impact on the EH were obtained.

Finally, a database with a sample size of 5000 was established and divided using
k-fold cross-validation. With a target value of EH, 14 kinds of common machine learning
algorithms were compared for their learning and modeling performance. As a result, the
quadratic polynomial regression model was determined to be the best energy consumption
prediction model for high-rise hotel buildings in Guangzhou and other regions with similar
climate characteristics, and the relevant validation was conducted.

The results show that the energy consumption values of high-rise hotel buildings can
be predicted with great accuracy, and machine learning is a very effective method for this
type of prediction. Moreover, the machine learning method can be an important guide for
heating and cooling engineers when selecting the most appropriate and efficient heating
and cooling equipment at the hotel design stage since it is now possible to model energy
consumption systems with minimum data input.
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Appendix A

Code for reading calculation results in the R programming language:

setwd (“D:/R”)
tempmatrix <- matrix (0,nrow=4,ncol=7)

for (i in 1:4){
resultcsv <- paste (‘hotelyi/YiFan’, i,‘_2022-05-11 150039Table.csv’,sep=‘’)
ncol <- 20
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if (file.exists (resultcsv)){
latin <- read.csv (resultcsv, fill=TRUE, colClasses=‘character’, blank.lines.skip=FALSE,
col.names = paste0 (‘V’, seq_len (ncol)), header=FALSE)
dim (latin)

mean_cooling <- as.numeric (latin [51,3])/as.numeric (latin [42,3])
mean_HVAC <- as.numeric (latin [104,3])
mean_lighting <- as.numeric (latin [103,3])
mean_euqipment <- as.numeric (latin [105,3])
mean_hotwater <- as.numeric (latin [105,7])

tempmatrix[i,1] <- i
tempmatrix[i,2] <- mean_cooling
tempmatrix[i,3] <- mean_HVAC
tempmatrix[i,4] <- mean_lighting
tempmatrix[i,5] <- mean_euqipment
tempmatrix[i,6] <- mean_hotwater
tempmatrix[i,7] <- hotwater+mean_lighting+mean_HVAC

}
}

colnames (tempmatrix) <- c (“Number”,“Cooling”,“HVAC”,“lighting”,“equipment”,
“hotwater”,“addup”)
write.csv (tempmatrix, ‘result.csv’, row.names=TRUE)

Appendix B

Code for sensitivity analysis with the R programming language

indata <- read.csv (‘inputnew-yi01.csv’,header = TRUE,sep=“,”)
outdata <- read.csv (‘resultyi01-hotwater.csv’,header = TRUE,sep=“,”)
dim (indata);names (indata)
dim (outdata);names (outdata)

## define inputs and outputs
newx <- indata[,c (2:14)]#inputs
newy1<- outdata[,2] #cooling
newy2<- outdata[,3] #HVAC
newy3<- outdata[,4] #lighting
newy4<- outdata[,6] #hotwater
newy5<- outdata[,7] #Total add up
names (newx) <- c

alldata1<- cbind (newx,newy1)
alldata2<- cbind (newx,newy2)
alldata3<- cbind (newx,newy3)
alldata4<- cbind (newx,newy4)
alldata5<- cbind (newx,newy5)

library (sensitivity)
##Standardized Regression Coefficient

sensrc1<- src (newx,newy1)##run SRC method
print (sensrc1)##show results
plot (sensrc1)##plot results
abline (h=0,col=“red”)##plot a zero line
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##Standardized Regression Coeffiennts with 2000 times bootstrap
##therefore the results will have the distributions,not only point estimate
sensrcbs1<- src (newx,newy1,nboot=2300)##run SRC
print (sensrcbs1)
windows ()##open a new window for plotts
plot (sensrcbs1)
abline (h=0,col=“red”)

sensrc2<- src (newx,newy2)##run SRC method
print (sensrc2)##show results
plot (sensrc2)##plot results
abline (h=0,col=“red”)##plot a zero line
##Standardized Regression Coeffiennts with 2000 times bootstrap
##therefore the results will have the distributions,not only point estimate
sensrcbs2<- src (newx,newy2,nboot=2300)##run SRC
print (sensrcbs2)
windows ()##open a new window for plotts
plot (sensrcbs2)
abline (h=0,col=“red”)

sensrc3<- src (newx,newy3)##run SRC method
print (sensrc3)##show results
plot (sensrc3)##plot results
abline (h=0,col=“red”)##plot a zero line
##Standardized Regression Coeffiennts with 2000 times bootstrap
##therefore the results will have the distributions,not only point estimate
sensrcbs3<- src (newx,newy3,nboot=2300)##run SRC
print (sensrcbs3)
windows ()##open a new window for plotts
plot (sensrcbs3)
abline (h=0,col=“red”)
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