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Abstract: The advancement of cutting-edge technologies significantly transforms urban lifestyles
and is indispensable in sustainable urban design and planning. This systematic review focuses
on the critical role of innovative technologies and digitalization, particularly artificial intelligence
(AI), in urban planning through geo-design, aiming to enhance urban life. It begins with exploring
the importance of AI and digital tools in revolutionizing contemporary urban planning practices.
Through the methodology based on the Systematic Reviews and Meta-Analyses (PRISMA) protocol,
this review sifts through relevant literature over the past two decades by categorizing artificial intelli-
gence technologies based on their functionalities. These technologies are examined for their utility in
urban planning, environmental modeling, and infrastructure development, highlighting how they
contribute to creating smarter and more livable cities. For instance, machine learning techniques like
supervised learning excel in forecasting urban trends, whereas artificial neural networks and deep
learning are superior in pattern recognition and vital for environmental modeling. This analysis,
which refers to the comprehensive evaluation conducted in this Systematic Review, encompasses
studies based on diverse data inputs and domains of application, revealing a trend toward lever-
aging AI for predictive analytics, decision-making improvements, and the automation of complex
geospatial tasks in urban areas. The paper also addresses the challenges encountered, including
data privacy, ethical issues, and the demand for cross-disciplinary knowledge. The concluding re-
marks emphasize the transformative potential of innovative technologies and digitalization in urban
planning, advocating for their role in fostering better urban life. It also identifies future research
avenues and development opportunities. In light of our review findings, this study concludes that
AI technologies indeed hold transformative promise for the field of geo-design and urban planning.
They have proven instrumental in advancing predictive analytics, refining decision-making, and
streamlining complex geospatial tasks. The AI’s capacity to process expansive datasets and improve
urban planning accuracy has facilitated more sustainable urban development and enhanced the
resilience of urban environments.

Keywords: artificial intelligence; urban planning and environmental modeling; machine learning
applications; sustainable urban development

1. Introduction

Artificial intelligence (AI), which offers unprecedented opportunities to enhance urban
environments, has fundamentally altered urban life and impacted sustainable urban design
and planning irreplaceably. This systematic review aims to underscore AI and digital tools’
significant role in transforming contemporary urban planning practices through geo-design,
delve into the intricacies of AI’s application within the realm of urban planning and help
understand the historical context and the evolution of this field.
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1.1. Research Background

Governments worldwide are beginning to tackle the problems caused by urbanization
in the 21st century [1]. The sustainable development of cities and nature increasingly
depends on the successful planning of urban growth and the geographical planning and
design of regions [2]. In the past thirty years since the influential Brundtland Commission
Report, humanity still faces the pressing task of altering its behavior to secure a sustainable
future [3]. Despite the intricate nature of these challenges, they demand our full techno-
logical prowess to devise solutions for both the immediate and distant future. Artificial
intelligence (AI) stands out as a significant opportunity in this endeavor, with its capability
for machines to “learn from experience, adapt to new information, and carry out tasks
similar to those performed by humans” [3].

AI technology presents three primary advantages. Firstly, it automates crucial yet
monotonous and time-intensive tasks, freeing up human capacity for more sophisticated
endeavors. Secondly, it unlocks insights buried within vast quantities of unstructured data,
including video, photo, textual reports, business documents, social media content, and
emails, which previously required manual oversight and analysis. Thirdly, AI has the power
to harness the capabilities of thousands of computers and additional resources to tackle
highly complex challenges. Hence, utilizing AI to explore solutions for the climate crisis
is vital. To accomplish this effectively, comprehensive research is required to understand
how AI can seamlessly integrate with human emotions, thought processes, social norms,
and behaviors.

In this paper, the authors present the case that AI can aid in creating organizational
processes and individual practices that are culturally sensitive and reduce the demand for
natural resources and energy in human activities. The real significance of AI lies not just in
its capacity to help individuals and society lower their consumption of energy, water, and
land beyond.

1.2. The Wide Application of Artificial Intelligence Technologies

The progress in AI and data science today holds the potential to fundamentally alter
business operations. It achieves this by aiding knowledge workers in conveying their
analytical findings, backing up evidence, and making informed decisions [4]. Almost every
organization is now focused on understanding their business and transforming data into
actionable insights. For example, to detect and quantify a water pollution problem, a water
quality monitoring network is designed and established through artificial intelligence
technology [5]. Large-scale soil regulation and agricultural sustainability can be addressed
with geographic information systems [6]. In landscape architecture planning and design,
using scientific analysis methods to quantitatively study the law of site change and provide
a scientific decision basis for planning has always been an important topic. The emergence
of new technologies, such as big data, has rapidly grown the data related to landscape
architecture, providing strong support for the quantitative analysis of site laws.

1.3. Advances in Artificial Intelligence Technologies and the Interrelation of Urban Planning

In the past, planners would display their data on large, physical maps and employ
tracing paper overlays to incorporate stakeholder information. However, the advent of
Geographical Information Systems (GIS) revolutionized this approach by substituting the
need for transparent maps with digital map layers, which are presented and manipulated
within a GIS on a computer screen [7]. The numerical analysis available in GIS is often
combined in landscape architecture during the generation of planning and design schemes.
The application of artificial intelligence in urban space and architecture began in the
1970s. In the past 10 years, with the great changes brought about by the Internet, artificial
intelligence has been applied and explored in many research directions of geographical
design and related aspects. With research depth and breadth enhancement, geographical
design intelligence has gradually formed. Artificial intelligence in geographic design
transforms complex qualitative descriptions in space into quantitative analysis and design
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models through intelligent mechanisms. The role of artificial intelligence technology in
geographical design is mainly reflected in two aspects: (1) Using artificial intelligence
algorithms and thinking to calculate and analyze the relevant data in geographical design
research efficiently and accurately and mining knowledge and rules from it; (2) Aiming at
complex and difficult problems in geospatial research, establish a spatial intelligence model
to reveal the internal mechanism behind the phenomenon. Artificial intelligence applied
to geographic design mainly refers to “weak artificial intelligence”: execution ability is
generally better than humans and can formulate and apply digital technology to achieve
goals [8]. Its core lies in applying artificial intelligence technology to replace the work
handled by the human brain in the past and improve the reliability, validity, and accuracy
of geographical planning and design.

Technological change is a key driver of long-term growth in regional planning, design,
and management [9]. AI allows humans to devise, strategize, and implement compre-
hensive solutions to environmental degradation and the climate crisis, moving beyond
narrow-minded and self-serving approaches of individuals and small groups [3]. GIS is
one of the main tools to realize the application of artificial intelligence in geo-design and
planning [10]. There are two main types of artificial intelligence in geo-design and planning
applications. One is the “inference type”, such as logical reasoning, theorem proving, etc.,
including the knowledge type and the “learning type”, such as deep learning, support
vector machine, and so on. The other is according to the type of artificial intelligence
algorithm, divided into “symbolism”, such as expert systems, knowledge engineering,
etc., including “connectionism”, such as neural networks; “behaviorism”, such as multi-
self-agents, cellular automata, and so on [11]. Symbolism is the process of simulating
human-like intelligence using logical reasoning to deduce the whole theoretical system [12].
According to the attributes and functions of artificial intelligence technology and the types
of geographical design problems that can be solved, the artificial intelligence methods
applied in the field in recent years are divided into three categories: artificial life, intelligent
random optimization, and machine learning.

1.4. The Value of Geographic Design in Regional Spatial Applications

In recent years, urban areas worldwide have frequently experienced both natural
disasters, such as earthquakes, floods, and hurricanes, and man-made accidents, including
terrorist attacks, chemical spillages, fires, and explosions. Due to the importance of spatial
information to geographical research, the application of artificial intelligence is mainly
reflected in social science research, data sorting, disaster prevention, early warning, and
other aspects [13]. One of the main advantages of AI technology is that it can explore
the ecological challenges that future landscapes may face. Geo-design is a planning and
design approach that closely integrates the simulation of the impact of the geographic
environment, system cognition, and digital technologies to create design solutions [14,15].
Geographic design provides a comprehensive framework for landscape information pro-
cessing. In addition, geographic design tends to be applied across disciplines and differs
from traditional landscape architecture education. Geo-design is rooted in using digital
technologies that integrate information from social and natural systems as a basis for
modeling, analyzing, and communicating design and planning effects. Geo-design as a
strategy helps planners and designers address pressing urban and landscape issues such as
climate change, sustainability, environmental quality, and justice. These problems can be
represented, described, and analyzed using geographical information [16].

1.5. Research Questions

This paper aims to comprehensively review AI-related technology applications in
urban design and planning. The research questions include: (1) Which AI-based technolo-
gies have been used to study this area? (2) What are the trends and research areas of the
published literature? (3) What are the key data inputs and analysis themes when applying
these technologies?



Buildings 2024, 14, 835 4 of 21

2. Method

In conducting the literature review, researchers adhered to the rigorous standards of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol [17].
PRISMA protocol outlines a transparent and systematic methodology for database searching,
selecting relevant literature, and synthesizing gathered information. By following PRISMA,
researchers ensured a comprehensive and replicable search strategy, which involved clearly
defined criteria for inclusion and exclusion, identifying databases and other sources of relevant
studies, and a meticulous documentation process for each step taken.

2.1. Search Keywords

This study developed a list of keywords based on the above research questions. This
research utilized a thorough search methodology across the Web of Science. Multiple variations
of keyword strings were employed, each specifically adapted to the search functionalities of these
databases, ensuring the retrieval of the most pertinent and consistent findings. The time frame
for the publications included in this search spanned from January 2003 to June 2023. The search
keywords included two groups: (1) Topic-related words: “geo-design”, “geo”, and “design”,
“GIS”, and “design”, “geographic” and “design”, “geospatial”, and “design”; (2) Method-related
words: simulation, parametric, deep learning, big data, social media, remote sensing, neural
networks, grasshopper, machine learning, virtual reality, VR, decision model, computing, AR,
MR, computer vision, swarm intelligence. Combining topic-related and method-related words
generated a total of 85 search terms (Figure 1).
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2.2. Search Strategy

Using a total of 85 search words, our initial search yielded 25,241 articles from the Web
of Science, as visualized in Figure 1. Rigorous deduplication and title screening reduced
this to 14,779 articles. A subsequent detailed review of titles based on our inclusion criteria
further narrowed the pool to 1400 articles (Figure 2). This involved excluding off-topic
articles outside the urban planning and design scope, employed outdated technologies or
were not conducted in an urban, outdoor context. Studies were included if they met the
following criteria:
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1. The study must be conducted in an urban, outdoor context. Studies in rural areas,
forests, or natural river environments are excluded.

2. The focus of the study should be on the use of geospatial information in planning
and design.

3. The study must incorporate state-of-the-art technologies, with a preference for articles
published within the last decade to ensure relevance to recent advancements in
artificial intelligence.

4. The study should fall within the disciplinary categories of planning, landscape, ge-
ography, or forestry. Articles dedicated to computer science focusing primarily on
algorithms or models are excluded.
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Figure 2. The procedure of the review (based on the PRISMA review protocol).

Review papers, conference proceedings, book chapters, and studies that did not meet
the above criteria were excluded. Studies focusing on indoor environments or employing
traditional monitoring technologies were also excluded. Any disagreements between
reviewers were resolved through discussion and consensus. This additional scrutiny led to
a final set of 61 articles.

2.3. Data Extraction and Synthesis

For each included article, data were extracted on the study design, vision-based and/or
sensor-based technology employed, research themes and areas, and strengths, limitations,
and considerations of using these technologies. A data extraction form was developed and
piloted to ensure consistency in data extraction across studies. The extracted data were then
synthesized using a narrative approach to provide a comprehensive overview of the current
state of research in this field. Researchers developed a data extraction sheet, including the
parts: basic information (titles, publication year, author, country, and keywords), topic and
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method (themes, types of data, algorithms, vision/sensor/hybrid, and sample size), and
findings (outcome results, strength, and limitations).

3. Results
3.1. Research Trend

In the domain of geo-design and planning, a diverse array of scholarly journals has
contributed to disseminating research on artificial intelligence applications (Figure 3). The
most prolific of these is the ISPRS Journal of Photogrammetry and Remote Sensing, which
stands out with the most published articles, followed by Urban Forestry & Urban Greening,
and Landscape and Urban Planning. These journals indicate a strong interdisciplinary interest
in bridging the gap between technical remote sensing techniques and their practical impli-
cations in urban and environmental contexts. The presence of specialized journals such as
Computers, Environment and Urban Systems and Transactions in GIS further emphasizes the
technological advancement in the field, focusing on the intersection of computer science
and spatial analysis within urban systems.
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Figure 3. Frequency of journal.

Figure 4 compares the distribution of the top 10 research areas. The distribution reveals
a comprehensive engagement with geo-design and planning across multiple academic dis-
ciplines. ‘Physical Geography’ precedes the highest volume of published articles, signaling
its dominance and centrality in the field. The following closely follow ‘Computer Science’
and ‘Remote Sensing’, reflecting the integral role of technological innovation and analytical
methods in understanding and managing geographical spaces.

Other key disciplines, such as ‘Environmental Sciences & Ecology’ and ‘Urban Studies’
are well-represented, denoting a concerted focus on sustainable development and the
intricate dynamics of urban environments. ‘Public Administration’ also emerges as a
crucial area, underscoring the relevance of policy and governance in shaping the landscape
of geo-design and planning. The inclusion of ‘Plant Sciences’, ‘Forestry’, and ‘Engineering’
within the top ten research areas further illustrates the multifaceted nature of the field,
where biological, ecological, and engineering insights converge to inform comprehensive
geo-design strategies. Within the expansive domain of geo-design and planning, the role
of ‘Urban Ecology and Environmental Sciences’ is particularly salient. This field acts as a
critical nexus where the imperatives of urban development meet the principles of ecological
sustainability. As cities expand and transform, urban ecology provides essential insights
into the complex interplay between urban growth and the natural environment, informing
approaches prioritizing biodiversity, ecosystem services, and resilience in urban design.
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The trend of publications over the years reveals a growing interest and increasing
research output in the field of AI in geo-design and planning (Table 1). Starting from
2016, there has been a noticeable upsurge in the number of articles, reaching a peak in
2022. This uptick reflects the accelerating integration of AI technologies in geospatial
studies and the heightened recognition of their potential to address complex urban and
environmental challenges. Although there is a slight decrease in 2023, the overall trajectory
remains upward, suggesting a sustained and expanding engagement with AI research
within the geo-design and planning disciplines. This pattern underscores the evolving
nature of the field and the continual advancements in AI technologies and their applications.
The observed decrease in publication rates in 2021 may be primarily due to the lagged
effects of the pandemic, wherein the delayed impacts of disruptions in research activities
persisted in influencing publication outputs. Additionally, the subsequent year saw a
notable advancement in AI-assisted tools, such as GPT, which enhanced research efficiency.
This development allowed researchers to swiftly pivot to applying AI tools within their
fields, further impacting publication trends.

Table 1. Publications by years (percentage).

2016 2017 2018

2 1 3
(3.28%) (1.64%) (4.92%)

2019 2020 2021

7 11 10
(11.48%) (18.03%) (16.39%)

2022 2023 total

16 11 61
(26.23%) (18.03%) 100%

Analyzing the interconnectivity of concepts within the literature on AI in geo-design
and planning, a prominent thematic cluster can be observed around “machine learning”, a
central node linking various sub-themes and technologies (Figure 5). The prominence of
“machine learning” signifies its fundamental role in advancing geo-design and planning
methodologies. Adjacent to this core, “street view” and “live images” are significant,
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illustrating the emphasis on real-time data processing and visualization in urban stud-
ies. Another noteworthy cluster centers around “urban occupation”, “phone data”, and
“activity space”, highlighting the growing interest in human dynamics and mobile data
utilization for urban planning. The intricate network of these themes showcases the multi-
disciplinary approach in the field, integrating advanced computational techniques with
practical applications such as urban street network analysis, occupancy modeling, and
real-time environmental monitoring. This complex web of interconnected terms reflects the
current research landscape and underscores the synergy between AI technologies and their
practical deployment in shaping the urban spaces of tomorrow (Figure 6 and Table 1).
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3.2. Methodological Approaches

The systematic review comprehensively analyzed the data types utilized in geo-design
technologies, identifying a multifaceted array of sources that underscore the breadth and
depth of information employed in the field (Table 2). Image-based data sources, including
satellite imagery, Normalized Difference Vegetation Index (NDVI), and Digital Elevation Model
(DEM) data, form a critical foundation for high-resolution spatial analysis, allowing for detailed
landscape assessments and vegetative indexing. Furthermore, street view images and map data
provide granular details of urban fabric essential for meticulous urban planning.

Table 2. Data types of the geo-design technologies.

Data Type Crowdsourced Data Source

Image

Satellite imagery
Normalized Difference Vegetation Index (NDVI) data

Street view images
Map data

Spatial Distribution

Land use data
Crop production data

Ecosystem services
Soil property data

Point of Interest (POI)

Spatiotemporal

Tracks
Road network data

Location coordinates
GPS Location data

Numeric

Socioeconomic data
Population numbers
Mobile Phone Data

Building and housing data
Data for ridership

Social media data Crowdsourced data

Emotion and empirical data Emotion and empirical data

In the spatial distribution category, land use, crop production, and ecosystem services
data contribute to a holistic understanding of land management practices and environ-
mental stewardship. Soil property data enhances the precision of environmental modeling,
while Points of Interest (POI) and tracks offer insights into urban dynamics and mobility
patterns. The integration of spatiotemporal data like road network data, location coor-
dinates, and GPS data facilitates advanced modeling of movement and urban growth
patterns, providing a temporal dimension to spatial configurations.

Numerical data types, including socioeconomic datasets, population numbers, and mobile
phone data, enrich the analytic capabilities by introducing demographic and behavioral dimen-
sions. These datasets are pivotal in understanding and predicting urban occupation patterns
and infrastructure needs. Building and ridership data contribute to a more nuanced view of
urban utilization and transport dynamics. Lastly, the review identified the emergence of social
media data as a potent tool for gauging public sentiment and emotional landscapes, offering a
new frontier in geo-design that incorporates human-centric data. Including such diverse data
types enhances the accuracy and applicability of geo-design technologies and points to the
potential for creating more responsive and adaptive urban environments.

3.3. Application Theme

As AI technology continues to evolve, the field of geo-design is increasingly incorpo-
rating AI to address various challenges. Based on an analysis of 61 articles, this review
section explores different themes of AI applications in geo-design. This study categorized
these into four main themes: Transportation and Context, Built Environment and Per-
ception, Data-Driven Approach, and Urban Region. Under these four primary themes,
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researchers have further classified the applications into 28 specific categories, offering a
detailed exploration of AI’s diverse roles in geo-design (Table 3).

3.3.1. Transportation and Context

The “Transportation and Context” theme primarily focuses on the interplay between
human mobility and transportation systems within urban environments. This theme
delves into optimizing transport, analyzing traffic patterns, and understanding the broader
context of transportation operations. Based on a review of 11 papers in this field, it can be
categorized into five distinct areas: TOD Planning, Traffic Flow Analysis, Transportation
Management, Transportation Safety, Transportation Decision and Simulation.

Contrasts with traditional 3D TOD designs that typically rely on linear functions.
Dong et al. [18] advanced TOD (Transit-Oriented Development) planning by implementing
a multi-objective optimization design with a nondominated sorting genetic algorithm III
with an ensemble learning method. Their approach demonstrated superiority regarding
ridership objectives, achieving better optima and convergence than linear models. This
signifies a notable improvement in the efficiency and effectiveness of the Math method in
TOD planning methodologies.

In addition, traffic flow analysis forms a foundational pillar in urban transportation
optimization. Tang et al. [19] and Semanjski et al. [20] advanced travel time and transport
mode detection based on traditional GIS and mobile-sensed spatiotemporal GPS data.
However, reliance on traditional ways may limit adaptability in dynamic urban environ-
ments. Following this, deep learning methods like SVM, KNN, PCA, RT, and Faster R-CNN
have gained prominence in traffic flow analysis. Golej et al. [21] utilized these techniques
alongside high-resolution satellite imagery for vehicle detection.

Furthermore, deep learning technology in the field of image classification can also
be used to automatically identify parallel lines in images and high-visibility crosswalks
in the field of traffic safety [22]. Complementarily, Chen et al. [23] used machine learning
techniques, such as the LDCF algorithm, for pedestrian volume assessment via street view
images. Nadarajan and Sivanraj [24] further developed traffic forecasting with the ANST
model, integrating LSTM networks and attention mechanisms, significantly enhancing
traffic prediction by considering spatiotemporal dynamics and environmental factors.

Finally, AI tech can address issues related to transportation decision-making and
simulation in addition to the above scenarios. Advancements in urban data research have
demonstrated the effectiveness of deep learning methods in evaluating active mobility
potential for urban environments. Yap et al. [25] integrated street view imagery and urban
networks to evaluate active mobility, using deep learning to assess traffic environment fac-
tors impacting subjective decisions. Unlike traditional GPS resources, Chen and Yang [26]
combined social media signals with pedestrian simulation technologies in historic neigh-
borhoods, addressing conflicts between tourists and locals and enhancing urban planning.
These studies underscore the value of diverse data and visual elements in urban design.

The research in the “Transportation and Context” theme offers valuable insights for
urban management. AI enables precise traffic flow analysis, aiding cities in implement-
ing effective congestion reduction measures and identifying signalized intersections and
crosswalks, thus enhancing pedestrian safety in urban areas in a geo-design framework.
Additionally, integrating AI and geographical data supports data-driven decisions in
transportation planning and urban development, promoting a more complex system.

3.3.2. Built Environment and Perception

The “Built Environment and Perception” theme in geo-design research focuses on how
built environments affect human perception and activity. This theme encompasses studies
that utilize AI tech and big data to analyze and improve human interactions with urban
spaces. Key research areas include optimizing urban safety, understanding emotional
responses to urban environments, and the impact of visual and socioeconomic elements on
human perception. Additionally, this theme explores the assessment of urban space quality,
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linking street view imagery, social media data, and economic factors to urban planning and
design. These studies collectively highlight the critical role of AI in creating more livable,
efficient, and engaging urban environments. This part is based on a review of 22 papers
in this field; it can be categorized into two main distinct areas: Human Perception and
Activity (12 papers) and Building Environment Assessment (10 papers).

In Human Perception and Activity, techniques such as urban network analysis and
image processing have been extensively utilized. Recent studies typically integrate various
sensor data and socioeconomic survey data to objectively assess perception and the physical
environment, exploring their impact on human activities and emotional responses. For
instance, Li et al. [27] introduced an emotion-tracking technique based on Geographic Infor-
mation System (GIS), quantifying the relationship between people’s emotional responses
and urban spatial characteristics through spatial analysis and logistic regression. This
method evaluated the impact of multiple urban features on emotional responses, including
architectural shapes and textures, façade parameters, visual entropy, and visual fractals.

AI technology in geo-design is primarily employed for data analysis and mining data
related to humans and their environment, aiding in establishing the relationship between urban
environments and human activity perception. Liu et al. (2020) explored urban vitality, spatial
patterns and driving mechanisms using multi-source big data, including mobile location data,
geospatial big data, and shared internet data. Huang et al. [28] analyzed city images on social
media through text mining and image annotation, introducing “Instagram ability” and “Twitter
ability” as new urban image indicators. Gong et al. [29] developed an algorithm to identify
patterns of human activities by analyzing mobile data and spatial analysis techniques.

Moreover, in Building Environment Assessment research, technologies such as Con-
volutional Neural Networks (CNN) automate the analysis of images, extracting data
from Google Street View images and pictures from social media platforms like Flickr.
Yang et al. [30] utilized the VGG-16 deep learning architecture, while Wang et al. [31] em-
ployed the DeepLabv3 model to learn about the physical environment, extracting semantic
information from street view images to quantify the built environment.

Applying AI technologies like these is crucial in geo-design, offering diverse methods
to analyze, understand, and quantify urban environments. Using social media and big data,
researchers acquire valuable insights into urban dwellers’ perceptions and needs, informing
policy-making aligning with public interest. Automated image analysis in environmental
assessments provides real-time, precise data essential for adapting to rapid urban changes.

3.3.3. Data-Driven Approach

The “Data-Driven Approach” theme of geo-design research focuses on leveraging
AI and advanced data management tools for geo-design or combining multiple frames to
achieve multidimensional data visualization. Based on a review of seven papers in this
field, it can be categorized into two main distinct areas: Data Visualization (four papers)
and Geospatial Data Management (three papers).

The data visualization field has enhanced the richness and clarity of maps through
innovations in GIS systems and spatial analysis processes. Schiewe [32] optimized the
accurate representation of geographic information through task-oriented data classification,
integrating steps like interval selection and spatial unit aggregation, but was mainly limited
to desktop GIS systems. To broaden understanding, geographic data visualization has
evolved from 2D to more immersive 3D and 4D, with corresponding web interface designs.
Lafrance et al. [33] enhanced public engagement and understanding of urban planning
through web-based multidimensional visualization and interactive tools like timelines and
animations. Deep learning technologies, such as GAN-based segmentation, effectively
enhance the realism and precision of data visualization. Benita et al. [34] advanced the
field with deep learning methods like SIDE and GANs, pushing forward automated and
detailed reconstruction of building facades.

Furthermore, Geospatial Data Management focuses on the underlying logic and code of
database construction to suit large-scale data processing. Burini et al. [35] proposed the J-CO
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framework based on JSON format. At the same time, Bareche and Xia [36] developed the VeST
indexing technique, and Wang et al. [37] implemented the STR method, all contributing to more
precise and dynamic analysis of urban spatial data. These techniques allow for more accurate
and efficient processing of larger-scale and complex urban spatial data in geo-design.

3.3.4. Urban Region

The “Urban Region” focuses on studies that contribute to our understanding of geo-
design, how to use it in urban function, the health impacts of urban environments, and
how urbanization affects ecosystem services, providing valuable insights for sustainable
urban development and planning. Based on a review of 15 papers in this field, it can be
categorized into three main distinct areas: urban function classification (7 papers), public
health (3 papers), and urban ecosystem services (5 papers).

In urban function classification, prime studies like Luo et al.’s [38] leveraged POI data
and kernel density analysis to identify urban functional areas based on special analysis tools
with machine learning. Zhai et al. [39] introduced the Place2vec model, an advancement over
conventional semantic models, for effectively identifying urban functional regions using POIs
and K-means clustering. Xu et al. [40] and Zhao et al. [41] applied deep learning and graph
neural networks for building function classification and pattern recognition in urban areas.

For public health, research like that of Peng et al. [42] and Benita and Tunçer [43] exam-
ined the impact of urban features on physiological stress responses, employing techniques
like environmental monitoring and machine learning. Li et al. [44] explored how urban
park features and psychological factors affect perceived restoration using methods like
PPGIS and deep learning. Further, it underscored the transformative role of Geo AI in
enhancing urban pattern recognition and building function classification.

Table 3. Analysis of themes and categories.

Analysis
Theme Category Description Citation

Transportation
and Context

TOD Planning Multi-objective optimization design based on nondominated sorting genetic
algorithm III [18]

Traffic Flow
Analysis

Uses machine learning, including SVM, KNN, PCA, RT, and Faster R-CNN, for
vehicle detection. [21]

The ANST model combines LSTM and attention mechanisms for
traffic forecasting. [24]

Using spatial context mining and a support vector machine model to identify
transport modes from big data. [20]

Estimates urban intersection travel times using low-frequency GPS data, analyzing
traffic patterns, and applying fuzzy fitting to calculate flow speed and delay. [19]

Using LDCF machine learning algorithm to automatically assess pedestrian
volumes in urban areas. [23]

Transportation
Management

Using a two-step method of spatiotemporal pattern extraction and Gaussian
modeling for precise urban transport management. [45]

Combines road network analysis, street view images, and deep learning to
efficiently identify signalized intersections. [46]

Transportation
Safety

This study employs imagery and a deep learning-based model to detect
marked crosswalks. [22]

Transportation
Decision and
Simulation

Enhances active mobility planning using deep learning DeepLabV3 segmentation
trained on a WideResNet-38 model analyzing street imagery. [25]

Uses big data, pedestrian simulation, and AnyLogic to identify facility gaps and
traffic issues. [26]
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Table 3. Cont.

Analysis
Theme Category Description Citation

Built
Environment

and Perception

Human
Perception

and Activity

Using multi-source big data and data mining to analyze influencing factors to
optimize unsafe urban areas. [47]

Uses deep learning and random-forest algorithms to analyze human perceptions
of urban spaces. [48]

Uses deep learning to explore how urban space characteristics influence people’s
emotional responses [44]

Analyses urban vitality’s spatial patterns and driving factors using multi-source
big data. [49]

Analyzes the built environment’s impact on occupational diversity using
GeoDetector-based indicators for in-depth analysis. [1]

Employs deep learning for image segmentation and NDVI to measure
urban greenness. [50]

Utilizes a mix of text mining, image processing, clustering, kernel density
estimation, and sentiment analysis to assess urban perceptions. [28]

Uses multiple linear regressions to analyze three types of urban residents’ activity
spaces at multiple geographic scales. [29]

Develops an analytical framework using mobile phone data to assess occupational
diversity in urban areas. [51]

Uses machine learning to predict urban street running intensity. [52]

Analyses Dhaka’s travel patterns using household diaries, artificial neural
networks, and regression. [53]

Evaluating human perceptions of streetscapes using integrating PSPNET,
attention mechanisms, and transfer learning. [54]

Building
Environment
Assessment

Develop a framework for assessing urban street quality using the
DeepLabv3 model. [31]

Examines the Street commercial pedestrian block characteristics using Isovist_App
software simulation and spatial analysis. [55]

This study employs machine learning and a Fully Convolutional Network (FCN)
for image segmentation to improve street quality. [31]

Conducts a deep learning-based classification analysis of public space images. [30]

Leveraging semantic segmentation and information entropy models for assessing
visual perceptual information in urban street spaces. [56]

Introduces a deep learning approach to comprehensively analyze the spatial ratios
of streets. [57]

Employs GIS, deep learning DeepLab-v3 +model, and sensors to assess
urban walkability. [58]

Examines how street greenery affects older adults’ walking behavior using global
(linear regression, Box–Cox) and local (geographically weighted

regression) models.
[59]

Utilizes deep convolutional neural networks to classify urban street frontages. [60]

Employs a multiscale analysis method and Multiscale Geographically Weighted
Regression (MGWR) to explore the impact of environmental features on crime. [61]
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Table 3. Cont.

Analysis
Theme Category Description Citation

Data-Driven
Approach

Data
Visualization

Develops a task-oriented approach. The method enhances geo-design maps for
change analysis by integrating spatial data preprocessing, local extreme value

preservation, and context-aware classification techniques.
[32]

Introduces a novel 3D-4D interface that combines GIS, geo-located data,
high-resolution 3D models, and multimedia for immersive visualization of large

space-time datasets in smart cities.
[34]

Develops a deep learning method with GANs and Single image depth estimation
for 3D reconstruction of building façades. [62]

Enhancing citizen engagement in urban planning, using dynamic, immersive tools
for visualizing city evolution. [33]

Geospatial
Data

Management

Introduces VeST, a novel indexing model for efficient CKNN queries on moving
objects in a distributed environment. [36]

Introduces STR, a multivariate hierarchical regionalization method for uncovering
spatiotemporal patterns, focusing on spatial, temporal contiguity, and

attribute similarity.
[37]

Introducing the J-CO framework for analyzing JSON-formatted data sets to
improve urban planning in regeneration and mobility. [35]

Urban Region

Function
Classification

Applied POI data from an online map service and kernel density analysis in
various grid sizes to identify urban functional areas. [38]

Develop a machine learning approach with Random Forest, Support Vector
Machine, and Naive Bayes algorithms to identify rural residential land. [63]

This study introduces and validates the Place2vec model for effectively identifying
urban functional regions using Points of Interest (POIs) and K-means clustering. [39]

Focuses on classifying building functions in urban areas using deep learning
techniques, specifically Graph Convolutional Networks (GCNs). [40]

The study introduces a novel deep neural network based on graph convolutions,
designed to automatically identify patterns in building groups with arbitrary forms. [41]

This study introduces a method to identify and analyze influential urban regions using
spatial interaction networks based on human movement data. [64]

This research proposes the Spatial Vector Deep Neural Network (SVDNN) model
to measure the Multidimensional Poverty Index (MPI). [65]

Public Health

Examines the commercial pedestrian block characteristics using Isovist_App
software simulation, big data statistics, and spatial. [42]

Utilizing environmental monitoring, machine learning explores the impact of urban
features and environmental factors on physiological stress responses. [43]

Uses PPGIS, Deep Learning, and PLS methods to analyze how urban park features
and psychological factors affect college students’ perceived restoration. [44]

Urban
Ecosystem

Services

Investigate the relationship between urban spatial patterns and ecosystem services
using spatial metrics and the Geographically Weighted Regression (GWR) model. [66]

Based on remote sensing and spatial analysis, the spatial and temporal changes of
green space distribution and spatial and temporal patterns of green space distribution

index were analyzed.
[67]

Bivariate Moran’s I and multiple regression are adopted to explore the equity of
urban green space accessibility. [68]

This study uses land use regression to assess urban greening’s impact on air pollution. [69]

Combines including rainfall simulation, remote sensing analysis, and semantic
information analytics to identify flooded roads. [70]
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4. Discussion
4.1. Methodological Approaches

Image data types serve as a cornerstone in geo-design, enabling a wide spectrum
of analyses that significantly enhance urban planning and environmental management.
Tasks such as urban spatial patterns analysis and vehicle detection leverage high-resolution
imagery to discern and quantify intricate urban layouts and vehicular presence, respec-
tively. This data is pivotal in analyzing urban green space distribution, coupled with the
quantification of ecosystem services, which provides a detailed understanding of environ-
mental assets within urban settings. Studies focusing on the spatial association of urban
greenness with dockless bike-sharing usage demonstrate the potential of image data to
reveal correlations between environmental features and urban mobility patterns. Further,
image data is instrumental in assessing street safety and evaluating the impact of built
environment features on public health and crime occurrence. The Visual Perception Infor-
mation Quantity of Street Space task underscores the ability to assess urban streetscapes’
aesthetic and functional aspects. Beyond structural analysis, image data facilitates active
mobility planning by enhancing urban walkability, contributing to healthier and more sus-
tainable urban environments. In summary, image data underpins a diverse array of tasks
within geo-design and planning and enriches the decision-making process by providing a
multifaceted view of urban ecosystems and human-environment interactions.

Spatial distribution data encompasses information regarding geographical patterns
and distributions. Land use data [18,63,69] aided in transit-oriented development planning,
vulnerability identification, and urban green cover status assessment. Crop production
data [63,65,66] contributed to quantifying ecosystem service, vulnerability, and measuring
poverty. Ecosystem services, including water yield, soil conservation, carbon storage,
and crop production, were evaluated using meteorological and soil property data [63,66].
Points of Interest (POI) analysis [37,39,47] facilitated diverse assessments such as street
safety, urban functional region identification, and street space quality evaluation. Spatial
distribution data aids urban planning, environmental conservation, and resource allocation.
It enabled efficient land management and resource utilization. However, challenges may
include data accuracy issues, evolving land use patterns, and the need for continuous
updates to maintain relevance.

Spatiotemporal data encapsulates various information sets crucial for understanding
spatial and temporal aspects of urban dynamics. Tracking data involving crowdsourced
trajectory and check-in information [52] facilitated calculating road running intensity,
offering insights into urban road movement patterns and utilization. Road network data
analysis [31,47] aided in assessing street safety, diagnosing strategies for urban street space,
and contributing significantly to urban planning and safety assessments.

Location coordinates sourced from diverse data sets such as China Mobile signaling
data [59], dockless bike sharing records [50], cell phone location data [49], and travel loca-
tion points (Sharmeen et al. 2020) offered insights into residents’ distribution, spatial usage
patterns, transport mode recognition, and understanding travel behaviors. GPS location
data analysis [19,47,70] contributed to street safety assessments, estimating intersection
travel times and providing valuable spatiotemporal insights crucial for urban planning,
transportation management, and safety analysis. Spatiotemporal data involves information
related to both space and time. GPS location data tracks positions at specific times, while
road network data outlines connectivity and routes. Tracking data records movement paths
aids in understanding mobility patterns.

Spatiotemporal data enables real-time tracking, navigation, and route optimization. It
assists in transportation planning, disaster management, and logistics. However, challenges
include data privacy concerns, accuracy issues in dense urban areas or mountainous regions,
and the need for substantial storage and computational resources.

Numeric data encompasses quantitative information pivotal to demographic, eco-
nomic, and infrastructure aspects. Socioeconomic data include indicators like urbanization
rate, labor income per capita, and sown area per capita [63], providing insights into local
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development levels. Factors like the secondary industry proportion, per capita fiscal ex-
penditure, night light index, healthcare facilities, and phone access ratios aided in poverty
measurement [65]. Population data and investigating population changes [61] elucidated
the correlation between street-built environments and crime occurrence. Mobile phone
data revealed patterns in population demographics, exploring urban spatial features re-
lated to COVID-19 transmission [42]. It also aided in understanding residents’ activity
space, occupation assessment, transport mode recognition, and modeling human move-
ment [20,29,35,51,64]. Building and house data encompassing information on location,
number of floors, house prices, and structural attributes played pivotal roles in assessing
street safety, evaluating occupation mixture mechanisms, understanding street greenery’s
effects, urban image classification, and analyzing urban vitality [15,47–49,59,60,68]. Data
for ridership, involving smart card data, residents’ travel behavior, traffic flow, and environ-
mental data, contributed to transit-oriented development, understanding street greenery’s
impacts on walking time, evaluating street walkability, and urban street planning [18,22,59].
Numeric data, spanning demographics to infrastructure, supports policymaking, urban
planning, and resource allocation. It aids in understanding societal trends and transporta-
tion patterns. Challenges include data accuracy maintenance, ensuring representativeness
in sampled populations, and privacy concerns related to demographic and ridership data.

Social media data comprises information from various online platforms, reflecting
user-generated content and interactions. It includes textual, visual, or multimedia content
shared by users across social networks. These data sources offer insights into various urban
aspects. For instance, Huang et al. [28] leveraged Instagram and Twitter data to construct
the social media image of cities. Gong et al. [29] utilized geo-tagged images and texts to
identify residents’ activity spaces. Peng et al. [42] and Wang et al. (2022) utilized Weibo
data to explore spatial features of COVID-19 transmission and assess street space quality,
respectively. Flickr data analysis aids in understanding urban public spaces [30], while
WeChat data is utilized for historic neighborhood design [23]. The Baidu Search Index
measures residents’ mental well-being [71], and general search data is used to gauge city
connectivity reflected in different languages [72]. Social media data offers real-time insights
into public sentiment, trends, and user behavior. It aids in marketing strategies, trend
analysis, and understanding public opinion. However, limitations involve data privacy
concerns, data authenticity verification, and the dynamic nature of social media content.

Emotion data and environmental data are pivotal in understanding the emotional ur-
ban environments’ practical aspects of the urban environment, encompassing physiological
responses and perceptual variables, and provide insights into how urban settings influence
human emotions and well-being. On the other hand, empirical data involves practical,
observed, and experimental evidence, guiding evidence-based decision-making and policy
formulation in urban studies. Emotion data, encompassing body skin temperature, electro-
dermal Activity (EDA), Health Stress Index, and the Wet Bulb Globe Temperature (WBGT),
as studied by Li et al. [27] and Benita and Tuncer [43], provided insights into assessing
essential qualities of urban spaces and understanding the impact of urban features and
immediate environments on human physiological responses. Additionally, Li et al. [58]
analyzed the perceptual variables questionnaire data, exploring the influence of urban park
characteristics and psychological factors on the perceived restoration of college students,
shedding light on the emotional and psychological impacts of urban environments on
individuals. On the other hand, empirical data analyzed by Dong et al. [18] contributed to
transit-oriented development and land use planning, providing practical, observational,
and experimental evidence for urban planning strategies centered around transit-oriented
development. Research such as that of Turhan et al. introduced an innovative “Mood State
Correction Factor” (MSCF) for adjusting thermal environments to occupants’ mood states,
extending this approach to outdoor settings for pedestrian comfort [72]. Fan et al. also
integrated machine learning with energy management to optimize consumption without
sacrificing comfort [73]. This convergence of AI, psychology, and environmental science
signifies a shift towards creating energy-efficient urban spaces attuned to the emotional
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well-being of inhabitants, illustrating the potential for AI to foster more livable and respon-
sive cities.

Emotion data and empirical data collectively offer a holistic view of urban dynamics.
Emotion data provide direct insights into the emotional impact of urban settings, aiding
tailored urban planning. Advantages include tangible physiological insights and evidence-
based decision-making. However, interpretation complexities and subjective perceptions
pose limitations. Empirical data’s advantages lie in its factual basis for decisions, while lim-
itations include biases, generalizability concerns, and the need for ongoing data collection
and analysis in ever-evolving urban landscapes.

4.2. Strengths, Limitations, and Implications

Methodological approaches encompassed in urban planning and environmental man-
agement draw upon an extensive range of data types. Each data type serves a unique
purpose, facilitating detailed analyses of urban layouts, green space distribution, mobility
patterns, socioeconomic trends, and the emotional impact of urban environments on indi-
viduals. The strengths of these approaches lie in their ability to provide a comprehensive
and nuanced understanding of urban ecosystems through the integration of sources. High-
resolution imagery and spatial analyses enable precise assessments of urban features and
dynamics, while socioeconomic and emotional data contribute insights into the human
aspects of urban living.

However, these methodological approaches are not without their limitations. Data
quality issues, privacy concerns, and the need for continuous updates pose significant
challenges. The dynamic nature of urban environments, characterized by evolving land
use patterns and shifting population demographics, requires adaptable and responsive
research methods. Furthermore, the interpretation of emotional data and the subjective
nature of some analyses highlight the complexity of understanding urban spaces through
these lenses.

Despite these limitations, the implications of adopting such varied methodological
approaches are profound. They enrich the decision-making process in urban planning
and environmental management, facilitating the development of more livable, sustain-
able, and tailored urban environments. By leveraging the strengths of these diverse data
sources while navigating their limitations, urban researchers and planners can enhance
their strategies, ultimately contributing to healthier and more resilient urban ecosystems.

4.3. Comparative Analysis

Across these themes, AI technologies play a crucial role in enhancing the capabilities of
geo-design and planning. While each theme focuses on different aspects of urban environ-
ments, they collectively demonstrate the versatility and impact of AI in addressing complex
urban challenges. The transition from traditional methods to AI-based approaches signi-
fies a paradigm shift in geo-design, offering more efficient, accurate, and comprehensive
analyses of urban systems.

AI’s integration into geo-design promotes a holistic understanding of urban dynamics,
from transportation systems to human-environment interactions. The methodologies high-
lighted in these themes, including deep learning, machine learning, and data visualization
techniques, illustrate the diversity of AI applications in urban planning. This systematic
review underscores the transformative potential of AI in geo-design and planning, paving
the way for more resilient, sustainable, and human-centric urban environments.

By comparing these themes, it is evident that while the applications of AI in geo-
design are varied, the overarching goal remains the same: to leverage technology to
create more efficient, sustainable, and livable urban spaces. The detailed categorization
and analysis of AI applications within each theme provide a foundation for future re-
search and development in geo-design, highlighting areas of growth and potential for
further innovation.
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4.4. Future Directions

Following the trends, it can be seen that data from various sources are popular data
sources for a currently good AI model, or analysis requires strong data to back it, vis-a-vis
good predictions and insights that can only be guaranteed by a good AI model. Keeping
this fact in mind, the research highlights the use of crowdsourced data, which is prone to
noise, outliers, and incomplete or unstructured data. It can also be unethical as the people
reporting their data might not be consciously aware that their data will be used for studies.
Considering these keys and disclaimers while collecting such data would be more ethical
and ensure more clean data is collected. In the future, integrating large language models
(LLMs), a state-of-the-art text-based and multimodal analysis technology, will be useful.
Once again, its predictions and insights can be different every time, so a good framework
for research might help structure the study.

5. Conclusions

This systematic review has elucidated the diverse and profound ways in which AI
technologies are transforming the field of geo-design and planning. Researchers catego-
rized these technologies into analysis themes and analyzed the literature trends and data
inputs. Our extensive analysis of the literature from the past two decades reveals a marked
trend toward integrating AI in various aspects of geo-design, including urban planning,
environmental modeling, and infrastructure development. Adopting AI technologies,
such as machine learning, neural networks, and spatial data analysis, has significantly
enhanced predictive analysis, decision-making processes, and the automation of complex
geospatial tasks.

The transformative potential of AI in geo-design and planning is evident in its ability to
analyze vast and complex datasets, automate and optimize planning processes, and provide
more accurate predictions and insights into urban and environmental dynamics. These
advancements have enabled a more efficient and effective approach to urban planning and
environmental management, leading to more sustainable and resilient urban environments.

However, the integration of AI in geo-design also presents several challenges. Con-
cerns about data privacy, ethical considerations, and the need for interdisciplinary expertise
are critical issues that must be addressed to ensure the responsible and effective use of AI
in this field. The complexity and novelty of AI technologies require a comprehensive un-
derstanding of their application’s technical aspects and societal implications in geo-design.

In conclusion, AI technologies hold immense promise for revolutionizing geo-design
and planning. They offer new opportunities for addressing the complex challenges of
urbanization, environmental management, and sustainable development. However, to
fully realize this potential, addressing the accompanying challenges and fostering an
interdisciplinary approach that combines technical expertise with an understanding of
geo-design’s social, ethical, and environmental dimensions is imperative. Future research
should focus on exploring these interdisciplinary aspects, developing ethical guidelines
for AI application in geo-design, and advancing AI technologies to meet the specific needs
of this field. This will ensure that AI enhances geo-design and planning practices and
contributes positively to creating sustainable, equitable, and resilient urban environments.

Author Contributions: Conceptualization, methodology, investigation, and visualization, M.C.;
writing—original draft preparation, data curation, W.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository. The data presented in
this study are openly available in Web of Science.

Conflicts of Interest: The authors declare no conflicts of interest.



Buildings 2024, 14, 835 19 of 21

References
1. Deng, X.; Liu, Y.; Gao, F.; Liao, S.; Zhou, F.; Cai, G. Spatial Distribution and Mechanism of Urban Occupation Mixture in

Guangzhou: An Optimized GeoDetector-Based Index to Compare Individual and Interactive Effects. ISPRS Int. J. Geo-Inf. 2021,
10, 659. [CrossRef]

2. Baschak, L.A.; Brown, R.D. An Ecological Framework for the Planning, Design and Management of Urban River Greenways.
Landsc. Urban Plan. 1995, 33, 211–225. [CrossRef]

3. Nishant, R.; Kennedy, M.; Corbett, J. Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda.
Int. J. Inf. Manag. 2020, 53, 102104. [CrossRef]

4. Beheshti, A.; Benatallah, B.; Tabebordbar, A.; Motahari-Nezhad, H.R.; Barukh, M.C.; Nouri, R. Datasynapse: A social data curation
foundry. Distrib. Parallel Databases 2019, 37, 351–384. [CrossRef]

5. Tory, M.; Bartram, L.; Fiore-Gartland, B.; Crisan, A. Finding Their Data Voice: Practices and Challenges of Dashboard Users. IEEE
Comput. Graph. Appl. 2023, 43, 22–36. [CrossRef] [PubMed]

6. Bateman, I.J.; Jones, A.P.; Lovett, A.A.; Lake, I.R.; Day, B.H. Applying Geographical Information Systems (GIS) to Environmental
and Resource Economics. Environ. Resour. Econ. 2002, 22, 219–269. [CrossRef]

7. Eikelboom, T.; Janssen, R.; Stewart, T. A Spatial Optimization Algorithm for Geodesign. Landsc. Urban Plan. 2015, 144, 10–21.
[CrossRef]

8. Song, Y.; Kalacska, M.; Gašparović, M.; Yao, J.; Najibi, N. Advances in Geocomputation and Geospatial Artificial Intelligence
(GeoAI) for Mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [CrossRef]

9. Egerer, M.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Nagendra, H.; Ossola, A. Urban Change as an Untapped
Opportunity for Climate Adaptation. Npj Urban Sustain. 2021, 1, 22. [CrossRef]

10. Batty, M. Big Data, Smart Cities and City Planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [CrossRef]
11. Zhang, B.; Zhu, J.; Su, H. Toward the Third Generation Artificial Intelligence. Sci. China Inf. Sci. 2023, 66, 121101. [CrossRef]
12. Zhao, Q. Artificial Intelligence Study: A Two-Sided Being—Teachings from Book of Changes. Adv. Mater. Res. 2013, 694–697,

2295–2298. [CrossRef]
13. Shi, P.; Ye, T.; Wang, Y.; Zhou, T.; Xu, W.; Du, J.; Wang, J.; Li, N.; Huang, C.; Liu, L.; et al. Disaster Risk Science: A Geographical

Perspective and a Research Framework. Int. J. Disaster Risk Sci. 2020, 11, 426–440. [CrossRef]
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