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Abstract: Over the years, structural engineering codes and specifications in Canada and elsewhere
have moved from an allowable stress design (ASD) approach to a load and resistance factor design
(LRFD) philosophy. LRFD methodology takes better account of the inherent variability in both
loading and resistance by providing different factors of safety for loads of distinct natures with
regard to their probability of overload, frequency of occurrences and changes in point of application.
The method also results in safer structures because it considers the behavior at collapse. While
resistance factors for traditional construction materials based on LRFD in the National Building Code
(NBC) of Canada are available, they cannot be used for non-conventional ones. This is because the
resistance of such materials due to various load effects has unique bias factors (λR) and coefficients of
variation (VR), which greatly impact their reliability index (β). In this study, relationships between the
resistance factor ϕ and critical load effects from the NBC load combinations at ultimate limit states are
developed for a wide range of resistance bias factors and coefficients of variation. The relationships
are presented in the form of charts that are useful for researchers and code-writing professionals
who have expertise in the various fields of structural engineering but lack proper background in
reliability theory. The developed spectra showed that for the same ϕ, β increases with an increase
in the live-to-dead load (L/D) ratio until it reaches 1; thereafter, the shape of the relationship will
depend on the statistics of the resistance as well as on the magnitude of ϕ. For a small ϕ and VR,
β will keep increasing with an increase in the L/D ratio from 1 until 3, albeit at a lesser rate. For
L/D > 3, the relationship between the critical β and applied load is just about constant. This finding
is also true for load combinations involving snow and wind. Application of the method is illustrated
by a practical example involving the shear strength of a corrugated web steel beam.

Keywords: code calibration; load combination; load factor; reliability; resistance factor; structural
safety; target reliability index; uncertainty

1. Introduction

When it was first published in 1941, the National Building Code (NBC) of Canada
included the latest information and knowledge on building science and engineering at that
time. To sustain and update the NBC, the National Research Council (NRC) created the
Division of Building Research and the Associate Committee on the National Building Code
(ACNBC). The ACNBC prepared and published the “Code for Dwelling Construction” in
1950 and “A Building Code for Small Municipalities” in 1951. Later, two updated versions
of the NBC were published in 1953 and then in 1960, after which newer editions of the code
were printed more or less on a regular basis every five years [1].

Limit state structural design philosophy was first introduced in the NBC in 1975. In
such an approach, the load and resistance factors were based on the statistical variations of
the applied forces on the structure and strength of the members. They were derived to give
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a uniform target reliability or consistent probability of failure, thus providing a consistent
context for structural design and risk management. For steel structures, the NBC and CSA
S16.1 combine to give a reliability index equal to 3.0 for structural members. A greater
reliability index was used for bolted and welded connections so that the probability of the
connector failing before the member was reduced and the more ductile mode of failure
of the member was favored. Experience has shown that design and detailing following
this approach result in economic structures, since the members are proportioned for a
prescribed safety level through realistic load combinations and accurate modelling based
on ultimate strength conditions.

By the late 1980s, the NBC development process lost some of its effectiveness be-
cause a number of provinces made modifications to the content of the code. In 1991, the
Associate Committee on the National Building Code was merged with the Associate Com-
mittee on the National Fire Code to become the Canadian Commission on Building and
Fire Codes (CCBFC). The CCBFC started a process of establishing a direction to address
critical issues facing the development of the NBC. This strategic plan yielded major initia-
tives, including the 2005 objective-based codes and the coordinated national model code
development system [2].

The 2010 edition of NBC included changes in the requirements of Part 4, on structural
design, for live loads due to use and occupancy. The live load plus snow load combination
was modified, and provisions for snow, ice, wind and earthquake loads were updated. A
new load combination table was added for cranes to ensure design adequacy when acting
in concert with other loads. Specific requirements on structural glass design were also
added, and requirements related to foundation displacements and overturning resistance
were updated.

The structural design part of the 2015 NBC contained updates to snow and wind
loads, fire design, and requirements for structural drawings. It included modifications to
earthquake ground motion, commentary on time-history record selection, and updated
seismic base shear calculations. Hazard values for seismic design in Part 4 and Appendix C
in the NBC had also been revised and design exemptions withdrawn so that all buildings
would be designed for earthquake load effect irrespective of the level of hazard. A new
section on base isolation and supplemental energy dissipation was included. The code
now permits construction of six-story buildings made with combustible material, such
as wood. The 2020 NBC includes provisions for the use of mass timber construction for
12-storey structures [3].

2. Literature Review

Allen was among the first researchers, in 1975, to address limit state design in Cana-
dian structural codes for buildings [4]. He compared the proposed design equations for
steel structures with the existing requirements on the basis of probability of failure. He
considered the factored load combinations, beam design, column formulas, composite
structures, resistance factors, and importance factors. The results confirmed that the new
design philosophy provide more uniform safety than the old approach for different load
combinations and materials. A year later, MacGregor [5] summarized the important con-
cepts of limit state design for reinforced concrete structures and provided a comparison
between the load and performance factors in the 1975 National Building Code of Canada
and the latest American Concrete Institute’s 318 code.

Kennedy and Gad Aly [6] developed comprehensive resistance models for steel rolled
beams, welded plate girders and hollow sections, utilizing Canadian data on material
properties and section dimensions. The models also considered test results obtained from
the available literature to arrive at appropriate mean-to-nominal values and corresponding
coefficients of variation based on CSA S16.1. Later on, Baker and Kennedy [7] built on
to the findings of previous studies by addressing laterally unsupported steel beams and
biaxially loaded steel beam-columns. They found that a performance factor equal to
0.90 for such structural elements was marginally conservative. A similar study to the
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one by Kennedy and Aly but related to reinforced concrete members was conducted by
Mirza and MacGregor [8] and resulted in probabilistic resistance models, which were used
in a first-order, second-moment reliability analysis to compute resistance factors for the
CSA A23.3 Code. This work was extended later by the authors to address the moment
magnification factor of slender concrete columns [9].

Although research on limit state design for wood structures initially lagged behind
the work on structural steel and concrete, the Canadian specifications for the design of
wood structures in limit state format have been available since 1984. The next version of
the code, CSA-086.1-M89, “Code for engineering design in wood—limit states design,” was
largely reliability-based. In 1991, Malhotra and Sukumar [10] developed reliability-based
design formulation in limit states for mechanically connected built-up timber columns. The
authors used experimental data and simulations to perform reliability analyses that were
based on first-order, second-moment methods. The calibration procedure and accepted
target reliability levels in the CSA standard for wood design were discussed by Foschi
et al. in 1993 [11]. They provided background behind the derivation of the strength
reduction factors for load duration and load sharing and compared the safety of the
new code with that of the working stress design followed earlier. In a companion paper,
Fosschi and Yao [12] presented results for wood I-joists that were based on finite element
analysis and the first-order reliability method for the strength and serviceability limit states.
A method was provided for determining load-sharing adjustment factors applicable to
systems involving repetitive members. Over the past years, researchers have been adding to
the body of knowledge in relation to reliability-based design of wood structures following
the Canadian standards [13].

Improvement in quality control and gained knowledge concerning inherent uncertain-
ties in the mechanical properties of concrete and reinforcing steel prompted Kariyawasam
et al. [14] to propose new load factors for the NBC and corresponding performance factors
for the CSA A23.3 standard. The authors considered in their study a limit state equa-
tion that took into account the condition of the structure at the onset of failure as well
as during the nominal design condition. The findings of the investigation demonstrated
an increase in the resistance factor, leading to improvement in economy due to reduced
structural demand.

Schmidt and Bartlett [15] collected data between 1999 and 2000 to evaluate statis-
tical representations of the geometric and material properties of structural steel shapes
available in the Canadian market. They found that while the dimensions of rolled shapes
insignificantly changed from the old data used in prior code calibration, the statistical
parameters for yield strength had vastly improved for HSS shapes, was slightly enhanced
for WWF shapes, and somewhat deteriorated for W shapes. The authors used the new
statistics to derive up-to-date resistance models for bending, compression, and tension
resistances of W, WWF, and HSS components [16]. They used the models to determine
appropriate resistance factors calibrated based on the 1995 version of the NBC of Canada.
In LRFD-based design, much work on strength-reduction factors of steel structures was
accomplished by Kennedy and his collaborators over the years ever since his pioneering
study in 1974 on limit state design [6,17–19]. Reliability studies on block shear in steel
connections were carried out by Driver et al. [20], for which the results were later validated
for their accuracy and consistency by Cai and Driver [21].

Bartlett et al. [22] summarized statistics for dead, live, snow, and wind loads on
building structures to be used for code calibration purposes utilizing the NBC of Canada.
Their study confirmed the adequacy of past statistics on dead load, but new statistics for
live load based on occupancy were derived with consideration of the live load reduction
factor used in the code. In addition to normalizing the statistics of environmental loads
based on a 50-year life span, the new statistics took into account the transformation of
ground snow depth into wind load and wind speed into snow load. In a companion
paper [23], the authors used the newly derived statistics on loads to propose new load
factors that were later calibrated for the upcoming edition of the NBC code based on a
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target reliability index of about 3.0 for a design life span of 50 years. Compared to the 1995
edition of the code, the recommended load combinations and factors gave a slightly higher
load effect for the combination of dead plus snow load and were slightly lower for the
combination involving dead, snow, and live loads.

In 2007, Bartlett [24] noted that the introduction of new parameters for the rectan-
gular concrete stress block in the 1994 version of the CSA A23.3 impacted the nominal
strength of columns made with concrete strengths in the range 20–40 MPa. Hence, he used a
probability-based resistance factor calibration approach to propose increasing the resistance
factor for concrete under compression by 0.05 for both cast-in-place and precast concrete.
The study by Bartlett on compression in concrete members was updated later in 2011 [24].
Moosavi and Korany [25] conducted reliability analyses to check the resistance factor of
load-bearing concrete masonry walls subjected to concentric gravity loads in the Canadian
masonry design standard. They found that in order to achieve the target reliability index of
the standard, the resistance factor for the compression limit state should be reduced from
0.6 to 0.5. Isfeld et al. [26] examined the level of safety in slender concrete masonry walls
under axial and out-of-plane loading designed following CSA S304-14. They determined
that the standard was overly conservative; thus, an increase in the resistance factor was
deemed necessary. Tousignant and Packer [27] utilized data from experiments and numeri-
cal studies to determine reliability of welds used on connections of hollow structural steel
sections designed following the CSA S16-19 Clause 13.13.4.3. Changes in the equations of
the provisions were proposed to attain a target reliability index equal to 4.0. In a follow-
up study [28,29], the authors used first-order reliability analysis in accordance with CSA
S408-11 to check the safety of concrete-filled hollow structural sections designed following
CSA S16:19 and subjected to axial compression, flexure, flexure plus axial load, tension or
shear. Design examples, limits on validity of the CSA S16 equations, and comparison with
AISC 360-16 were included. Recently, Khorramian et al. [30] used reliability methods to
calibrate the CSA S806 code provisions for the slenderness limit of concrete columns rein-
forced with glass fiber-reinforced polymer bars. Optimized slenderness limits were deter-
mined by the authors with the help of artificial intelligence approaches and comprehensive
experimental databases.

3. Problem Statement

Knowledge and methodologies needed in the structural engineering field are not
static, but rather dynamic, continuously evolving with time [31–34]. For example, the
statistical data on currently used construction materials are changing due to improvements
in quality control procedures [35]. Further, more accurate theoretical procedures are being
developed for use in structural design codes and specifications for predicting the behavior
of structures as we gain more understanding through experimental testing and field moni-
toring [36]. High-strength and high-performance construction materials are also becoming
more commonly utilized in practice nowadays than ever before, and such materials are not
often adequately covered in the existing codes [37]. In addition, newer materials, such as
those that employ composites, are being developed to substitute for conventional materials
that, past experience has demonstrated, have some deficiencies when subjected to severe
environmental exposure [38]. The aforementioned issues particularly affect the statistical
parameters of the resistance variables, which in turn impact the magnitude of the resistance
factors corresponding to a target level of safety. While researchers have strong experience
in their field of studies, some of them lack the necessary background in the structural
safety, risk and code calibration methods that are needed for realizing their findings into
practical use. In some cases, they need guidance on what appropriate resistance factors
can be used with their research findings. Hence, there is a need for a simple approach that
will enable structural engineering researchers who possess limited or no background in
reliability theory to determine appropriate resistance factors based on their experimental
and theoretical findings.
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4. Objectives and Scope

The objective of this study is to assist structural engineering researchers and code
writers, who have strong backgrounds and experience in their field but do not possess
adequate expertise in reliability theory and code calibration methods, by providing them
with a simple approach that allows them to determine appropriate resistance factors
for the ultimate limit state. Specifically, the investigation aims at achieving two goals:
(1) generating comprehensive charts that can be used by researchers to determine an opti-
mum resistance factor for a resistance model to be used in conjunction with the factored
load combinations of the NBC, and (2) determining the sensitivity of the resistance factors
to variations in the mean-to-nominal ratio and coefficient of variation of the resistance
model for designs based on the NBC. The study addresses building structures subjected to
dead load, live load, snow and wind. It is primarily applicable to structures and founda-
tion that utilize a single lumped resistance factor. However, with a simple modification
it can be used to determine multiple partial material factors, such as those utilized in
composite structures. For example, in the case of reinforced concrete, one can compute the
lumped resistance factors using the procedure outlined in the paper, decide on a resistance
factor of one of the two materials (such as steel), and then determine the corresponding
resistance factor of the other material (i.e., concrete) such that reduced design capacity
with the lumped resistance factor is equal to that of the one made up of multiple partial
material factors.

5. Structural Reliability Background

Limit state design in structural codes provides guidelines to structural engineers that
ensure minimum acceptable levels of safety for built amenities. The embedded factor
of safety aims at protecting public well-being concerning construction and occupancy
without being overly conservative. National building codes become enforceable law within
a specific jurisdiction if they are officially endorsed by the relevant authority. In limit state
design, the design capacity of a structural member should at least equal the maximum load
effect, that is:

ϕ Rn ≥ ∑ γi Qi (1)

where Rn is the nominal structural capacity, Qi is the nominal effect of load component i,
γi is the load factor for Qi, and ϕ is the resistance or performance factor. To account for
the differences in variability of the various materials that make up a composite member,
some codes employ partial resistance factors, ϕ1-ϕj, instead of a single value, where j is
the number of different materials within the composite member. Whether a single factor
or multiple factors are employed, the strength reduction factor is essential because the
actual capacity in some cases may be less than the nominal value due to uncertainties in
material properties, fabrication, construction methods, and the approximate nature of the
design equations. Similarly, the load factor γi is required to compensate for the unexpected
loading effect beyond what the designer had considered in the design. While it is basically
impossible to eliminate risk, properly calibrated structural design codes can reduce the
risk to levels acceptable by the public by considering the uncertainty that is intrinsic in
the design and construction by choosing an appropriate target reliability. For a given set
of nominal load combinations, code writers evaluate the resistance factors by conducting
reliability analyses on a safety margin G that accounts for the randomness of the resistance,
R, and load effect, Q, to ensure uniform safety over a wide range of designs.

G = R − Q (2)

Note that since both R and Q are random variables, then any combination of them is
also a random variable. Instead of considering the probability of failure to quantify the
structural safety, a reliability index, β, is employed for this purpose [39]:

β =
µG
σG

(3)
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where µG and σG are the mean and the standard deviation of the safety margin G, respectively.
Depending on the linearity of the safety margin and the probability distributions of

the random variables, there are many different ways for determining the reliability index,
including closed-form solutions, point estimations and simulations. In this study, the
reliability index is computed using the Rackwitz–Fiessler algorithm [40] with consideration
of the statistical distributions of the resistance and load variables, determined from the
available literature. This method was recommended early on by Nowak and Lind [41] for
calibrating Canadian codes. It yields comparable results to the Monte Carlo simulation
without demanding extensive computer effort and time. The method is based upon
replacing each non-normal random variable with an equivalent normal variable at the
so-called “design point,” found through iteration. The design point is the most probable
point on the failure surface closest to the origin in the reduced coordinates. The method
involves guessing the coordinates of the design point (starting with mean values), replacing
non-normal variables with normal such their cumulative distribution function (CDF) and
probability density function (PDF) are the same at the assumed design point, calculating
the reliability index using Cornell’s formula (for a linear limit state function), evaluating
the coordinates of the new design point, and iterating until the guessed design point is
close to the obtained one. The theoretical basis behind the method and the steps involved
in the application are explained in detail with the help of numerical examples by Nowak
and Collins [42].

6. Probabilistic Resistance and Load Models

Calculation of the reliability index necessitates knowledge about the probabilistic
model distributions and parameter values of the resistance and load components. In this
study, the resistance R was assumed to follow the lognormal distribution, since structural
strength is often the product of the nominal strength Rn with multiple random variables
representing the material factor, M, fabrication factor, F, and professional factor, P, which
accounts for the deviation of the nominal strength from the actual in situ capacity:

R = Rn P M F (4)

In this research, a wide range of mean-to-nominal ratios (also referred to as the bias
factor), λR, and coefficients of variation, VR, for the resistance were accounted for. The
considered λR ranged between 1.0 and 1.5, and the VR ranged between 0.05 and 0.5. Such
practical ranges are commonly found in construction materials available in practice.

With regard to applied loads, four actions were considered in this study, namely, dead
load, D, live load, L, wind load, W, and snow load, S. The statistical parameters of the
load effects on buildings for the Canadian Standards Association that were included in
the study were based on the work of Bartlett et al. [15,16]. Dead load, D, represents the
self-weight and superimposed load that is continuously attached to the structure. Such a
load is represented by a one set of statistics, as shown in Table 1, because it stays constant
throughout the life span of the structure. Live load, L, includes the weight of people and
their belongings. One part of the live load is the arbitrary-point-in-time load, Lapt, which
remains somewhat constant over a period of time, and another part is the transient load,
Ltra, which is the unusual part of live load that results from over-crowding. Maximum live
load, Lmax, is a blend of the sustained and transient components of live load. While the
coefficient of variation of live load depends to some extent on the influence area supported
by the structural member, the values in Table 1 are representative of common cases.
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Table 1. Statistical parameters of load components [15,16].

Load Bias Factor Coefficient of
Variation

Probability
Distribution

Dead load, D 1.050 0.100 Normal
Arbitrary-point-in-time live load, Lapt 0.273 0.705 Weibull

Maximum live load, Lmax 0.900 0.267 Gumbel
Arbitrary-point-in-time wind load, Wapt 0.069 0.980 Weibull

Maximum wind load, Wmax 0.712 0.241 Gumbel
Arbitrary-point-in-time snow load, Sapt 0.118 0.992 Lognormal

Maximum snow load, Smax 0.660 0.495 Lognormal

Wind-load effect on buildings depends on many factors including the wind speed,
profile, exposure, direction, pressure coefficient, and gust. The statistical parameters of the
arbitrary-point-in-time and maximum wind loads, Wapt and Wmax, in Table 1 represent a
composite of statistical estimates that are based on data from three sites within Canada,
thus providing a broad geographical depiction within the country [15,16].

Statistics on the snow load effect on structures are dependent on climatological records,
snow density, roof exposure, roof geometry, and the relationship between snow loads on the
roof and snow loads on the ground. Statistics on the snow load effect on structures are based
on research on ground snow load by Newark et al. [43], snow density by Kariyawasam [44],
and ground-to-roof transformation characteristics by Taylor and Allen [45]. The study at
hand does not consider the earthquake load effect because there are no reliable statistical
data on earthquake loads at the present time and not all regions in Canada are subjected to
such loads. Moreover, not all the members in a building subjected to earthquake loading
observe the same seismic effect. Based on the above, once reliable data on earthquake
loading become available, future studies on the subject will consider such loading.

For buildings that are subjected to several load components, the reliability analysis at
ultimate limit states shall address the maximum total load effect during the useful life of
the structure. Because it is improbable that all the different loads will reach their highest
values simultaneously, a practical approach is required for determining the critical load
combination on the structure. Due to its simplicity and lack of better alternatives, Turkstra’s
rule [46] is often used by code calibration officials for this purpose. This rule presumes
that the critical load combination is reached when one load is at its maximum intensity
while the other loads are at their average values. For a structure subjected to D, L, W, and
S, the reliability analysis shall consider the maximum effect of the following three load
combinations (resulting in the smallest reliability index):

Q = Maximum


D + Lmax + Wapt + Sapt
D + Lapt + Wmax + Sapt
D + Lapt + Wapt + Smax

(5)

where all the variables in the equation have been defined earlier.

7. Methodology

To calculate the reliability index, β, for a member strictly designed following given
code provisions and subjected to loads of different natures, the analysis should consider a
number of load combinations in the safety margin. Once this is accomplished, the minimum
value of β calculated from these combinations will give the critical reliability of the member.
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The factored load combinations that consider nominal dead, live, snow and wind loads (D,
L, S and W) in the NBC [47] are:

Q = Maximum



1.4D
1.25D + 1.5L + 1.0S
1.25D + 1.5L + 0.4W
1.25D + 1.5S + 1.0L
1.25D + 1.5S + 0.4W
1.25D + 1.4W + 0.5L
1.25D + 1.4W + 0.5S

(6)

To determine an appropriate resistance factor ϕ of a structural member made from
a certain structural material to be designed following the NBC’s load combinations for a
given target reliability index, one needs to acquire first the statistics of the resistance of the
member. Probabilistic resistance models for such a member can be obtained by simulation
that takes into account the variability in material properties and workmanship, together
with consideration of the difference between experimental and theoretical outcomes. If
statistics on load and resistance variables are known, the reliability analysis will proceed
by assuming a resistance factor, considering a set of nominal loads, determining the critical
combination of nominal loads, computing the corresponding required nominal strength,
determining the statistics of the resistance from the mean-to-nominal ratio and coefficient
of variation, and finally computing the reliability index with consideration of the statistics
of the loads given in Table 1 and Turkstra’s rule presented in Equation (5). The procedure
is repeated with the same initially assumed ϕ but for different load fractions with and
without wind and snow. Once a reasonable range of loads and load fractions have been
covered in the analysis, the results are plotted in order to observe the variation in the
reliability index with changes in the loads and determine whether or not the chosen ϕ has
closely met the target reliability index, βT. If the chosen ϕ did not yield reliability indices
with minimum values close to the target, then the whole process is carried out again for
other resistance factors until the target reliability index is optimally reached. The procedure
is presented in the flow chart shown in Figure 1.

The procedure outlined in the previous paragraph and exhibited in Figure 1 is demon-
strated on an example that considers a new type of construction with a strength character-
ized by mean-to-nominal ratio λR = 1.2, coefficient of variation VR = 0.20, and lognormal
probability distribution. The objective here is to determine an appropriate resistance factor
to achieve a target reliability index equal to 3.0 based on the NBC load combinations. The
steps that are followed to achieve the objective start with assuming a resistance factor,
say ϕ = 0.8. We then select a nominal dead load D = 100 and live-to-dead load ratio
L/D = 3 without snow or wind load (i.e., S = W = 0). Next, we use the relevant NBC load
combinations to determine the critical nominal load effect that the member needs to be de-
signed for, Q = Maximum [1.4 × 100 and (1.25 × 100 + 1.5 × 300)] = 575. From Equation (1),
we determine the corresponding required minimum nominal strength of the member,
Rn = Q/ϕ = 575/0.8 = 718.75. The statistics of the lognormally distributed resistance
can now be computed by applying the given mean-to-nominal ratio to the required
nominal strength, µR = 1.2 × 718.75 = 862.5, and noting that the standard deviation is
σR = VR µR = 0.2 × 862.5 = 172.5. Next, we set up the safety margin by considering the
difference between the resistance and load effect from Turskstra’s rule in Equation (5),
G = R − (D + Lmax), and note that safety margins containing Lapt do not govern in this
case due to the absence of wind and snow. The reliability analysis can be carried out with
the help of Monte Carlo simulation to obtain β = 2.89 in this particular load case. Next,
we repeat the previous steps but for different live-to-dead load ratios, say L/D = 0, 0.5, 1,
and 5 with W = S = 0, resulting in β = 3.07, 3.05, 3.04, and 2.84, respectively. To account
for effects of snow and wind, we replicate the same steps with ϕ = 0.8 and D = 100 but for
cases in which there is either snow (S/D = 0.5–2) or wind (W/D = 0.5–2), or both (S/D ̸= 0
and W/D ̸= 0). When the initially assumed ϕ does not yield reliability indices close to the
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target value, the entire procedure is repeated for values of ϕ other than 0.8, such as ϕ = 0.5,
0.6, 0.7, 0.9 and 1.0. When an adequate range of L/D, S/D and W/D is considered together
with a wide spectrum of f, an optimum β that will closely match the target reliability will
be obtained. Note that linear interpolation between the considered load and resistance
cases is reasonable, as long as enough cases are considered. In the previous example of the
resistance with λR = 1.2 and VR = 0.20, the optimum ϕ that matches βT = 3.0 is ϕ = 0.75.
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from Eq. 1: Rn = Q/φ

6. Use the NBC load combinations, Eq. 6, to determine the critical 
nominal load effect, Q

8. Compute the statistics of the resistance using the bias factor λR and 
coefficient of variation VR from: μR = λR Rn and σR = VR μR

10. Set up the safety margin using Eq. 2 with the help of Eq. 5: 

G = R –

11. Carry out the reliability analysis with the help of Monte Carlo 
simulation to determine the reliability index

9. Consider the statistics of the applied loads from Table 1
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Figure 1. Procedure for determining an optimum resistance factor for a given λR and VR.

To streamline the process, resistance factor spectra in this study were generated using
detailed reliability analyses based on the factored load combinations in the NBC. The
research considered dead, live, snow and wind load with a wide range of load fractions
(L/D = 0–5, S/D = 0–2 and W/D = 0–2). With regard to the resistance, it covered six
resistance factors (ϕ = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0), six mean-to-nominal ratios (λR = 1.0,
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1.1, 1.2, 1.3, 1.4, and 1.5), and six coefficients of variations (VR = 0.05, 0.1, 0.2, 0.3, 0.4,
and 0.5); interpolation between the values was found to yield reasonable results. The
lognormal distribution was chosen to represent the probabilistic model of the resistance
because the resistance is often a product of multiple variables, it is most commonly used
in practice, and it is impractical to conduct the study for a large number of different
probability distributions. The chosen ranges of the considered parameters and variables
were highly practical in cases applicable to the fields of structural engineering (where the
coefficient of variation of the resistance is relatively small) and geotechnical engineering
(where the coefficient of variation of the resistance is relatively large). No bias factor for the
resistance less than unity was considered in the study, since codes and specifications do
not include predictive equations that yield higher strength than the actual capacity. The
reliability analysis, totaling 5400 cases, was carried out using a special-purpose code written
in MATLAB [48].

To illustrate the methodology further, we consider an element with lognormally
distributed resistance that has a mean-to-nominal ratio of λR = 1.2 and a coefficient of
variation of VR = 0.20. The relationships between reliability index and live-to-dead load
ratio with and without wind and snow for a set a resistance factors based on the NBC load
combinations are presented in Figure 2. As expected, the reliability index increases with a
decrease in the resistance factor, the relationship between the reliability index and load is
nonlinear, and the nonuniformity in the latter relationship is particularly obvious for small
live load fractions.
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Figure 2. β versus L/D for λR = 1.2 and VR = 0.20 based on ϕ = 0.50−1.0 and: (a) S = W = 0, (b) S ̸= 0
& W = 0, (c) S = 0 & W ̸= 0, and (d) S ̸= 0 & W ̸= 0.
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To select an optimum value of a resistance factor for a structure with a resistance
represented by given λR and VR, it is best to plot all the relationships between reliability
index and loads for a constant resistance factor in one graph, as shown in Figure 3 for the
case of λR = 1.2 and VR = 0.20. This helps in determining which loads and load fractions
govern the reliability of the structure, leading to proper selection of the resistance factor.
Note that the results in Figure 2 indicate that while the load combinations involving wind
and snow greatly influence the choice of small resistance factor values, such loads are not
critical when the resistance factor is large.
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Figure 3. Critical β versus L/D for λR = 1.2 and VR = 0.20 based on different combinations of S and
W with: (a) ϕ = 0.50, (b) ϕ = 0.60, (c) ϕ = 0.70, (d) ϕ = 0.80, (e) ϕ = 0.90, and (f) ϕ = 1.0.

The approach outlined in the previous discussion for determining appropriate resis-
tance factors is valid for any combination of λR and VR. Hence, for a study to be useful, it
needs to be repeated for a practical range of statistics of the resistance, as presented in the
next section.

8. Results

Results of the reliability analyses that were presented in Figure 3 for the case of λR = 1.2
and VR = 0.20 are now repeated for wide ranges of λR (1.0–1.5) and VR (0.05–0.50), with the
probability distribution of the resistance being lognormal. The generated charts, presented
in Figures 4–9, show the critical reliability indices from the NBC load combinations for a
broad spectrum of ϕ (0.5–1.0) with consideration of a practical range of L/D (0–5), S/D
(0–2) and W/D (0–2) ratios. This means that, in each chart, the line corresponding to a
given resistance factor represents the minimum β for all seven NBC load combinations
presented earlier in Equation (6) with consideration of different load fractions. Although
the charts only show the L/D ratio along the horizontal axis, each point on the lines shown
in the chart corresponding to a given resistance factor considers the effect of presence of
wind and snow to different degrees on the reliability.
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Figure 4. β versus L/D with consideration of S and W for λR = 1.0 and: (a) VR = 0.05, (b) VR = 0.10,
(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.
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Figure 5. β versus L/D with consideration of S and W for λR = 1.1 and: (a) VR = 0.05, (b) VR = 0.10,
(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.
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Figure 6. β versus L/D with consideration of S and W for λR = 1.2 and: (a) VR = 0.05, (b) VR = 0.10,
(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.
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Figure 7. β versus L/D with consideration of S and W for λR = 1.3 and: (a) VR = 0.05, (b) VR = 0.10,
(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.



Buildings 2024, 14, 855 14 of 20Buildings 2024, 14, 855 14 of 20 
 

 
Figure 8. β versus L/D with consideration of S and W for λR = 1.4 and: (a) VR = 0.05, (b) VR = 0.10, (c) 
VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50. 

 
Figure 9. β versus L/D with consideration of S and W for λR = 1.5 and: (a) VR = 0.05, (b) VR = 0.10, (c) 
VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50. 

Besides the obvious finding that the reliability index decreases with an increase in 
VR, decrease in λR, and/or increase in ϕ, the results provided in Figures 4–9 indicate that 

0
1
2
3
4
5
6

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.05
0
1
2
3
4
5
6

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.10
0

1

2

3

4

5

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.20

0

1

2

3

4

5

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.30
0

1

2

3

4

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.40
0

1

2

3

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.50

phi=0.5 phi=0.6 phi=0.7 phi=0.8 phi=0.9 phi=1φ=0.5 φ=0.6 φ=0.7 φ=0.8 φ=0.9 φ=1.0

(a)                                                       (b)                                                     (c)

(d)                                                       (e)                                                     (f)

0
1
2
3
4
5
6
7

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.05
0
1
2
3
4
5
6

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.10
0
1
2
3
4
5
6

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.20

0

1

2

3

4

5

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.30
0

1

2

3

4

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.40
0

1

2

3

0 1 2 3 4 5

Re
lia

bi
lit

y I
nd

ex
, β

Live-to-Dead Load Ratio, L/D

VR=0.50

phi=0.5 phi=0.6 phi=0.7 phi=0.8 phi=0.9 phi=1φ=0.5 φ=0.6 φ=0.7 φ=0.8 φ=0.9 φ=1.0

(a)                                                       (b)                                                     (c)

(d)                                                       (e)                                                     (f)

Figure 8. β versus L/D with consideration of S and W for λR = 1.4 and: (a) VR = 0.05, (b) VR = 0.10,
(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.
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(c) VR = 0.20, (d) VR = 0.30, (e) VR = 0.40, and (f) VR = 0.50.
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Besides the obvious finding that the reliability index decreases with an increase in
VR, decrease in λR, and/or increase in ϕ, the results provided in Figures 4–9 indicate that
the reliability index increases with a small increase in live load up until L/D reaches 1.0;
thereafter, the shape of the relationship will depend on the resistance’s λR and VR, as well as
the value of ϕ. For a small ϕ (<0.8) and VR (<0.2), β will keep increasing with an increase in
the L/D ratio from 1.0 until 3.0, albeit at a lesser rate. For L/D > 3, the relationship between
the critical β and applied load is just about constant for designs based on the NBC with
a specified value of ϕ. Both λR and VR are equally effective in influencing the structural
reliability; however, they work in different ways. The magnitude of λR and VR are impacted
by how the close the nominal material properties, cross-section dimensions, and overall
geometry are to the average values, as well as how the code’s predictive equations are
reliable in forecasting the actual behavior. As such, materials that are manufactured under
tight quality control, structures that are constructed within small tolerances, and theoretical
formulations that closely forecast the performance at ultimate can economically benefit
from small values of λR and VR.

9. Example

In a recent study by the authors published in 2020 [49], a method was proposed for
calculating the shear strength of corrugated web steel beams (CWSB). Using the available
literature on material and fabrication variability, a Monte Carlo simulation study showed
that the bias factor and coefficient of variation for the resistance, excluding the professional
factor, are equal to 1.126 and 0.096, respectively. A database composed of 49 tests of CWSBs
in shear yielded a bias factor equal to 1.126 and a coefficient of variation equal to 0.100 for
the professional factor. Combining the material/fabrication with the professional factor
statistics gives λR = 1.268 and VR = 0.139. The objective here is to use the generated spectra
to determine an optimum ϕ for the NBC [47] for which βT = 3.0.

Procedure:
Linear interpolation between the results obtained from Figure 6 (for λR = 1.2) and Figure 7
(λR = 1.3) will be used to determine the optimum value of ϕ, since the actual λR lies within
this range. Likewise, within each figure, linear interpolation between the results obtained
from chart b (for VR =0.1) and chart c (for VR = 0.2) will be carried out, since VR lies within
this range. Note that for a given ϕ, the relationship β and L/D is nonlinear; hence, one
needs to be practical in choosing the appropriate ϕ for a given βT that can work for a wide
range of load fractions.
Figure 5b: For λR = 1.2 and VR = 0.1 => ϕ ≈ 0.9.
Figure 5c: For λR = 1.2 and VR = 0.2 => ϕ ≈ 0.8.
For λR = 1.2, linear interpolation for VR = 0.139 between the two coefficient of variation
values of 0.1 (ϕ = 0.9) and 0.2 (ϕ = 0.8) gives ϕ = 0.861.
Repeating the steps for λR = 1.3.
Figure 6b: For λR = 1.3 and VR = 0.1 => ϕ ≈ 0.95.
Figure 6c: For λR = 1.3 and VR = 0.2 => ϕ ≈ 0.85.
For λR = 1.3, linear interpolation for VR = 0.139 between the two values of 0.1 (ϕ = 0.95)
and 0.2 (ϕ = 0.85) gives ϕ = 0.911.

The procedure for obtaining the resistance factors from the charts is presented in
Figure 10.
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Finally, linear interpolation for λR = 1.268 between the value 1.2 (which has ϕ = 0.861)
and the value 1.3 (which has ϕ = 0.911) gives ϕ = 0.895 ≈ 0.90. Note that the attained
value of the resistance factor is the same as that obtained using a comprehensive reliability
analysis by the authors’ study [49].

10. Summary and Conclusions

This investigation focused on developing resistance factor spectra for the ultimate
limit state of structures and foundations designed following the factored load combinations
of the National Building Code (NBC) of Canada. The motivation was to provide a simple
approach for researchers with strong backgrounds in their technical field but limited exper-
tise in structural reliability theory and code calibration methods to determine appropriate
resistance factors for their findings to be used in practical design. The objectives were to
generate comprehensive charts covering a wide range of resistance parameters and factors
for the NBC load combinations and determine the sensitivity of the spectra to changes in
the bias factor and coefficient of variation of the resistance model.

The study considered dead, live, wind, and snow loads acting on buildings with
statistics from the published literature. A probabilistic lognormal model was used for the
resistance, with its mean-to-nominal ratio ranging from 1.0 to 1.5 and coefficient of variation
from 0.05 to 0.50. The reliability index was computed through an iterative algorithm that
approximates the non-normal distributions to equivalent normal ones at the design point.
Charts were generated showing the relationship between reliability index and live-to-dead
load ratio with different wind and snow load fractions for six resistance factors between 0.5
and 1.0, six mean-to-nominal ratios between 1.0 and 1.5, and six coefficients of variation
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between 0.05 and 0.50. This covers practical ranges of parameters for structural and
geotechnical engineering applications.

The results of the research lead to the following conclusions that are relevant to loads
and load combinations addressed by the NBC [46]:

1. The reliability indices increase almost linearly with the increase in live-to-dead load
ratio until around 1.0, beyond which the relationship becomes nearly nonlinear.

2. For a small resistance factor and coefficient of variation, the reliability index continues
to rise with increase in live-to-dead load fraction from 1.0 to 3.0, but at a lesser rate.

3. For live-to-dead load fractions above 3.0, the reliability index becomes just about
constant irrespective of the magnitude of live load.

4. The presence of wind and snow loads impacts the choice of an appropriate resistance
factor when it is small but does not greatly influence the results when the resistance
factor is moderately large to high.

5. Both the bias factor and coefficient of variation of the resistance are equally effective
in changing the structural reliability, albeit through different means.

6. As expected, structures made from materials that have tighter quality control mea-
sures and more precise code equations possess bias factors close to unity with small
coefficients of variation, thus allowing for the use of higher resistance factors.

The study successfully met the intended objectives by generating resistance factor
spectra charts that can be conveniently used by researchers and code-writing professionals
to determine appropriate resistance factors for the Canadian NBC load combinations. The
findings provide guidance concerning the sensitivity of the results to changes in the statisti-
cal parameters of the resistance model. The provided information will assist designers and
code developers in choosing resistance factors that will achieve target reliability indices.
The results are particularly beneficial for emerging materials and innovative systems that
have been successfully researched but are not yet part of the structural design code.

There are some limitations within the research that need to be highlighted. First,
the study considered only the lognormal distribution for the resistance model. While
this is the most widely used in practice, results may somewhat vary for other probability
distributions. Second, the findings are strictly applicable to design approaches that utilize
lumped resistance factors rather than partial factors. Third, the earthquake load effect was
not considered in the study due to the lack of reliable probabilistic models for the seismic
loading. Finally, the study is limited to the NBC load combinations and does not address
other structural design codes. Despite these restrictions, the methodology and outcomes
provide a solid platform that can be extended in future investigations.

Recommendations for future work include: (1) Considering other probability distri-
butions for the resistance such as normal, gamma or Weibull; (2) Including other environ-
mental loads that are region-specific, such as earthquake load; (3) Developing user-friendly
and interactive software or digital applications based on the results; and (4) Extending the
work to cover serviceability and extreme-event limit states.

The resistance factor spectra generated in this study provide researchers and code
developers with a simple but rational tool for determining appropriate resistance factors for
emerging materials and innovative systems. The findings will contribute towards designing
safe and sustainable structures and foundations that utilize such new technologies and
construction techniques.
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Glossary

D dead load
F fabrication
G safety margin
L live load
Lapt arbitrary-point-in-time live load
Lmax maximum live load
Ltra transient live load
M material factor
P professional factor
Q load
Rn nominal resistance
S snow load
Sapt arbitrary-point-in-time snow load
Smax maximum snow load
V coefficient of variation
W wind load
Wapt arbitrary-point-in-time wind load
Wmax maximum wind load
β reliability index
βT target reliability index
γ load factor
λ mean-to-nominal ratio or bias factor
µG mean value of the safety margin
σ standard deviation
σG standard deviation of the safety margin
ϕ resistance factor
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