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Abstract: The properties of a large number of concrete infrastructures in China are deteriorating year
by year, raising the need for repairing and strengthening these infrastructures. By introducing water-
borne polymers into a cement concrete system, brittle cracks and easy bonding performance defects
of concrete can be compensated for to form a long-life, semi rigid, waterborne polymer-modified
cementitious repair material with a promising development prospect. This paper investigates the
modification effect of polymer emulsions on ordinary cement mortar. Our research mainly focused
on the physical and mechanical properties, durability, microstructure and application status of water-
borne polymer-modified cementitious composites. Literature studies show that with the increase
in waterborne polymer content (0 wt%~20 wt%), the performance of cement mortar significantly
improves, which in turn expands its application range. Compared with ordinary cement mortar, the
introduction of waterborne polymers blocks some of the pores in the cement to a certain extent, thus
improving its permeability, freeze–thaw resistance and durability. Finally, this paper describes the
application of waterborne polymer–cementitious composites in western saline soil environments, as
well as discusses the prospects of their development.
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1. Introduction

During the construction of a national economy, concrete is one of the constructional
materials with the widest application and the most abundant use in project works. A
new and enormous market demand for concrete as well as cement products has emerged
in recent decades, leading to a significant increase in the quantity of concrete produced.
Nevertheless, because concrete is a nonhomogenous, multiporous and highly permeable
engineering material, the combination of loading and a saline soil environment will acceler-
ate the corrosion of concrete structures, which will have a significant impact on the service
life of buildings [1,2]. There are currently about 617,000 bridges in the United States, and
approximately 7.5% of them are structurally defective [3]. According to relevant data, the
cumulative demand for bridge repairment in the U.S. is USD 125 billion [3]. This condition
would need to be improved by increasing the bridge rehabilitation expenditures from
USD 14.4 billion per year to USD 22.7 billion per year, which represents a 58% increase [4].
The current rate of investment would require waiting until 2071 to finish all the necessary
restoration [3]. Over the next 50 years, the tendency to concrete deterioration seems irre-
versible. For a considerable amount of time to come, it is expected that the worldwide
construction industry will switch from establishing new infrastructures to renovating and
repairing existing infrastructures. This provides the opportunity to grow a foreign market
for the development and use of repair materials [5,6].
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The advantages of both inorganic and organic materials were merged in waterborne
polymer–cementitious composites, which show promise for the field of concrete rehabil-
itation. In this type of composites, a portion of the cement is replaced with waterborne
polymers, and the three-dimensional spatial network structure [7] that forms inside the
cement mortar fills in some of the pores [8] to create a dense structure. This significantly
improves concrete’s adhesion [9–11], flexibility [12], resistance to acid and alkali corro-
sion [13–15] and impermeability [16,17].

This paper focuses on the modification of common cement mortar with a waterborne
polymer emulsion. Our research mainly involves the characterization of the physical and
mechanical properties, durability, microstructure and application status of waterborne
polymer–modified cementitious composites.

2. Progress of Domestic and International Research on Water-Based
Polymer–Cementitious Composite Repair Materials
2.1. Progress of Research on Water-Based Polymer–Cementitious Composites

Water-based polymer–cementitious composites made their first appearance in 1923,
when the British scholar Cresson [18] initially incorporated natural rubber emulsions in
the form of fillers into road materials, which led to the proposal of polymer-hardened
cement systems. In 1924, Lefebure et al. [19] first proposed the concept of natural rubber
emulsion-modified cement mortar (concrete). In the 1930s and 1940s, natural rubber
was transformed from its initial single form into various types of synthetic latexes (e.g.,
neoprene, polyacrylate, etc.) and resins, which are widely used in bridge deck covering,
paving, flooring, and so on [20–22]. Polymer impregnation, a recently invented method to
produce polymer-modified mortar, was actively implemented towards the end of the 1960s.
This technology was formally introduced in China in 1973 and showed positive results
in projects involving chemical flooring, gas pipelines, the improvement of salt and brine
corrosion resistance, explosion-proof components, etc. However, it has limitations related
to the complex processes it involves, the reuse of residual monomers, cost-effectiveness,
and its few practical applications [15]. From 1970 to 1980, concrete–polymer composites
gradually became the main alternative to traditional concrete in specific applications (e.g.,
wastewater treatment systems, surface treatment and repair works) in Japan, Europe and
the United States [23]. In the late 1980s, it was found that polymer-based and dry materials
can easily bind; therefore, polymer-based admixtures, hardeners, and cross-linking agents
have progressively come to the attention of the general public [24].

2.2. Waterborne Polymer–Cement Mortar Composite Material
2.2.1. Workability

In principle, it seems reasonable that mortar modified with waterborne polymers
would flow with greater ease than ordinary cement mortar. This is mainly due to the
fact that the hydrophobic groups contained in the polymer chains can help to improve
the air-entraining properties of mortar and also reduce the shear stress generated during
mixing [18]. Furthermore, polymer particles are encircled by other polymer particles, which
creates the ‘micro-bead effect’, lowering the friction inside the cement matrix by creating
‘ball bearings’ [25]. Simultaneously, the surfactant incorporated into the latex to mitigate
suspension segregation functions as a water reducer [26], considerably diminishing the
amount of water required. This is reflected in the improved fluidity and decreased viscosity
of the altered cement mortar. For example, Bi et al. [27] found that the larger the amount of
styrene–butadiene rubber (SBR) used, the more obvious the increase in fluidity. When the
polymer/cement ratio (P/C) reached 15%, the flowability reached a maximum of 270 mm,
which was a significant increase of 145.5% compared to flowability of the blank control
group. The same results were also obtained by Ukrainczyk et al. [28]. They found that
the modified cement mortar’s consistency reached its maximum value of 195 mm with
9% of styrene–butadiene latex, which was 30% higher than the original modified cement
mortar’s consistency (150 mm). Wang et al. [29] found that the styrene–acrylic emulsion
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(SAE) powder has a certain water reduction effect. When the amount of doped SAE was
below 3%, the water reduction rate increased linearly and reached the highest value in the
presence of 3% SAE, which represented a 24% increase. There was no discernible rise in
the water reduction rate with a further increase in the SAE dosage. In addition, the SAE
powder showed a certain water retention ability as well. This was manifested by the fact
that as the dosage increased, the water retention rate continued to improve and reached a
maximum with 20% SAE, showing an increases of 16.5% compared with the water retention
rate of ordinary mortar. Wong et al. [30] analyzed the ease of use of polymer–cementitious
composites (PMCM) and found that the styrene–acrylic emulsion (SAE) can improve the
flowability and toughness and reduce the water absorption properties of common silicate
cement (OPC) or calcium sulphoaluminate (CSA)-based materials. Kim et al. [31] concluded
that the incorporation of less than 2% of polyvinyl alcohol (PVA) in plain cement mortar
can reduce the viscosity of the composite. Allahverdi et al. [32] investigated the effect of
different water/cement ratios and polymer/cement ratios on the usability of modified
cement mortar. They found that a small amount of PVA can improve the flowability of
cement mortar.

Lu et al. [33] compared the effects of three polymer emulsions derived from monomers,
methacrylic acid (C2), sodium persulfate (S2) and 2-acrylamido-2-methylpropanesulfonic
acid (T2). The authors found that the flowability of the cement paste decreased (25~50%)
and the plastic viscosity increased (25~250%) with the increasing polymer dosage.

This contrasting rheological properties can be attributed to differences in the apparent
viscosity of the polymer used, the solids content of the suspension, the surface charge of the
polymer, the polymer particle size and the glass transition temperature [34]. Some water-
soluble latexes agglomerate in the gelling matrix, which tends to increase the viscosity of
the interstitial phase [35]. In addition, polymers with higher viscosity and solids content
tend to reduce the fluidity of the cement matrix compared to polymers with lower viscosity
and solids content.

For polymer-modified cement mortars with increased plastic viscosity and poor ease
of use, Kim et al. [36] suggested that pre-wetting methods or nano-SiO2 can be used to
improve the ease of use.

In summary, there is an ongoing debate on the impact of polymers on the rheological
properties of cement mortars. Furthermore, cement will eventually solidify and harden,
turning from a plastic slurry to a stone-like body with a certain strength after being mixed
with water. At the same time, this process is accompanied by phenomena such as exother-
mic hydration, volume change and strength growth, which indicates that a series of complex
physical, chemical and physicochemical changes are produced. In addition, the reaction
of polymers in cement mortars is not completely controllable. Further research should
address the effect of polymers on the flow properties of cement mortar materials to ensure
the control of the polymer effects.

2.2.2. Mechanical Properties

To achieve the long-term stability of a construction, appropriate mechanical qualities
must be available. While it is cheap and compressive, ordinary cement mortar is not very
flexible. Materials made of organic polymers are more flexible and have stronger bonds and
better water retention. Thus, the performance of cementitious materials can be effectively
improved with the addition of polymers, which has been a topical research issue in recent
years [37].

Pang et al. [38] investigated the effect of self-emulsifying epoxy resin (EEP) and exter-
nally emulsifying epoxy resin (NEP) dosing from 5% to 80% on the mechanical properties
of cement mortar. The findings demonstrated that while the extensibility increased, the
compressive strength of cement mortar tended to decrease with the increase in the resin
content. Apparently, a stronger toughening effect of NEP compared to EEP was observed;
moreover, the flexural strength of NEP-modified cement mortar reached a minimum value,
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which was still higher than the flexural strength of the whole group of EEP-modified
cement mortars after 28 days, with an epoxy resin amount of 40%.

Wang et al. [39] measured the compressive and flexural strengths of cement mortar
modified with styrene–butadiene latex (SBR) under various curing conditions (wet curing
and mixed curing). The results showed that, under wet and mixed curing circumstances,
the compressive and flexural strengths of the composites increased initially, then dropped as
the polymer dosage increased, and finally remained almost constant. However, in general,
the flexural strengths increased. Furthermore, the longer the curing time, especially in
mixed settings, the greater the strength at the same polymer/cement ratio. For example,
adding 8% of styrene–butadiene latex (SBR) increased the flexural strength at 28 days of age
under mixed curing conditions by approximately 25.4% compared to the value obtained in
wet curing conditions.

Fan et al. [40] created a modified cement mortar by including carbon nanotubes (CNTs)
and the styrene–acrylic emulsion (SAE) and then conducted trials to measure the mortar’s
compressive and flexural strengths. It was discovered that the addition of the styrene–
acrylic emulsion (SAE) significantly increased the mortar’s flexural strength while having
the reverse impact on its compressive strength. When it came to modified cement mortar
with ages of 3, 7 and 28 days, a 15% SAE content produced an approximately 15%, 11 and
12% higher flexural strength compared to that of regular cement mortar, respectively. At
this polymer/ash ratio, the modified cement mortar’s compressive strength value was
minimized concurrently.

Chen et al. [41] examined how ethylene vinyl acetate (EVA) affected cement mortar’s
mechanical strength. Figure 1 demonstrates how the composites’ compressive strength
steadily decreased when the EVA dose was increased at the ages of 6 h, 3 days and 7 days.
The decrease in the composites’ compressive strength after 3 days was more pronounced
when the poly/ash ratio remained constant at 0% wt~2% wt. When the EVA content was
1.0%, the modified mortar’s flexural strength peaked, showing a tendency to increase before
decreasing. At this point, the flexural strength at the 6 h, 3 d and 7 d ages increased by 25%,
37.5% and 42.9%, respectively, in comparison to that of regular cement mortar.

Bi [42] investigated the impact of waterborne polyurethane on the mechanical charac-
teristics of cement mortar at various cement-to-polymer ratios. According to the results,
which are displayed in Figure 2, ordinary mortar has a compressive strength between 67
MPa and 72 MPa, whereas waterborne polyurethane–cement mortar has a compressive
strength between 48 MPa and 56 MPa. Additionally, when waterborne polyurethane was
added, the compressive strength of the mortar after 28 days was about 30% lower than that
of ordinary mortar. In contrast, the materials’ flexibility and stickiness were enhanced by
the addition of waterborne polyurethane; after 28 days, the flexural strength and tensile
strength reached 12 MPa~14 MPa and 6 MPa~8 MPa, respectively.

2.2.3. Bonding Strength

For concrete surfaces, bonding strength can generally be defined as the tensile strength
perpendicular to the interface between the two layers in concrete [43]. The bonding strength
between cementitious repair materials and the substrate can be evaluated by various test
methods, and the available test methods can be categorized as follows (Figure 3):

(1) Tensile bonding. It mainly includes positive tensile bonding [44] and split bond-
ing [45].

(2) Direct shear bonding. It mainly includes L-type, single-sided shear [46], and double-
sided shear.

(3) Bending and pulling bonding.
(4) Compression diagonal shear bonding.
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test. OCM—ordinary cement mortar (substrate); ECM—epoxy resin-modified OPC mortar [9].

With the exception of the sample preparation technique, the flexural bond strength
test and the flexural strength test are comparable. They not only establish the flexural bond
strength, but also show the overall damage pattern at the repair interface through different
fracture locations and section conditions [47]. Testing the shear bond strength of a fixed
specimen entails applying a weight perpendicular to the interface. It can ascertain the
repair material’s shear resistance [48]. The tensile strength can be directly determined using
the pull-out bond strength test. In this test, a square steel block is effectively bonded to the
sample surface using an epoxy adhesive, and then a vertical tensile force is applied until
the interface breaks. The bending resistance and monolithic damage pattern of the repaired
interface are determined by the bending bond strength test; the shear bond strength test, tilt
shear test, and push-out test are used to determine the shear resistance, while the pull-out
bond strength test, split–pull bond strength test, and core-pull–release bond strength test
are designed to determine the tensile strength.

Given variations in the modulus and coefficient of thermal expansion, the aggregate
and mortar may expand and contract to various degrees inside the high-porosity [49–51]
interfacial transition zone (ITZ) that forms between the old concrete and the repair material.
Under the effect of water infiltration, microcracks within the ITZ expand [52], and the
interfacial stress concentration leads to interfacial delamination. In order to ensure the
integrity and operation of the restored structure, effective bonding is therefore necessary to
withstand the aforementioned forces [53].

He et al. [54] discovered a linear relationship between the mechanical strength and
interfacial roughness of both new and old concrete. This implies that increasing the
interfacial roughness can significantly improve the mechanical interlocking effect between
the two types of concrete, with interfacial roughness being the primary mechanism for
bonding the two types of concrete. Nevertheless, there are still pores in the concrete between
the old and the new layers, and microcracks will continue to form. The organic–inorganic
composite matrix [55] and the polymer particles formed by cross-linking will force the
denser hydration products or bonding paste to penetrate the small pores or interstices of
the old concrete, causing the pores in the area to be filled and reducing the porosity [56].
Polymer particles can be adsorbed on top of cement particles and gravel particles at the
same time and as cement hydration proceeds. A denser transition zone between the old and
the new concrete is anticipated to be created by the hydrophilic polymers’ ability to adsorb
moisture or water and adhere to the aggregate’s surface. Simultaneously, the dehydration-
induced polymer film can act as a bridge between the aggregate and the rigid mortar,
efficiently dissipating the fracture energy during the bending and tensile deformation
processes. This allows the energy to be transferred and stresses within the concrete matrix to
be evenly distributed, which rapidly alleviates the pore structure expansion and contraction
caused by the external force [57]; otherwise, the cross-linking effect based on the interfacial
adherence to the interpenetrating mesh structure within the matrix can be achieved through
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crack deflection and the bridging effect to delay the emergence and expansion of cracks [58,59],
also thanks to the strong adhesion to the surface of the old concrete substrate.

Pang [60] analyzed the bond strength of two types of waterborne epoxy (self-emulsifying
emulsion NEP, external emulsion EP)–cementitious composites (NEPC and EPC) at the age of
7 days and 28 days by testing the positive tensile bond strength and the compressive slant
shear strength. The findings demonstrated that there was no discernible improvement in the
compressive diagonal shear strength, but the positive tensile bond strength of both kinds of
modified mortars tended to rise with an increase in the P/C ratio and a prolongation of the
curing time. When compared to the unmodified mortar, the 28-day bond strength in the case
of NEPC was the highest at the 80% epoxy emulsion dosage, reaching a tensile bond strength
of 2.6 MPa and a compressive shear strength of 8.1 MPa, corresponding to increases of 36.8%
and 5.2%.

Kim et al. [61] examined the effects on the adhesive properties of cement mortar, which
were defined by measuring the positive tensile bond strength, of adding four different poly-
mers to the mortar at the same water/cement and polymer/cement ratios. The polymers
used were an acrylic emulsion (AC), polyvinyl alcohol (PVA), styrene–butadiene rubber
latex (SBR), and a redispersible latex powder (EVA). It was demonstrated that adding
polymers to mortar enhances its adhesive qualities and bond strength as the curing period
is extended. For instance, at the age of 28 days, the bond strengths of the four modified
mortars, in the order of AC-modified mortar, PVA-modified mortar, SBR-modified mortar
and EVA-modified mortar, were 3.41 MPa, 3.68 MPa, 3.71 MPa and 3.42 MPa, respectively,
showing a noticeable increase (18.5%~27.9%) compared with the bond strength of ordinary
cement mortar (2.88 MPa). It is clear that SBR induced the highest increase.

2.2.4. Durability

Aggarwal et al. [62] created a polymer system based on an epoxy emulsion and
compared the durability characteristics of acrylic-modified mortar with those of the new
cement mortar modified by the epoxy emulsion. The epoxy emulsion-based cement demon-
strated superior resistance to carbonation. For instance, the carbonation depth of the
epoxy emulsion-based mortar was 45% lower than that of the ordinary cement mortar at
a poly/cement ratio of 10%, while that of the acrylic-based mortar was reduced by 28%.
When the epoxy emulsion was incorporated at 20%, the carbonation depth was greatly
reduced (by about 75%). Similarly, the resistance to chloride penetration improved with
an increasing polymer dosage. At 10% epoxy or 20% acrylic doping, the depth of chloride
penetration resistance of the composite was reduced by approximately 40%.

Ying et al. [63] compared the effects of ordinary epoxy resin emulsion and graphene-
modified epoxy resin emulsion on the durability of cement mortar. The results showed
that after 175 freeze–thaw cycles, the mass loss of ordinary mortar was as high as 5.13%,
which was much larger than those of EP–mortar (0.71%) and modified EP–mortar (0.64%).
The mass losses of modified EP–mortars and EP–mortars after 300 freeze–thaw cycles
were 1.38% and 1.30%, respectively, and were still significantly lower than the 5.13% mass
loss of regular mortar. The relative dynamic modulus of regular mortar underwent a
substantial fall after 175 freeze–thaw cycles, while the two ordinary mortars modified with
epoxy showed a minimal decrease, leading to 99.4% (EP–mortar) and 99.6% (modified EP–
mortar) of the relative dynamic modulus after the same number of cycles. When comparing
the three mortars’ respective chloride concentrations on the exposed surface at different
depths, regular mortar showed higher concentrations than the EP–mortar and the modified
EP–mortar throughout nearly the whole depth range from 0 mm to 30 mm. The results
suggest that the epoxy resin or graphene-reinforced epoxy resin is useful in preventing
environmental chloride from penetrating mortar.

2.2.5. Modification Mechanism of Waterborne Polymers

Above all, the addition of water-based polymers has significantly enhanced the bond
strength, flexural strength, and durability (especially carbonation, chloride penetration,
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and frost resistance) of cementitious materials, while negatively affecting their compressive
strength. Some scholars explained the above phenomenon as reported below.

Cement Hydration Delay

Based on research by Taylor [64], the typical calorimetric curve of ordinary silicate
cement is shown in Figure 4. It is usually divided into five phases, i.e., the initial phase,
the induction phase, the acceleration phase, the deceleration phase and the prolonged
slow reaction phase. When polymers are added to a cement mortar system, they have
the potential to partially cover the surface of some unhydrated cement particles and slow
down the hydration of the cement in two different ways: one way is by delaying the
appearance of the main hydration peak, and the other way is by delaying the start of the
accelerated (or induced) phase [65]. In addition, polymer latexes are dispersions in water
of polymer particles with sizes of 0.05–5.00 µm. During the ion solubilization and dynamic
equilibrium phases, the polymer particles with reactive groups (e.g., hydroxyl groups,
carboxylates) and negative charges can induce the adsorption of calcium and magnesium
ions present in the aqueous solution and the encapsulation of cement particles [66]. This
adsorption prolongs the time for the ionic concentration around the cement particles
to reach supersaturation, leading to a decrease in the pH of the pore solution and a
prolongation of the induction period [67–70], a process that facilitates the exothermic
dissolution of the cement. Encapsulation inhibits the cement’s contact with water and
lengthens its hydration time, while also increasing the spatial site resistance between the
cement particles, which prevents the formation of hydration products and the cross-linking
of the cement. Kong et al. [65] noted that there may be a considerable correlation between
the system’s carboxyl group concentration and the slowing effect on cement hydration.
They discovered that the main hydration peak in the accelerated period continuously
moved to the right, that the height of the hydration peak decreased as the polymer dosage
increased (Figure 5) and that the polymer latex (L1) made from a copolymer of styrene and
acrylic acid (MAA) promoted a longer induction period. L1 contains more R-COO- groups,
as determined by potentiometric titration. In other words, the electrostatic interaction
between anions with a high charge density (R-COO- groups) and metal cations on the
mineral surface is stronger, and the delaying effect s more pronounced (Figure 6). It was
suggested that the polymer latex would also achieve the retardation effect by reducing the
hydration rate in the accelerated period and the total heat generation at a certain age [71,72],
besides prolonging the induction period. This is consistent with the findings of Kong et al.
In contrast, in most cases, delays in setting and hydration lead to a reduction in the early
strength of the cementitious matrix [73,74].
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In summary, the polymer inhibits the contact between cement and moisture mainly
through the complementation of polymer particles with Ca2+, hindering the formation and
cross-linking of hydration products (especially, hydrated calcium silicate), prolonging the
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hydration time and lowering the early strength of modified mortar. This phenomenon is
more obvious in polymer–cement mortar composites containing reactive groups.

Air Entrainment

It is typical that the polymer emulsions used in the preparation of mortars usually
entrain a considerable amount of air [75–77]. Air is trapped inside the cement paste as
whirlpools that form while mixing [78]. For these gasses, the hydrophobic groups carried
by the polymer will help to generate and stabilize bubbles. The reciprocal repulsion of
the groups causes these bubbles to gradually disperse throughout the cement mix. Air
replaces a portion of the slurry’s particles, creating closed, spherical pores with pore sizes
between 10 and 300 µm. These pores can make the modified mortar less dense and more
porous, forming a hollow and collapsed structure inside the mortar that is unable to
withstand larger loads and manifests itself as a reduction in compressive strength. These
pores can reduce the sliding resistance of the cement particles as well as the transport of
aggressive ions and gases and significantly improve the fluidity and frost resistance of
the mortar [79,80]. As concluded by other researchers [81,82], the compression-related
weaknesses of polymer-modified cements can be compensated to a large extent by their
improved flowability.

In conclusion, on the one hand, the air-entraining effect of polymers significantly
improves the compactness and fluidity of mortar due to the formation of closed pores, and
on the other hand, the porosity increases, and the mechanical properties decrease.

Curing Condition

Shi et al. [83] investigated the effects of the styrene–acrylic emulsion (SAE) and styrene–
butadiene latex (SBR) on the mechanical properties of ternary binders composed of sili-
cate cement, alumina cement and hemihydrate gypsum under various humidity curing
conditions (water curing condition: 100% humidity, 22 ± 2 ◦C; natural curing condition:
50 ± 10% humidity, 22 ± 2 ◦C; and standard curing condition: 90 ± 5% humidity, 22 ± 2 ◦C).
The results showed that the flexural and compressive strengths of the two polymer latex-
modified mortars gradually increased with the extension of the curing time, regardless of
the humidity conditions, but both were lower than those of the unmodified cement mortar.
It is noteworthy that both types of composites’ flexural strength increased significantly
with the increasing polymer dosage at 28 days and under water-curing conditions (100%
humidity and 22 ± 2 ◦C). The maximum flexural strength of the was reached at P/C = 16%
(SBR) and 12% (SAE), which represented increases of 11% and 19%, respectively, over
the unmodified mortar. Chen et al. [84] examined the effects of SBR and SAE on silicate
cement–aluminate cement–gypsum (OPC–CA–gypsum) at different curing temperatures
(40 ◦C, 60 ◦C). The findings indicated that while both SBR and SAE were useful for raising
the flexural strength and toughness of OPC–CA–gypsum mortar, SAE performed the best.
So, it is implied that the curing temperature affects the morphology of the polymer film
and hydration products and the extent of their formation, which consequently affects the
performance of polymer-modified OPC–CA gypsum. This was verified in the study of
Li et al. [85]. The conclusion was reached that high temperatures promote the creation of
compounds containing carboxylates as well as pore refinement, a decrease in the thickness
of the polymer film, and an increase in the number of pores in the polymer film, all of
which alter the mortar mechanical properties. In the above study [68], Wang et al. found
that the addition of polymer can greatly improve the flexural properties of mortar under
wet–solid mixed curing conditions. Some scholars proposed the following two ways of
wet–solid mixed maintenance. One technique involves initially setting the mortar mold-
ing at 20 ± 3 ◦C with a relative humidity of 90% or higher in the fog room for 7 d (wet
maintenance) and then setting it at ambient temperature for 21 d (dry maintenance); the
other involves placing the mortar molding in water at 20 ± 3 ◦C for 5 d and then at 20
± 3 ◦C with relative humidity of 60% with respect to that of the maintenance conditions
for 21 d. The first setting involves operating in 20 ± 3 ◦C water with 80% or higher hu-
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midity with respect to that of wet maintenance for 2 d. Combined with the results of a
previous study [37] and others in the literature [86], it can be seen that water curing is
more conducive to the hydration of ordinary cement mortar compared with wet curing,
and the strength of the cement grows; however, this is not observed for polymer-modified
mortar. Dry curing at a later stage is conducive to polymer (latex, powder) agglomeration
on the hydrated cement [87–89], resulting in the creation of a polymer film or a network
structure. This process produces higher strengths more quickly than those observed in
regular cement mortars.

Furthermore, Beeldens et al. [90] and Li Bei et al. [91]. concluded that the curing
temperature should be higher than the minimum polymer film-forming temperature, or the
tightly packed polymer particles could not form a continuous film or reticular structure [92].

In conclusion, conditioning temperature and conditioning humidity have the biggest
effects on polymer modification under conditioning circumstances. The polymer’s ability
to form a film and fully utilize its high flexibility and elasticity is determined by the
maintenance temperature. The rate at which mortar loses water is influenced by the
humidity; the faster the mortar dries out, the more favorable conditions exist for the
polymer to form a film and a three-dimensional mesh structure.

Pore Structure

When concrete is solidified, the ‘wall effect’ and ‘microleakage effect’ within the
matrix induce a water film to form around the aggregate; at this time, the water/cement
ratio near the aggregate is higher than in the mortar, and the pore space in the interface
area increases [93]. When a polymer emulsion (powder) is mixed as an additive (such
as a plasticizer) [94], the concrete’s internal stress tends to balance (similar to drying
shrinkage), and the process creates a significant number of bubbles and pores. The polymer
intermolecular tensions will rise once again. A 10% increase in pore volume will result in
a 50% decrease in compressive strength. On the one hand, the introduced gas will form
pores in the mortar after it hardens, affecting the internal compactness. On the other hand,
the increase in pores will cause a decrease in the compressive strength of the concrete,
especially under fatigue loading [95].

Zhang et al. [96] studied and compared the changes in the pore structure parameters
(characterized by TPV, porosity, SSA, and APD) of plain concrete (PC) and unsaturated
polyester resin-modified concrete (UPMC) under single loading as well as under the
interaction of hygrothermal effect and fatigue loading (FH) and classified the effect of the
force into four stages (i.e., I, II, III and IV), as shown in Figures 7 and 8. In the initial stage,
the compound effect of early compression and splitting of the pores causes an increase in
the density of concrete. Under the influence of loading and of the interaction of FH with
the hygrothermal effect, the pores are stimulated to develop, small pores compress, and
large pores expand, and the proportion of harmful pores increases [97]. For example, when
a single loading is applied to ordinary concrete, the volume fraction of the more hazardous
pores increases by 371.48% (stage II), 439.31% (stage III), and 469.17% (stage IV). The
ultimate expansion of the large pores affects the small pores with the continuous addition
of unsaturated polyester resin and the extension of the phase of action of the applied force,
as shown by an increase in the APD values of UPMC materials, under the interaction of FH
with the hygrothermal effect, by 92.12% (stage II), 80.23% (stage III), and 51.75% (stage IV)
relative to the initial values. Additionally, at every stage of external activity, the SSA value
of UPMC is lower than that of regular concrete, and the pore structure is continuously
homogenized and polished. Concurrently, the film resulting from the desiccation of the
unsaturated polyester resin is affixed to the inflexible cement mortar. This mitigates the
extent of pore structure expansion [57] and contraction caused by external forces by evenly
distributing the stress within the concrete matrix. Furthermore, in comparison to that of
regular concrete, the porosity reduction rate of UPMC is 11.54% (stage I), 19.30% (stage II),
6.21% (stage III), and 15.38% (stage IV).
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Polymers

Most of the polymer emulsions used in the field of modified cements can be classified
into two groups due to their differences in the polymer chains. One type of polymer has no
reactive groups in their polymer chains, while the other type contains them. For the purpose
of modifying cement mortars, Wang et al. [98] examined and compared the modification
methods of two typical polymers (XSBRI, a carboxy styrene–butadiene latex, and SBR, a
styrene–butadiene latex). As shown in Figure 9, there is a noticeable difference between
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the infrared spectrum plots of the two polymers. It is clear that the tensile vibration peaks
of XSBRI at 1700 cm−1 and 1150 cm−1 corresponding to C=O and C-O in the carboxylate
group (-COOH) [99], respectively, are not obvious in the SBR plots. The strength of the
SBR-modified mortar was consistently higher than that of XSBRI, despite the fact that
the compressive strength of the composites decreased in the presence of the polymer.
Furthermore, SBR did not significantly increase the flexural strength as much as XSBRI.
There might be a solution to this from a micro-perspective. The authors found that the
∆H of the SBR-modified cement mortar did not change significantly with the increase in
polymer amount, as shown in the DSC plots (Figure 10), which implyed that the amount
of CH crystals in the composite was almost unchanged, as evidenced by the infrared
spectroscopy (FITR) plots (Figure 11a) in the presence of 12.5% SBR doping after 28 days.
The characteristic peaks of the SBR latex polymer chains are still present, despite a change
in shape, and this result also tentatively indicates that no chemical reaction occurred in
the SBR-modified mortar, but there was a physical reaction. The ∆H values of the XSBRI-
modified cement mortar decreased from the initial 116.57 J/g−1 to 75.34 J/g−1, showing a
decrease in CH crystals. The vibrational peak of C=O at 1700 cm−1 nearly vanished in the
related FITR plot (Figure 11b), and the distinctive carboxylate (-COO-) peaks emerged at
1580 cm−1 and 1410 cm−1 with 12.5% polymer doping [100–102]. It can be guessed that this
was due to the fact that the H+ ion on the carboxylate group in XSBRI was replaced by metal
ions in the pore solution to form -COO- [103–105], and the CH crystals in the system were
constantly consumed. In other words, the carboxyl group (-COOH) in the XSBRI-modified
mortar was involved in the chemical reaction. Furthermore, SEM analysis revealed that
the hydrated crystals were covered by both SBR (Figure 12) and XSBRI (Figure 13) latex
films, which simultaneously filled the pores and fissures of the modified cement system.
It is interesting to observe that the formation of fibrous membranes and interconnecting
hydrated crystals in the presence of XSBRI, as shown in Figures 12 and 13—that is, the
formation of a network structure in the XSBRI-modified mortar—did not occur in the
presence of SBR.
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Given the above, for polymer latexes (powders) that do not contain reactive groups,
the reaction process with cement mortar consists of physical reactions only, which means
that the polymers are connected from flocs to a film in the cement slurry along with the
process of hydration of the cement. The coherent polymer film will create an internal barrier
to free water movement, filling the cracks and pores of the cement (filling effect). This will
enhance internal curing (i.e., reduce porosity) and reduce the expansion of microcracks
within the matrix [72], as demonstrated by the studies mentioned above, which also showed
decreased water absorption and increased toughness, impermeability, and frost resistance.
This mechanism is called physical modification mechanism (Figure 14). Additionally, the
reactive groups will react with the calcium ions (Ca2+) released during cement hydration to
form new compounds. This process will increase the cement material’s degree of hydration,
inhibit or shrink the nucleation of crystallization, as well as decrease the crystal orientation
of calcium hydroxide (C-H) within the ITZ and promote the formation of polymer–cement
hydration products and the composite structure of dense calcium–silicate–hydrate (C-S-H)
gels [106,107]. This phenomenon increases the amount of hydration products and makes up
for the strength loss brought on by the excessive porosity caused by air entrainment. The
flexural strength of mortar treated with XSBRI latex was demonstrated to be greater than
that of mortar treated with SBR latex in a study conducted by Wang et al. [98]. Chemical
modification mechanism is the name given to this mechanism (Figure 15).
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Figure 11. (a) Comparison of the FITR spectra of SBR latex and SBR latex-modified cement; (b) compar-
ison of the FITR spectra of XSBRI and XSBRI−modified cement; (c) FTIR spectra of XSBRI−modified
cement at 28 days; (d) FTIR spectrum fitted result of XSBRI−modified cement at 1800−1250 cm−1

with a polymer/cement ratio of 12.5%; (e) FTIR spectrum fitted result of XSBRI-modified cement at
1800−1250 cm−1 with a polymer/cement ratio of 2.5%; (f) variation of A−-COO/A2−CO3 with the
polymer/cement ratio [98].
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the pores and cracks in SBR latex modified cement system [98].
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Figure 13. The microstructure of XSBRI−modified cement at 28 days, (a) the XSBR covered the
surface of hydration crystals; (b) XSBR latex film filled into pores and cracks of cement; (c,d) the
XSBRI fiber–like film and hydration crystals connected with each other and latex particles filled in
the pores of cement [98].
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Furthermore, the early stage of polymer inclusion shows a tiny rise in compressive
strength, but a decrease in later stages. It may be due to the filling effect of the polymer that
slightly increases the compressive strength. However, when doping increases, the polymer
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film—which previously exhibited great elasticity and flexibility—becomes thicker [108],
worsening the mechanical properties [109–111], increasing rigidity, and lessening the
sensitivity to external stress; conversely, the composite’s water transport is impeded by
the continuous polymer sheet. As a result, less water is needed for the cement to hydrate,
which lowers the rate of hydration and leads to fewer hydration products. The compressive
strength consequently drops. This explains why flexural strength decreases with the
increasing polymer dosage.

3. Application of Waterborne Polymer–Cement-Based Composite Repair Materials in
the Western Saline Environment

According to the global map of saline soils released by the Food and Agriculture
Organization of the United Nations on 20 October 2021, there are currently more than
833 million hectares of saline soils globally, accounting for about 8.7% of the Earth’s total
area [112]. In China, the area of saline soil is about 3.69 × 107 hm2, and the area of saline
soil in northwest China is about 69.03% of the national area [113,114]. A broad word
encompassing saline, alkaline and different types of salinized and alkalized soils that
contain high levels of calcium carbonate, sodium sulfate and calcium chloride is ‘saline soil’.
Long-term exposure to a saline environment causes a large number of corrosive ions, such
as SO4

2−, Cl−, Mg2+ and CO3
2−, to diffuse, crystallize, dissolve, recrystallize, expand and

deform through the initial cracks and pores in concrete structures. This eventually causes
cross-cracks to form on the inside and outside of a structure, which ultimately lead to
structure instability or even collapse [115]. In addition, compared with mild-climate areas,
Northwest China has a large temperature difference between day and night, lower humidity,
dryness [116] and other environmental characteristics that cause the internal evaporation
and migration of water in concrete [117]. Thus, concrete’s mechanical qualities [118] will be
diminished by increased capillary stress and uneven temperature stress, which will make
concrete more prone to cracking.

As mentioned previously, polymers can effectively improve the compactness of mortar,
increasing its resistance to erosion by external corrosive ions. Li et al. [74] prepared SBR-,
SAE- and polyacrylic acid emulsion (PAE)-modified CSA cement mortars and evaluated the
changes in the mechanical properties of all three materials under sulfate attack. As shown
in Figure 16, when subjected to sulfate attack, the flexural strength of the cement mortar was
not significantly affected, but sulfate attack had a large effect on the compressive strength.
With the increase in sulfate solution concentration and polymer dosage, the compressive
strength of SAE- and PAE-modified cement mortar showed a decreasing trend. In addition,
the flexural strength coefficients of SAE- and PAE-modified mortars increased with the
addition of 20% polymer in 5% sodium sulfate solution (Figure 17), which showed that the
addition of polymer latex helped to improve the resistance to sulfate attack.
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Łukowski et al. [119] created a polyacrylate–cementitious composite and compared
the elongation, mass, and compressive strength of composite samples submerged in water
and in a 5% mass fraction solution of magnesium sulfate. While the specimens submerged
in water showed almost no significant changes, it was indicated that the elongation, mass,
and compressive strength of the composites decreased continuously with an increase in the
polymer dosage under sulfate attack. Additionally, the elongation showed an increase with
age at the same poly/cement ratio. At 42 months of age, the elongation of the modified
mortar with P/C = 20% was 44% less than that of the unmodified cement mortar, as
illustrated in Figure 18. In terms of mass (Figure 19) and compressive strength (Figure 20),
the composites showed an increasing and then a decreasing trend with age, and the higher
the content of the polyacrylic acid emulsion, the more significant the loss of mass, so that
the mortar mass reached its lowest value corresponding to 20% of the original mass, which
was 38.6% lower than that of the control group (Figure 19).
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Lu et al. [120] used sodium persulfate (initiator) and an emulsifier in dosages of 4‰
and 5‰, respectively, to produce the styrene–acrylic emulsion (SAE), which was then
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incorporated into alumina sulphate cement, and evaluated the changes in the flexural
strength and sulphate erosion resistance coefficients of the modified mortars when they
were placed in a sodium sulphate solution with a mass fraction of 3% and in water. The
findings demonstrated that, in all environments, the flexural strength of the polypropylene
emulsion–cement mortar composites with an initiator of 5‰ was always greater than that
of the modified mortar containing 4‰ of the initiator. This strength developed as the
polymer content increased and peaked at P/C = 7.5%, with values of 10.53 MPa and 9.92
MPa after immersion in 3% sodium sulfate and in water, respectively, exceeding that of the
blank control group. It can be seen that the polypropylene emulsion improved the ability
of cement mortar to resist sulfate erosion.

4. Summary and Prospects

Through summarizing the effects of different polymers on the workability, mechanical
properties and durability properties of cement mortar, this paper found that polymers
added to cement mortar have the following three main effects:

(1) Polymer particles are adsorbed on the surface of cement, preventing the contact
between cement and water and delaying the hydration of cement, which is manifested
in the prolongation of the setting time and the reduction in early strength;

(2) In addition to improving ease of use, impermeability, etc., and the reduction of
viscosity, with the hydration of cement, the aggregate and the aggregated polymer
particles crosslink to form a thin film layer. On the one hand, this film can improve the
flexibility, toughness, adhesion and durability of cement mortar by taking advantage
of high elasticity and filling effects; on the other hand, it hinders water transport and
lowers the rate of hydration, particularly in the presence of high polymer dosages,
and manifests as a decrease in mechanical strength;

(3) The polymer will have a significant impact on cement mortar depending on curing
conditions (such as temperature, humidity), pore structure, polymer phase, cement
hydration and other factors. The detrimental effects of these conditions should be
taken into account in the subsequent application processes, and positive and effective
steps should be taken to reduce them.

Many thermoplastic or other thermosetting polymers are now widely used to modify
cementitious systems for repair, injection, bonding [121] and waterproofing [122] applica-
tions. They are used in various forms such as liquid resins, latexes, redispersible powders
and water-soluble homopolymers or copolymers. The most important characteristic of a
composite material is the designability of its properties and structure, which are found
in polymer–cementitious composites. Therefore, in order to achieve an optimized design
and enable the adaptation of the obtained material to various occasions, it is necessary
to select appropriate polymers and design reasonable structures based on the properties
of the polymers and the cement, in accordance with the requirements of the material
properties at the site of use. For the purpose of providing some reference value to real
projects, this study summarized and compared the performance of polymer latex (powder)
used in the aforementioned research. The results, shown in Table 1, indicated that SBR
showed an excellent performance in terms of both mechanical properties and durability.
It is made of copolymerized butadiene and styrene, and a study [84] cited above attests
to the fact that it has higher heat resistance than natural rubber. As a result, SBR can be
suitable in hot, dry climates (particularly for projects that cannot be water-cured after
construction). Additionally, SBR has exceptional bonding qualities even in damp envi-
ronments and a certain level of crack resistance. SBR is also one of the repair materials
with ideal comprehensive performance and a fairly reasonable cost. Comprehensively
speaking, SBR–cement mortar composite repair materials can be applied to roads, bridges,
hydropower dams and municipal engineering and other repair projects. Epoxy-modified
mortar shows significantly advantageous mechanical properties, which may due to the
epoxy resin emulsion being a thermosetting polymer, the high degree of inter molecular
crosslinking and the formation of a body-type mesh structure, leading to strong rigidity
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and very good heat resistance. While polyurethane emulsion-modified mortar has a slower
curing reaction [123,124] and is more prone to chalking, yellowing and discoloration than
epoxy resin emulsions, the latter are more durable and cannot be readily destabilized in a
medium-alkaline environment. Therefore, a polymer-modified cement mortar based on an
epoxy emulsion should be more appropriate for use in structures exposed to high humidity
conditions or immersed in water, structural repair projects requiring a high degree of
strength, and repair projects involving marine engineering and water conservation with
high requirements for corrosion resistance. Nevertheless, epoxy resin is easy to degrade,
its chains can break under ultraviolet irradiation [62,125,126], and it has poor aging resis-
tance; so, it is not applicable in highway repair projects. Composite materials consisting
of PVA, EVA, VAE, AC, PAE, SAE and cement mortar have relatively favorable adhesion,
mechanical properties, seepage resistance, corrosion resistance, etc., and can be ideal for
patching projects with low performance requirements. However, the EVA emulsion is a
linear polymer material with high molecular polarity that can easily become brittle and
hard when heated; therefore, its aging resistance and water resistance are poor [127], and it
is not suitable for highway engineering.

On top of that, a single polymer can be expensive, and there are ongoing issues like
short storage times and environmental contamination brought on by variables like the
synthesis method, the raw ingredients used, storage settings, etc., making it impossible
to guarantee a product’s performance. The performance of cement mortars is signifi-
cantly impacted by polymers modified with other admixtures (fly ash, silica fume, silica),
polymers and admixtures (water reducers, defoamers), polymer compounds (waterborne
polyurethane emulsions, waterborne epoxy resin emulsions) and modified polymers (emul-
sions and water-soluble polymers can be compositely modified, and emulsions can be
modified with ultrafine mineral powder admixtures, water glass composites, polymer fibers
and other composite materials); otherwise, those materials can effectively minimize the
production costs due to the reduction in the amount of polymer admixture, environmental
pollution, and so on.
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Table 1. Comparison of different waterborne polymers–cement mortar properties.

Polymer
Performance Parameter

Performance
ComparisonCompressive

Strength
Flexural
Strength Bond Strength Corrosion

Resistance
Freeze–Thaw

Resistance
Anticarbonization

Performance Impermeability

SAE
[117] 50.1 MPa 11.3 MPa 39.9% (A) 43.4% (A) 37.5% (A)

1. Comparison of compressive and antifolding
performance
[117] EP > WPU > SBR > PAE > SAE > VAE
[53] EP > WPU > EVA > PVA > SBR > AC > VAE
2. Bond strength comparison
SBR > PVA > EVA > AC > VAE > SAE > EP > WPU
3. Corrosion resistance comparison
[117] SAE > SBR > PAE (A)
[128] VAE > SBR (C)
4. Comparison of freeze–thaw resistance
[117,129] SBR > PVA > PAE > SAE (A)
5. Comparison of anticarbonization performance
[117] PAE > SBR > SAE (A)
6. Impermeability contrast
[128] SBR > VAE (C)

[130] 2.72 MPa
SBR [117] 62.3 MPa 15 MPa 34% (A) 16.1% (A) 31.9% (A)

[52] 44.1 MPa 9.62 MPa
[128] 3.71 MPa 1.04 (C) 1.6 (C)

PAE [117] 61 MPa 13 MPa 17.6% (A) 36.9% (A) 16.4% (A)

EP
[27] 13.6% (B)
[53] 90 MPa 17.8 MPa 2.6 MPa 16% (B)
[56] 1.38% (B)

PVA
[53] 49.9 MPa 9.91 MPa 3.68 MPa

[129] 35.28% (A)
1.07% (B)

AC [53] 32.34 MPa 7.92 MPa 3.41 MPa
EVA [53] 50.27 MPa 11.09 MPa 3.42 MPa
WPU [42] 64.4 MPa 12 MPa 2.33 MPa 18% (B) 18% (B)

VAE
[128] 3.35 MPa
[129] 27.9 MPa 7.23 MPa 1.07 (C) 0.1 (C)

Note: In this table, A shows the loss of compressive strength, B indicates the mass loss, and C indicates the corrosion resistance coefficient.
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