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Abstract: Visual inspection of the workplace and timely reminders of unsafe behaviors (e.g, not
wearing a helmet) are particularly significant for avoiding injuries to workers on the construction
site. Video surveillance systems generate large amounts of non-structure image data on site for
this purpose; however, they require real-time recognition automation solutions based on computer
vision. Although various deep-learning-based models have recently provided new ideas for iden-
tifying helmets in traffic monitoring, few solutions suitable for industry applications have been
discussed due to the complex scenarios of construction sites. In this paper, a fast and robust network
based on a mutilscale Swin Transformer is proposed for safety helmet detection (FRSHNet) at con-
struction sites, which contains the following contributions. Firstly, MAE-NAS with the variant of
MobileNetV3’s MobBlock as a basic block is applied to implement feature extraction. Simultaneously,
a multiscale Swin Transformer module is utilized to obtain the spatial and contexture relationships
in the multiscale features. Subsequently, in order to meet the scheme requirements of real-time
helmet detection, efficient RepGFPN are adopted to integrate refined multiscale features to form a
pyramid structure. Extensive experiments were conducted on the publicly available Pictor-v3 and
SHWD datasets. The experimental results show that FRSHNet consistently provided a favorable
performance, outperforming the existing state-of-the-art models.

Keywords: construction site; MobBlock; mutilscale Swin Transformer; helmet detection

1. Introduction

Safety helmets are an important labor protection tool in industrial production areas
such as construction and manufacturing, and they are widely used and very important [1,2].
However, in real-world scenarios, such as of construction sites or factory assembly lines,
many workers still ignore the importance of safety helmets. Simultaneously, because of
insufficient corporate supervision, there are countless safety accidents caused by workers
entering a site without wearing safety helmets [2]. Therefore, the automatic identification
of safety helmets plays a vital role in safe production. By conducting real-time supervision
of construction sites, we can sound the alarm for worker safety, while improving worker
safety awareness and reducing the occurrence of safety accidents.

In past decades, numerous methods have been presented for the recognition of safety
helmet tasks [1,3–5]. Early methods mainly locate safety helmets and workers using sensor
and visual attributes (i.e.g, texture, spectral, and structure). Sensor-based helmet detec-
tion methods usually adopt Radio Frequency Identification (RFID) [6] tags and readers,
e.g., Kelm et al. [4] considered the use of RFID to monitor personnel personal protective
equipment [7] compliance. However, the operating range of the RFID reader is an important
limiting factor when monitoring safety helmets worn by workers. Visual-attribute-based
helmet detection mainly applies machine-learning-based object recognition technologies.
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A color-based hybrid descriptor [1] consisting of color histograms [8], hu moment invari-
ants [9], and local binary patterns [10] is presented to claim the feature maps of helmets
with different colors (red, yellow, and blue). Subsequently, a hierarchical support vector
machine [11] was built to finely classify all of the feature maps into four types of classes
(i.e., non-helmet, blue-helmet, yellow-helmet, and red-helmet), thereby achieving a higher
accuracy and reliability when processing complex data. Nevertheless, they are heavily
dependent on the level of feature design and cannot transfer high-level semantic data.

With the development and progress of computer vision technology in recent years,
it has been proven that a series of deep learning methods is very effective at the target
recognition of large computer vision datasets—for example, Faster RCNN, the well-
known YOLO series [12–14], the Single Shot Multibox Detector (SSD) [15], CornerNet [16],
CenterNet [17], and Transformer [18]. However, most approaches are focused on some
public data sets with relatively large targets. When identifying an unsafe action while not
wearing a safety helmet at a construction site, there may be different visual sizes (small size)
of helmets, owing to the different postures of worker and the diversity of safety helmet
colors (red, yellow, and blue), see Figure 1, resulting in a low accuracy and high false
recognition. For helmet detection, the hybrid deep learning model [19] was applied to
combine the convolution neural network (CNN) and the long short-term memory [20].
The SSD-MobileNet algorithm [21] was learned on a dataset containing 3261 images of
safety helmets collected from two sources to extract the features of helmets with different
colors (red, yellow, and blue). Yu et al. [2] introduced a large-scale, encompassing, and
high-quality dataset intended for safety clothing and helmet detection, which adopted
some classic object detection methods to verify its effectiveness. However, these classic
object detection methods often only focus on the extraction of low-level or high-level
features, while ignoring the organic integration between the two, which may affect the
reliability and generalization ability of the detection results. Meanwhile, the industry needs
to pursue high-performance object detection methods with real-time constraints. To strike
the balance between speed and performance, Xu et al. [22] proposed a new detector called
DAMO-YOLO, which extends from YOLO but with more new techs, consisting of MAE-
NAS backbones, RepGFPN neck, ZeroHead, AlignedOTA and distillation enhancement.
Inspired by previous studies, we aim to achieve a fast and accurate helmet detection method
via using the respective advantages of Transformer and DAMO-YOLO.

Figure 1. Some examples of safety helmet detection using the SHWD dataset. Note that the helmet
comes in different colors.
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In this paper, we present a new helmet detection method for promoting the real-time
supervision of construction sites. In particular, the contributions are three-fold: (1) We
present a fast and robust safety helmet network (FRSHNet) based on mutilscale Swin
Transformer for safety helmets to discern the helmet regions of the complex scenarios on
the construction site. (2) The Multiscale Swin Transformer (MST) is used to fully extract the
available spatial and contextual information in the feature map for each branch of MAE-
NAS feature extractor, and efficient-RepGFPN is applied to integrate refined multiscale
features to form a pyramid structure. (3) The proposed FRSHNet demonstrates an excellent
performance using the publicly available Pictor-v3 and SHWD datasets with the highest
mAP of 96.30% and 94.70%, respectively.

The rest of the paper is organized as follows. Section 2 introduces a robust helmet
detection network for carrying out real-time supervision of the construction sites. Section 3
validates the recognition performance of the proposed method across two datasets, and fi-
nally, Section 4 draws the conclusions.

2. Methods

This section describes a fast and robust safety helmet detection network (FRSHNet)
for carrying out real-time supervision of construction sites. Our FRSHNet consists of three
main components: (i) Feature extraction based on MAE-NAS; (ii) feature fusion based on a
multiscale Swin Transformer and efficient-RepGFPN; and (iii) loss function. The overall
procedure of our FRSHNet is shown in Figure 2.
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Figure 2. Flowchart of the proposed helmet detection framework. It denotes images acquired from
the monitoring system at time t, and Ft is a group of multiscale features Ft. MobBlock is a variant of
the MobileNetV3 module [23]. The task projection layer only contains a linear layer for regression
and a linear layer for classification.

2.1. Feature Extraction Based on MAE-NAS

In a real-world scene at the construction site, we usually need to monitor on-size
personal in real time to detect whether they are wearing safety helmets. Previously, in real-
time scenarios, researchers depended on the Flops-mAP curve as an easy way to assess
the model performance. However, the relationship between the flops and latency of
the model was not necessarily consistent. Responding to the principle of latency–MAP
curves, DAMO-YOLO proposed that MAE-NAS had the optimal network under different
latency budgets.

Let It ∈ ℜH×W×3 represent the image obtained from the monitoring system at time t.
Because they are affected by the worker’s posture, the relative position and shape of the
helmet vary greatly. Therefore, we use the MAE-NAS backbones under DAMO-YOLO with
different scales to extract basic block. Then, a set of multiscale features Ft of It are extracted
by the outputs of MobBlocks. As shown in Figure 1, the depths of the three MobBlocks
from top to bottom are 96, 128, and 384.
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2.2. Feature Fusion Based on the Multiscale Swin Transformer and Efficient-RepGFPN

When the visibility complexity of a construction site is generated by multiple di-
mensions, including intricate construction equipment, workers’ postures and positions,
and wearing helmets of different colors and sizes, the performances of helmet detection can
be upgraded using the relationships between the worker and helmet [24,25]. In the studies
of [26,27], the effectiveness of the Transformer based on the self-attention mechanism when
modeling various temporal and spatial position relationships was confirmed. However,
when the transformer was applied to vision tasks, its internal spatial self-attention op-
erations led to a significant increase in computational complexity. To this end, the Swin
Transformer [18] proposed a novel windowing strategy that grouped the spatial dimen-
sions of the input into multiple non-overlapping windows. In this way, the model only
needs to calculate spatial self-attention within each local window, rather than in the entire
input space. In response to the above observations, we first integrate the multiscale Swin
Transformer module in the feature map of each branch of the MAE-NAS feature extractor,
as shown in Figure 3 , to fully leverage spatial positions.
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Figure 3. The network architectures of the proposed approach.

Concretely, a patch splitting module was first applied to each feature of the multi-level
features Ft to finely extract compact non-overlapping patches. This process ensures that
each patch contains meaningful semantic information and is treated as an independent
“token”. Next, to better process these extracted patches, each patch was transformed
through a linear embedding layer. This embedding process enabled each patch to easily be
projected to any output dimension, providing greater flexibility for subsequent processing.
Subsequently, in order to capture complex patterns and relationships at different scales,
three tokens were separately inputt to the Swin Transformer block, which consisted of
different layers of (shifted) window-based multi-head self attention ((S)W-MSA) and multi-
layer perceptron blocks. The advantage of SW-MSA is that it can weigh information at
different spatial positions and scales using a weight adjustment mechanism, so the model
can adaptively focus on different information sources according to the actual requirements.
When calculating MSA, each head is defined as:

Att(Q, K, V) = σ(
QKT
√

d
+ B)V (1)

where σ(·) denotes the SoftMax function. Q, K, and V are the core query, key, and value
matrices, respectively. The size of these three matrices is pt2 × d, where d is the channel
dimension of the query and key, which determines the number and complexity of fea-
tures that the model can handle; pt2 represents the numbers of patches in each window,
which is crucial for determining the spatial and context relationship of feature information.
B ∈ ℜpt2×pt2

denotes a relative position bias [18]. In the standard (S)W-MSA, Q, K, and
V originate from the same input sequence. The design allows the model to pay different
levels of attention to different parts of the input sequence and provide them different
weights. In our MSA, Q mainly comes from the corresponding local information f w

j from
each window at a multiscale feature map, and K and V are directly from the token itself.
The new design allows the model to simultaneously consider information from features at
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different scales and original labels when calculating self-attention. Strictly, for each layer l,
we can define our MSA as follows

MSA( f w
j,(l−1), Tj) = Concat(head1, ..., headh)Wo (2)

headk = Att( f w
j,(l−1)W

q
j , TkWk

j , TkWv
j ) (3)

where Wq
j , Wk

j , Wv
j ∈ ℜpt2×512, and Wo ∈ ℜĥd×pt2

denote the linear projection matrices that

take an input vector and map it to another space using a linear transformation, and ĥ is the
number of attention heads in a window.

The feature pyramid network aims to perform down-sampling and up-sampling
operations on images at different levels, obtain feature maps of different scales, and fuse or
cascade these feature maps for subsequent task processing [28]. This has proven to be a
critical and effective part of object detection [28,29]. To meet the scheme requirements of
real-time target detection—Xu et al. [22] proposed a new efficient RepGFPN that can control
the same dimension of the shared channels for each scale feature map under the constraints
of limited computational costs, and enhance the feature interaction through queen-fusion.
Therefore, after obtaining refined features Ft, we use efficient-RepGFPN to fuse the feature
maps of different scales into channels of different sizes as the output features.

2.3. Loss Function

In the training stage, we adopted the distribution focal loss (LDFL) and GIOU (General-
ized Intersection over Union) loss (LGIOU) for regression supervision, the quality focal loss
(LQFL) for classification supervision. The loss function (Lhelmet) of FRSHNet is described as

Lhelmet = αLDFL + βLGIOU + ηLQFL (4)

where the hyperparameters α, β, and η quantify the contribution of each helmet, respec-
tively. The inference detail of the proposed FRSHNet for a safety helmet detector is
summarized in Algorithm 1.

Algorithm 1: A Fast and Robust Safety Helmet Network Based on Mutilscale
Swin Transformer

Input: The input images Iinput ∈ ℜH×W×3.
Output: The bounding box with a score for helmet.

1 ▷ Feature extraction based on MAE-NAS.
2 Obtain the multiscale features Ft using MAE-NAS with variant MobileNetV3’s

MobBlock.
3 ▷ Feature Fusion Based on Multiscale Swin Transformer and

Efficient-RepGFPN.
4 Obtain a token by a patch splitting module.
5 Compute SW-MSA by Equations (1)–(3).
6 Pyramid structure formed by efficient-RepGFPN.
7 ▷ Loss function.
8 In the training stage, calculate total loss by equation (4).

3. Experimental Results and Discussions

In this section, we consider the proposed FRSHNet and verify its feasibility through
experiments. Specifically, we first identify and select a series of representative experimental
data sets. Then, implementation details are presented and state-of-the-art models are
benchmarked. Finally, we provide a detailed performance analysis of the comparison and
ablation experiments.
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3.1. Datasets

In our experiments, to effectuate the theoretically feasible goals of FRSHNet,
we deliberately selected the Pictor-v3 [30] and SHWD [31] datasets, and carried out
validation experiments.

• Pictor-v3 is a multi-source dataset specifically for helmet detection that fuses images
from crowdsourcing (698) and web mining (774). Among these images, the crowd-
sourced image contained 2496 worker instances, while the web-mined image contained
2230 worker instances.

• SHWD is a public dataset of safety helmet use and head detection, consisting of 7581
high-resolution images. In the SHWD dataset, 9044 safety helmet human subjects were
labeled as positive, and 111,514 normal head subjects were labeled as not wearing a
helmet or as negative samples.

3.2. Evaluation Criteria

In the helmet detection task, we used the recall, precision, and average precision of
each category (i.e, safety helmet or no safety helmet) to evaluate the performance of the
proposed method. The recall and precision could comprehensively reflect the detection
accuracy and completeness of a helmet detector, respectively. The recall and precision rates
are defined as follows:

Recall =
Ntp

Ntp + N f n
(5)

Precision =
Ntp

Ntp + N f p
(6)

where Ntp denotes the number of true positives (TPs) that correctly detect the helmet,
which measures how accurately the algorithm identifies real helmets. N f p represents the
number of false positives (FPs), that is, instances where the algorithm mistakenly believes
that a helmet is present. Ntp + N f n denotes the total number of all of the ground truth
values. It is worth noting that Ntp and N f p will vary depending on the setting of the
confidence threshold. In order to more comprehensively evaluate the performance of the
model, we use a 2D curve (i.e., the precision-recall curve (PRC)) for visualization. On PRC,
the abscissa represents the Recall, while the ordinate represents Presision. The average
precision is not simply the average of all precision values, but it is calculated by combining
the precision and recall in a specific way. In multi-classification problems, the average
accuracy is defined as the area under the PRC, which can more comprehensively reflect the
overall performance of the model. The average precision can be formulated as follows:

AP =
∫ 1

0
P(R)dR (7)

mAP =
1

Ncls

Ncls

∑
i=1

APi (8)

where AP, P, and R refer to the average precision, precision, and recall, respectively. In our
experiments, we mainly applied two metric mAP 0.5 and mAP (0.5:0.95) to evaluate the
accuracy and completeness of the proposed method.

3.3. Implementation Details

We implemented the practical aspects of FRSHNet using PyTorch library. The op-
timizer adopted stochastic gradient descent (SGD), and 64 batch sizes and 100 training
epochs were set. The learning rate was initially set to 0.04. In addition, in order to make
the experimental results more reliable, the SGD momentum and the weight decay were
assigned as 0.9 and 5e−4 respectively. All of our experiments were carried out on a work-
station consisting of a single Nvidia GeForce RTX 4080 GPU and an Intel(R) Core(TM)
i9-13900KF CPU.
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3.4. Comparison with the State-of-the-Art Models

We estimated the performance of FRSHNet on the Pictor-v3 and SHWD datasets and
compared it with seven state-of-the-art target detectors: Faster R-CNN [32], Retina-Net [33],
SSD-512 [15], YOLO-v5 [14], FCOS (Fully Convolutional One-Stage Object Detection) [34],
VF-Net [35], and TOOD [36]. Table 1 presents the performance of different methods on
Pictor-v3 and SHWD datasets. FRSHNet outperformed the other approaches on the Pictor-
v3 and SHWD datasets, reaching the highest mAp (Pictor-v3, mAp (0.5) and mAp (0.5:0.95):
96.30% and 65.70%; SHWD, mAp (0.5) and mAp (0.5:0.95): 94.70% and 68.10%), respectively.
For the Pictor-V3 dataset and SHWD dataset, TOOD yielded a better performance, as well
as a mAp (0.5, Pictor-V3) and a mAp (0.5, SHWD) of 91.50% and 86.70%, respectively.
Figures 4 and 5 present some examples of experimental results on the test set.

Figure 4. Visualization of some examples of experimental results generated by the proposed method
(FRSHNet) on test set.
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Table 1. Comparison results of different object detection methods on the Pictor-v3 and SHWD datasets.

Models Backbone
Pictor-v3 SHWD

mAp (0.50) mAp (0.5:0.95) mAp (0.50) mAp (0.5:0.95)

Faster R-CNN ResNet-50 0.9060 0.5340 0.8480 0.6310
Retina-Net ResNet-50 0.9054 0.5438 0.8548 0.6356

SSD-512 VGG16 0.8550 0.4880 0.8080 0.5740
YOLO-v5 CSPDarknet53 0.8818 0.5358 0.8399 0.6386

FCOS ResNet-50 0.8950 0.5240 0.8580 0.6390
VF-Net ResNet-50 0.9140 0.5520 0.8570 0.6390
TOOD ResNet-50 0.9150 0.5580 0.8670 0.6440

FRSHNet MAE-NAS 0.9630 0.6570 0.9470 0.6810

Figure 5. Visualization of some examples of the experimental results generated by the proposed
method (FRSHNet) on the test set.
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3.5. Ablation Studies of FRSHNet

Based on metric learning, FRSHNet includes two main components: (a) feature ex-
traction based on MAE-NAS (MobBlock); (b) feature fusion based on multiscale Swin
Transformer and efficient RepGFPN. Therefore, we designed ablation experiments on
FRSHNet to test and verify the validity of (a) and (b) modules.

• FRSHNet#1: ResNet18 + (b)+ Zero Head.
• FRSHNet#2: ResNet50 + (b)+ Zero Head.
• FRSHNet#3: (a) + Zero Head.
• FRSHNet: (a) + (b) + Zero Head.

Table 2 shows the ablation studies of the baseline and its different variants on the
SHWD test set. From the table, we can clearly observe that when modules (a) and (b)
were enabled at the same time, the performance of FRSHNet was significantly improved
compared with the baseline. This means that the merger of these two modules resulted in
more comprehensive and coordinated performance enhancements in the model. In addition,
we also noted certain improvements over the baseline when (a) or (b) modules were enabled
individually, which further confirmed the effectiveness of each module.

Table 2. Ablation studies of FRSHNet on SHWD datasets. FPS (Frames Per Second) represents the
average number of images that can be processed by the model per second.

Models mAp (0.50) mAp (0.5:0.95) FPS

FRSHNet#1 0.9170 0.5750 6873.3
FRSHNet#2 0.9320 0.6210 6634.6
FRSHNet#3 0.8520 0.5270 7342.1
FRSHNet 0.9470 0.6810 6785.5

Specifically, when compared with FRSHNet#1, FRSHNet#2 enhanced mAP (0.5) and
mAP (0.5:0.95) by 1.5 % and 4.6 % on the SHWD dataset, respectively. Furthermore, mAP
(0.5) and mAP (0.5:0.95) were obtained as 85.20 % and 52.70% on the SHWD dataset
when integrating (a) and Zero Head modules (i.e., FRSHNet) to baseline, i.e., FRSHNet#3.
Compared with FRSHNet#3, mAP (0.5) and mAP (0.5:0.95) of FRSHNet integrating (a) and
(b) modules were upgraded by 9.5% and 15.4%. The great improvement of the FRSHNet
further demonstrates the effectiveness of (a) and the modules. In addition, as these models
integrate the distributed reasoning principle of DAMO-YOLO, their FPS (Frames Per
Second) was very high. Figure 6 presents the PRC for FRSHNet on the SHWD test set.

F

Figure 6. Precision–Recall curve (PRC) for FRSHNet on the SHWD test set.
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4. Conclusions

Visual inspection of the workplace and timely reminders of unsafe behaviors (e.g., not
wearing a helmet) regarding safety helmets are very important safety management mea-
sures to avoid injuries to workers on construction sites. Video surveillance systems generate
large amounts of non-structure image data on site for this purpose, but they require real-
time recognition automation solutions based on computer vision. Although various deep-
learning-based models have recently provided new ideas for helmet recognition in traffic
monitoring, few solutions suitable for industry applications have been discussed owing to
the complexity of the construction site scenarios. This paper described a fast and robust net-
work FRSHNet based on a mutilscale Swin Transformer that was proposed to identify safety
helmets at the construction site. Three key contributions of our method adopted MAE-NAS
with the variant MobileNetV3’s MobBlock for feature extraction, multiscale Swin Trans-
former Module for generating the spatial and context relationships, and efficient-RepGFPN
for real-time detection. The results from the Pictor-v3 and SHWD datasets showed that the
proposed method had advantages over other state-of-the-art methods.

In future work, we will carry out the following related work: (i) dataset diversity
and real-world testing, including images from monitored construction sites with varying
lighting and weather conditions, to enhance the robustness and practical applicability of the
proposed method; (ii) model optimization for energy efficiency and reduced computational
load, considering that it is crucial for real-time applications and possible deployment
on portable devices with limited processing capabilities; and (iii) expand the model’s
capabilities to detect other types of personal protective equipment, such as safety vests and
goggles, for comprehensive workplace safety monitoring.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviations Description
RFID Radio frequency identification
CNN Convolution neural network
FOCS Fully convolutional one-stage object detection
SSD Single shot multibox detector
(S)W-MSA (Shifted)-window-based multi-head self attention
ViT Vision transformer
PRC Precision–recall curve
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