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Abstract: In recent years, wireless sensors have progressively supplanted conventional limited
sensors owing to their attributes of small size, low cost, and high accuracy. Consequently, there
has been a growing interest in leveraging wireless sensor networks for bridge structural health
monitoring applications. By employing wireless sensor nodes to gather data from various segments
of the bridge, information is relayed to a signal-receiving base station. Subsequently, the health status
of the bridge is inferred through specific data processing and analysis, aiding monitoring personnel
in making informed decisions. Nonetheless, there are limitations in this research, particularly
pertaining to power consumption and efficiency issues in data acquisition and transmission, as
well as in determining the appropriate wireless sensor types and deployment locations for different
bridge configurations. This study aims to comprehensively examine research on the utilization of
wireless sensor networks in the realm of bridge structural health monitoring. Employing a systematic
evaluation methodology, more than one hundred relevant papers were assessed, leading to the
identification of prevalent sensing techniques, data methodologies, and modal evaluation protocols
in current use within the field. The findings indicate a heightened focus among contemporary
scholars on challenges arising during the data acquisition and transmission processes, along with
the development of optimal deployment strategies for wireless sensor networks. In continuing, the
corresponding technical challenges are provided to address these concerns.

Keywords: bridge; data technology; optimal sensor placement; sensing technology;
structural health monitoring; wireless sensor networks

1. Introduction

With the advancement of computer technology and the progress in wireless sen-
sor manufacturing, wireless sensor networks (WSNs) are increasingly utilized for mon-
itoring the structural health of various infrastructures, particularly large structures like
bridges, which are vulnerable to minor vibrations. WSNs consist of spatially distributed
autonomous sensors that communicate wirelessly to monitor physical or environmental
conditions. These sensors are typically equipped with sensing, computation, and communi-
cation capabilities which enable them to collect data from their surroundings and transmit
it to a central location for further processing and analysis. By employing wireless sensor
nodes to monitor modal parameters such as natural frequency, damping, and vibration
patterns, the condition of bridges can be assessed [1,2]. Furthermore, these networks can
discern passing vehicle characteristics to provide early warnings regarding traffic flow [3],
thereby offering comprehensive monitoring of bridge health from multiple perspectives.
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This study focuses on recent developments and applications of WSNs in the structural
health monitoring of bridges.

Selecting the appropriate wireless sensors serves as a fundamental step in constructing
a wireless sensor network. Across various bridge typologies, researchers have deployed
diverse wireless sensors in distinct sections of the bridge to monitor varying indicators
corresponding to the monitoring objectives. Given that acceleration represents the second-
order derivative of displacement, acceleration sensors can significantly amplify subtle
vibrations within the bridge structure, thus enhancing the accuracy of monitoring out-
comes [1,4]. Consequently, acceleration sensors have emerged as one of the most prevalent
sensor types in the realm of structural health monitoring for bridges, finding application
in simply supported girder bridges [5], arch bridges [6], cable-stayed bridges [7], and
suspension bridges [8]. In addition to acceleration sensors, strain sensors, magnetic sensors,
ultrasonic sensors, piezoelectric sensors, and specialized WSNs integrated with GPS are
employed in bridge projects owing to their respective advantages [3,9,10]. Regarding
wireless sensor hardware, current research endeavors focus on enhancing measurement
accuracy [7,11], reducing node energy consumption [12], lowering sensor costs [1,10], and
minimizing sensor dimensions [13].

Data technology encompasses various components such as data acquisition, data trans-
mission, data processing, and data analysis, as depicted in Figure 1. In recent years, scholars
have focused on enhancing five key aspects in data collection and transmission: efficiency,
storage capacity, low power consumption, data quality, and long-distance transmission. Re-
searchers have sought to improve the efficiency of wireless sensors through the adoption of
suitable transmission protocols and algorithms, which operate at the software level [14,15].
Strategies to enhance efficiency include employing wireless sensor nodes with a high sam-
pling rate or configuring nodes within a topological network, thereby augmenting both
data collection speed and coverage area [7,16]. Moreover, enhancing data storage primarily
involves hardware improvements, such as increasing the memory capacity of nodes to
extend storage capabilities and monitoring durations [1,12], and streamlining transmission
post-acquisition to alleviate data congestion [7]. Mitigating power consumption relies on
employing low power, low-duty cycle transmission protocols like ZigBee [11,12], or imple-
menting specific acquisition and transmission schedules to keep nodes in a low-current
dormant state when not in operation [8]. Furthermore, digital filtering and secure copy
protocols significantly enhance data security and quality, facilitating robust node-to-node
communication [13,15]. Topological network architectures and multi-hop communication
protocols enable long distance data transmission across extensive bridge spans through the
extensive deployment of wireless sensor nodes [12,14]. This approach is further augmented
by utilizing specialized radio communication bands [8]. For data analysis, modal analysis
through finite element software modeling [6,17], the frequency-domain decomposition
method [8,18], and the Stochastic Subspace Identification method are commonly employed
to extract bridge modal characteristics for subsequent analysis [13]. Currently, artificial
intelligence techniques are tightly integrated with data processing and analysis method-
ologies [15], wherein data analysis involves setting thresholds [5] or employing machine
learning algorithms [19] for race selection and eliminating data outliers.
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As advancements in wireless sensor technologies continue to evolve, scholars are
increasingly turning their attention to investigating strategies for deploying wireless sen-
sors [20–27]. The deployment scheme of wireless sensors involves strategically placing
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sensors throughout the monitoring area to ensure effective coverage and reliable data collec-
tion [27]. Various scholars have utilized diverse modal evaluation criteria and performance
metrics for wireless sensor networks to model their deployment in accordance with the
requirements of bridge projects. They have employed different intelligent algorithms to
derive near-optimal deployment schemes for wireless sensors, considering factors such as
sensor quantity, placement, and energy consumption, based on the solution of mathemati-
cal models. Current research in this domain primarily focuses on the singular objective of
an integrated index [20,25,26,28], aiming to provide guidance for technicians in deploying
sensors in a more rational manner.

The utilization of wireless sensor technology for data acquisition, transmission, and
deployment in bridge projects has experienced significant growth over the past decade.
However, there exists a dearth of research literature elucidating the outcomes of wireless
sensor applications in bridge projects. A thorough review of these studies is imperative
to discern the most suitable applications of wireless sensors, thereby facilitating informed
decision-making concerning bridge type selection, location determination, data collec-
tion modalities, and deployment strategies. Furthermore, such a review will enable the
identification of deficiencies in current methodologies pertaining to the application of
wireless sensors in bridge projects. This knowledge is invaluable for practitioners seeking
to integrate wireless sensor technology into their bridge projects. Additionally, developers
of wireless sensor technologies can leverage this information to refine next-generation
solutions, thereby addressing the limitations inherent in existing methodologies. Hence,
the aim of this study is to evaluate the applications and potential capabilities of wireless
sensor technologies across various facets of bridge projects, and to ascertain the significance
and impact of these technologies on decision-making processes and project management.
The overarching goal of wireless sensor applications in bridge projects is to foster the de-
velopment and optimization of innovative deployment solutions aimed at reducing project
deployment costs, enhancing data collection and transmission quality, as well as prolonging
the lifespan of wireless networks. Realizing these objectives necessitates the implemen-
tation of diverse strategies such as data transmission via different frequency channels,
multi-hop communication protocols or topology network structures, and the utilization
of multi-objective deployment optimization models. Section 2 delineates the research
methodology employed in this review, Section 3 elaborates on the various types of wireless
sensors, and Section 4 provides an overview of wireless sensor applications across different
bridge types and locations, accompanied by an analysis of sensor technologies based on
five key aspects: (1) Efficiency, (2) data storage, (3) low power consumption, (4) data quality,
and (5) long-distance transmission capabilities. Section 5 deliberates on the deployment
methodologies of wireless sensors on bridges, while Section 6 examines the challenges
associated with sensor technology and suggests potential avenues for future research.

This research examines and synthesizes the present state of wireless sensor networks
(WSNs) in structural health monitoring (SHM) applications for bridges. It provides an
overview of current advancements in sensing and data technologies, and proposes solutions
to existing challenges in data collection, transmission technologies, and wireless sensor
deployment. These proposed solutions are intended to inform the trajectory of future
research endeavors within the realm of WSNs for bridge projects. Furthermore, the present
review aims to aid professionals in the bridge sector by providing insights into the selection
of suitable wireless sensors, including their types, quantities, and deployment locations, as
well as the corresponding data analytics technologies, for SHM applications in bridges.

2. Research Methods

This research undertook a systematic review in accordance with the PRISMA frame-
work. The primary literature sources for this study were primarily drawn from Elsevier,
Scopus, and Google Scholar, chosen for their robust search capabilities, comprehensive
coverage, and high academic authority. The principal keywords utilized in this search
encompass “bridge structures”, “structural health monitoring (SHM)”, “wireless sensor
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networks”, while secondary keywords include “sensor technology”, “data technology”,
and “wireless sensor deployment”. The search formula employed for Elsevier comprised
the criteria: title, abstract, or author-specified keywords = “bridge structures” and (“struc-
tural health monitoring” or “SHM”) and (“wireless sensor network” or “wireless sensor
deployment”) and (“sensing technology” or “data technology”). Similar search criteria
were adapted for Scopus and Google Scholar with necessary syntactic adjustments. The
Boolean operator “OR” was employed to broaden the search scope, facilitating the retrieval
of a diverse array of relevant literature, while the “AND” operator was utilized to refine
relevance, ensuring the inclusion of pertinent literature. Given the relatively nascent nature
of wireless sensor networks applied to bridge structure health monitoring, the majority
of retrieved literature spans the last decade (2014–2024). Eighty-seven, one hundred-two,
and ninety-eight documents were retrieved from Else-vier, Scopus, and Google Scholar,
respectively. The number of records retained for screening, following the elimination
of duplicates, amounted to 164 journal articles. Subsequently, after screening titles and
abstracts, 142 records were selected for full-text review, as depicted in Figure 2.
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3. Sensing Technologies for Bridge Health Monitoring

In recent decades, wireless sensor networks have garnered increasing popularity for
the health monitoring of large structures characterized by high design life and stringent
safety requirements [29]. Their primary benefits include low cost, ease of installation, and
the capability to facilitate effective data management through onboard computation [12].
This section offers an overview of the latest advancements and applications of wireless
sensing technologies currently employed in bridge structures. These technologies encom-
pass acceleration sensors, Global Navigation Satellite System (GNSS), magnetic sensors,
strain sensors, piezoelectric sensors, and ultrasonic sensors, among others. Table 1 presents
a comprehensive summary detailing the primary functions, specifications, advantages,
disadvantages, and limitations of various types of wireless sensors.
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Table 1. Data summary of different wireless sensors.

Types Function Specification Advantages Disadvantages Limitations Reference

Accelerometer
sensor

Monitoring bridge
acceleration to
ascertain modal
vibration patterns.

• Full-scale range: ±2 g.
• Flash memory: 256 kB.
• RAM memory: 8 kB.
• Noise density: 30 µg Hz.
• CPU speed: 16 MHz.

• Low power
consumption: less than
0.6 mW.

• Low cost and low
noise.

• High monitoring
efficiency: monitoring
data can be obtained
within one hour.

• Compact size: easy to
install directly, can
obtain better vibration
transmission.

Sensitivity and
resolution are
limited, making
it difficult to
precisely
measure
minute changes
in acceleration.

Due to the
influence of
temperature
and
vibration,
significant
errors are
present in the
measure-
ments.

[1,4–6,8,11–13]

GNSS

Collaborate with
various wireless
sensors to acquire
satellite data and
transmit wireless
sensor data packets
to the server.

• Support: GPS, GLONASS,
Galileo, Compass frequency.

• Sampling rates: 20 Hz.
• Working current: 400 mA.

• Low power
consumption: node life
ranging from 20–200
days.

• High measurement
accuracy: can reach 1–5
mm level of precise
positioning.

• GSM base station can
receive information
from multiple sensors.

Signal exhibits
poor resistance
to interference.

Signal
coverage is
not compre-
hensive.

[7,9]

Magnetic
sensor

Detecting vehicle
length passing
through the bridge
and classifying it.

• Working voltage: 1–25 V.
• Flash memory: 256 kB.
• RAM memory: 8 kB.
• CPU speed: 16 MHz.

• Non-destructive
inspection without
contacting the object to
be inspected.

Sensitivity and
response
frequency are
relatively low.

High power
consump-
tion.

[3,30]

Strain sensor

Measurement of
member stress state;
monitoring of
bridge strain state.

• Range: ±5000 microstrain.
• Accuracy: ±0.1 microstrain.
• Output voltage: 2.5 mV/V.
• Power requirement: 2.5–5 V.
• Resistance: 120 Ω.

• Can use additional jigs
to accurately measure
surface stress.

• Strong durability and
long measurement
time.

-

Direction of
force
application
may be
constrained.

[3,5,11]

Piezoelectric
sensor

Monitoring bridge
cracks.

• Supply voltage: 1.8–3.8 V.
• Piezo-sensor: 8.
• Data rate: 50 kps.
• Clock speed: 48 MHz.
• Cache memory: 8 kB.
• SRAM memory: 20 kB.
• Working current: 2.5 mA.

• Low cost.
• Cracks sufficient to

threaten the health of
the structure can be
detected.

-

Under low
pressure
conditions,
issues related
to linearity
and stability
may arise.

[10]

Ultrasonic
sensor

Detecting and
classifying vehicle
height passing
through bridges.

• Flash memory: 256 kB.
• RAM memory: 8 kB.
• CPU speed: 16 MHz.

• High recognition
accuracy.

Ultrasound
may generate
multipath
propagation
interference.

Smoothness
level of the
reflective
surface
receiving
ultrasonic
waves
requires a
high degree
of precision.

[3]

3.1. Acceleration Sensors

The functionality of acceleration sensors hinges upon the principle of structural vi-
bration, whereby the health condition of bridges is ascertained through the monitoring of
structural vibration acceleration. This data is then converted into modal parameters such
as damping, thereby emphasizing the criticality of accurate modal damping estimation
for the assessment of the health of expansive and flexible civil infrastructures [19]. Ac-
celerometers exhibit signal characteristics such as a wide frequency range, low noise, high
linearity, and minimal temperature drift [8]. Figure 3 illustrates an example of its signal.
Among the most prevalent types of acceleration sensors employed for structural health
monitoring of bridges are Micro-Electro-Mechanical Systems (MEMS) sensors [4,5,8,13],
force-balanced (FB) sensors [11], and piezoelectric sensors [11]. Acceleration sensors offer
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notable advantages, including high accuracy, cost-effectiveness, and low power consump-
tion [4,5,13], with MEMS sensors capable of identifying two additional structural modes
compared to FB accelerometers [8]. Moreover, due to their compact size, MEMS accelerom-
eters can be directly mounted onto bridge structures to facilitate efficient vibration data
transfer [13]. Although FB accelerometers are relatively larger, they demonstrate superior
performance in measuring low-frequency vibrations and are commonly deployed for vibra-
tions in bridge stiffening trusses [11]. On the other hand, piezoelectric sensors are available
across various measurement ranges and exhibit excellent durability and stability, albeit
necessitating higher voltage requirements [11]. Figure 4 illustrates a hardware setup for a
MEMS accelerometer and a FB accelerometer, respectively. Refer to Figure 5 for a schematic
representation of the piezoelectric sensor model.
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3.2. Global Navigation Satellite System (GNSS)

Global Navigation Satellite Systems (GNSS) have the capability to furnish users with
3D coordinates, velocity, and temporal information across all weather conditions on the
Earth’s surface. They can be effectively employed in the domain of bridge structural health
monitoring by integrating with various wireless sensors such as accelerometers, strain
gauges, and gas sensors [9]. The GNSS sensor functions to receive satellite data, while
the GSM Base Station serves as a gateway linking the wireless sensor network with the
remote server, facilitating the transmission of data packets to the server. One of the primary
advantages of GNSS lies in its high measurement accuracy. By following differential post-
processing, it can achieve precise positioning of static and dynamic displacements within
the range of 1–5 mm [7], as depicted in Figure 6. However, despite its merits, GNSS still
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faces challenges in effectively monitoring the displacement of bridge piers resulting from
settlement or collisions with ships beneath the bridge deck [31].
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3.3. Magnetic Sensors

The primary principle underlying magnetic sensors involves the detection of distur-
bances caused by the presence of ferromagnetic materials and the mechanical deformation
thereof when subjected to a magnetic field. These sensors operate by converting the re-
sultant change in magnetic energy into an electrical signal, thereby enabling the detection
of parameters such as stress and strain in steel bridges. Figure 7 displays an example of
magnetic sensor signals. Among magnetic sensors, magnetostrictive sensors stand out,
as they have the capability to generate and monitor guided waves within ferromagnetic
materials. Remarkably, these sensors do not necessitate direct contact with the object under
observation, rendering them nearly non-destructive [30]. Figure 8 illustrates a schematic
representation of magnetostrictive sensors. Moreover, magnetic sensors can be utilized to
monitor and classify the length of vehicles traversing a bridge, offering timely alerts in
instances of excessive heavy vehicle presence within the traffic flow [3].
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3.4. Strain Sensors

Strain sensors represent wireless sensing devices predicated on the assessment of strain
induced by the deformation of a structure subjected to external forces. They constitute one
of the most extensively employed sensors for gauging the stresses exerted on structural
elements, owing to the capacity to derive stresses through the multiplication of measured
strain by the elasticity coefficient [11]. Notably, strain sensors offer notable advantages,
including high sensitivity, minimal error, and a broad measurement range, rendering
them adaptable to diverse and challenging environmental conditions. Figure 9 displays
an example of magnetic sensor signals. Furthermore, these sensors have been utilized
for monitoring strains induced by vibrations resulting from train passage over bridges
and for issuing prompt alerts in emergency scenarios where strains surpass predefined
thresholds [3,5].
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4. Wireless Sensors for Bridge Health Monitoring

This section will delineate the particular applications of wireless sensor networks
(WSNs) in the domain of bridge structural health monitoring in recent years. It will also
consolidate the prevalent techniques for data collection and transmission, as well as data
processing and analysis methods utilized within WSNs.

4.1. Current Applications

Due to the lack of specific regulations or guidelines requiring the precise placement of
sensors on different types of bridges, scholars utilize various factors, such as engineering
standards, project specifications, and personal experience, to apply different types and
quantities of wireless sensors at different locations on different bridge types to monitor
various structural health indicators. Specifically, simply supported beam bridges are
primarily used in highway or railway bridges [5,13]. Wireless sensors need to be uniformly
distributed on the bridge deck, web, or beams, while more dense array measurements can be
performed on the central main beam [13]. Figures 10–12 illustrate the layouts for positioning
acceleration sensors on cable-stayed bridges, simple girder bridges, suspension bridges,
and arch bridges, respectively [5,12]. Table 2 provides a synthesis of the aforementioned
pertinent details.
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Table 2. Sensor placement on bridges.

Wireless Sensor
Types Bridge Types Object to be

Monitored Quantity Monitoring Indicators Reference

Accelerometer
sensor

Simply supported girder
bridge

Deck 4 Bridge vibration. [5]

Web 20
Structural damping,
vibration pattern, natural
frequency.

[13]

Suspension bridge

Deck 10 Vibration type, torsional
vibration type. [8]

Stiffening truss 4 Stiffening truss vibration
[11]

Hanger cable 12 Hanger tension.

Cable-stayed bridges

Deck 113
Structural damping,
vibration pattern, natural
frequency.

[1]

Deck 1 Bridge resonance frequency. [7]

Deck 19

Bridge vibration. [12]
Cable 19

Pylon 2

Bearing 2

Arch bridge Deck 48 Bridge vibration. [6]

GNSS Cable-stayed bridges Deck 3 Bridge resonance frequency. [7]

Magnetic
sensor

Simply supported
girder bridge Deck 6 Vehicle length. [3]

Strain sensor
Simply supported

girder bridge

Deck 3 Small amplitude strain
cycle. [3]

Web 11 Damping, vibration pattern,
natural frequency. [13]

Crossbeam 6 Bridge strain. [5]

Suspension bridge Stiffening truss 4 Stiffening truss stress. [11]

Ultrasonic sensor Simply supported
girder bridge Deck 1 Vehicle height. [3]

The table above illustrates that acceleration sensors are the most extensively utilized
in the realm of structural health monitoring for bridges, being applied across a wide array
of bridge types. Acceleration sensors primarily monitored are the modal characteristics
of the bridge [7,13]. In addition to acceleration sensors, several other wireless sensors
find application primarily in simple girder bridges, typically deployed on the bridge deck.
Magnetic and ultrasonic sensors, among others, possess a restricted range of applications
and are primarily employed for the purpose of monitoring and classifying the length and
height of vehicles traversing straightforward girder bridges. They function as an early
warning system, particularly tailored for heavy vehicles.

4.2. Data Collection and Transmission

In the realm of wireless sensor networks, the technology employed for data collection
and transmission plays a pivotal role. Data collection technology must satisfy the impera-
tives of efficiency and data storage, while data transmission technology predominantly seeks
low power, data quality, and long-distance transmission.
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4.2.1. Efficiency

For an individual wireless sensor node, employing a receiver with a high sampling rate
of 20 Hz is advocated to ensure rapid data acquisition [7]. Conversely, for the entire wireless
sensor network, spanning a vast area, the achievement of data collection is facilitated
through the utilization of a topological network structure [14,16,18]. The link-by-link
data transfer protocol facilitates the concurrent transmission of data by multiple adjacent
nodes equipped with distinct frequency channels, thereby attaining a data collection rate
of 7 kB/s [14]. In low power multi-hop networks, cycle management slot allocation
allows for the adjustment of transmission timing in accordance with the type of data being
gathered and the sampling requisites, thus facilitating efficient data collection tailored
to the application’s demands [8]. Moreover, the pick peaking algorithm automates the
transmission of data collected on a per-minute basis, mitigating data congestion and
enhancing data collection efficacy [15].

4.2.2. Data Storage

Data storage predominantly depends on advancements in hardware devices. For
instance, the smart sensor platform Imote2 boasts 32 MB more memory than its predecessor,
thereby enhancing the capacity for storing data and prolonging monitoring durations [1,12].
Wireless sensor nodes equipped with wake-up receivers collect data and consolidate them
into significant packages, transmitting them uniformly upon completion of collection [7].

4.2.3. Low Power

Controlling wireless sensor nodes to transmit data selectively while maintaining
dormancy during inactive periods has been demonstrated to effectively reduce energy con-
sumption for data transmission. This assertion is supported by empirical evidence showing
significantly lower current intensity during dormancy compared to active operation [8],
as well as by studies highlighting the extended lifespan of wireless sensor nodes [7]. The
utilization of the Zigbee communication protocol plays a crucial role in achieving low
power consumption. For instance, Kumalasari et al. employed the ZigBee communication
protocol based on the IEEE 802.15.4 standard for large-scale wireless sensor networks [12].
Additionally, Chae et al. [11] proposed a low power multi-hop communication network,
termed u-node, by integrating the ZigBee protocol with CDMA technology. This innova-
tive approach enables low power transmission and a reduced duty cycle, contributing to
enhanced energy efficiency.

4.2.4. Data Quality

Data quality stands as a pivotal indicator of the efficacy of data transmission technol-
ogy within wireless sensor networks, highlighted by the imperative to safeguard data secu-
rity during transmission and strive for minimal loss. The implementation of a secure copy
protocol facilitates data transmission between hosts while ensuring data security through
authentication and encryption during transmission [15]. Employing digital filtering rep-
resents a method to enhance data quality, with the resultant average data transmission
rate post-processing reaching 99.91%, thereby approaching near-lossless data transmis-
sion [13]. Furthermore, Whelan et al. employ a proprietary network communication
protocol developed by Ref. [32], which enables data transmission between nodes through
packet acknowledgment and retransmission [6], thereby fostering robust communication
between nodes and preserving the integrity of time histories utilized in subsequent system
identification processes.

4.2.5. Long-Distance Transmission

Multi-hop communication protocols represent the prevailing method for achieving
long-range communication [11,14]. Additionally, multi-tier probabilistic polling protocol
MTTP [16] and topological network structures [12] serve the same purpose. These ap-
proaches facilitate long-distance data transmission through the strategic deployment of
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wireless sensor nodes. For instance, a maximum communication distance of 1 km in a
line-of-sight environment has been achieved using sub-GHz radio communication bands
in LPMN [8].

4.3. Data Processing and Analysis
4.3.1. Data Processing

Wireless sensor data processing refers to the analysis, filtering, and extraction of
meaningful information from raw sensor measurements. Common methods for wireless
sensor data processing include filtering, feature extraction, statistical analysis, pattern
recognition, data fusion, and signal reconstruction. The functions and techniques of these
methods are listed in Table 3.

Table 3. Data processing methods.

Method Function Technique Reference

Filtering Remove noise or unwanted components
from the data.

Utilizing filters such as low-pass, high-pass,
band-pass, or median filters. [33–35]

Feature extraction Identifying and extracting relevant
features or characteristics from the data.

Using a feature extraction algorithm, such
as short-time Fourier transform (STFT) or
wavelet transform (WT).

[36–38]

Statistical analysis Summarize and analyze data
distributions and relationships.

Applying statistical methods such as mean,
median, standard deviation, correlation
analysis, or regression analysis.

[39,40]

Pattern recognition

Recognize and classify patterns or
anomalies in the data, facilitating
automated decision making and
fault detection.

Employing machine learning algorithms,
deep learning methods or pattern
classification techniques.

[40–46]

Data fusion

Enhance the accuracy, reliability, and
completeness of the resulting data,
improving situational awareness and
decision-making capabilities.

Integrating information from multiple
wireless sensors or sources. [34,47,48]

Signal reconstruction Reconstruct missing or incomplete data. Employing techniques such as
interpolation, extrapolation, or resampling. [49,50]

These methods can be applied individually or in combination, depending on the
specific requirements of the application and the characteristics of the wireless sensor data.

4.3.2. Data Analysis

Data analysis methods can be divided into two main categories: modal analysis and
artificial intelligence.

Modal analysis methods (MAM) are highly useful for obtaining the dynamic responses
of structures in analytical closed form. In order to utilize MAM, it is imperative to acquire
accurate information on natural frequencies, mode shapes, and orthogonality of mode
shapes a priori [51]. Software analysis pertains to a modal analysis technique, wherein the
modal characteristics of a bridge structure are identified through the utilization of software
tools, predominantly employing finite element analysis. Finite element analysis proves
effective in examining quantifiable alterations in bridge modal parameters attributable to
variations in material properties and boundary conditions, among other factors [6]. By con-
structing a 3D finite element model of the bridge, fundamental data such as load moment
diagrams [15], mass and stiffness matrices [6], and the analysis of modal parameters such
as natural frequency and vibration patterns can be derived [1,13,52]. The LUSAS Bridge
Plus v13.0 finite element software facilitates the determination of optimal sensor locations
and types, thereby effectively minimizing the number of sensors required and the volume
of data collected [17].
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Frequency domain decomposition and Stochastic Subspace Identification methods
are viable approaches for modal analysis. The frequency domain decomposition method
discerns the inherent frequencies and modal shapes of a bridge. Meanwhile, the semi-
automated data-driven stochastic subspace identification procedure extracts modal char-
acteristics from the system response, yielding modal shapes, inherent frequencies, and
damping ratios of the bridge [8]. In contrast, the frequency domain decomposition method
necessitates complete excitation of the eigenfrequencies to generate smooth mode shapes
compatible with finite element analysis, whereas stochastic subspace identification requires
less time and relatively simple extraction of modal parameters [13]. Additionally, the
frequency domain decomposition method can be integrated with NExT and ERA method-
ologies to analyze modal parameters concerning temperature and excitation level [1], as
well as modal parameters in relation to damage severity [18].

Artificial intelligence (AI) represents an analytical methodology stemming from the
convergence of civil engineering and computer science disciplines. It finds predominant
application in various domains such as damage detection, data diagnosis, data interroga-
tion, anomalies in data sensing, and data storage facilitated through cloud computing [29].
For instance, Concepcion demonstrated the utilization of a machine-trained artificial neural
network for the classification of structural health in bridges [15]. This involved employ-
ing principal component analysis to mitigate the influence of temperature variations on
vibration data, thereby enhancing the reliability of processed data. The trained machine
exhibited a high level of accuracy in assessing the health condition of the bridge structures.

4.3.3. Data Aggregation

Wireless sensor data aggregation involves combining or summarizing data collected
from multiple sensors to comprehensively represent the cohesion of the monitored ob-
ject [53]. Common methods of sensor data aggregation currently include spatial aggrega-
tion, temporal aggregation, hierarchical aggregation, event-based aggregation, data fusion,
and quality-aware aggregation, with the functionalities and techniques of these methods
listed in Table 4.

Table 4. Data aggregation methods.

Method Function Technique Reference

Spatial aggregation Generate spatially representative
measurements.

Averaging, interpolation, or weighted
aggregation, et al. [54–56]

Temporal aggregation Generate aggregated summaries
or statistics.

Averaging, summing, or calculating the
maximum or minimum values over
specific time periods.

[54,57,58]

Hierarchical aggregation

Aggregating data from sensors
organized in a hierarchical structure,
such as sensor nodes grouped into
clusters or tiers.

Data summarized and passed up the
hierarchy to higher-level nodes for
further processing.

[59–61]

Event-based aggregation
Only when certain thresholds are
exceeded or when specific patterns or
anomalies are detected.

Aggregating data triggered by specific
events or conditions detected
by sensors.

[62–64]

Data fusion Integrate data from multiple sensors of
different types or modalities.

Sensor fusion methods such as sensor
selection, sensor calibration, feature
fusion, and decision-level fusion.

[34,47,48]

Quality-aware aggregation
Reliability and quality of data collected
from different sensors when
performing aggregation.

Weighting data based on the accuracy,
precision, or trustworthiness of
individual sensors.

[65–67]

These methods can be customized and combined to accommodate the specific re-
quirements and constraints of the application, including the characteristics of the involved
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sensors, communication infrastructure, as well as the accuracy and efficiency required in
data aggregation.

5. Wireless Sensor Placement Optimization

Wireless sensor networks (WSNs) are anticipated to enhance the ability to capture dy-
namic structural behaviors through dense instrumentation and a multihop communication
protocol, while also facilitating the evaluation of structural conditions [14,68–70]. However,
the complexity of bridges introduces numerous monitoring parameters and structural
degrees of freedom, rendering it impractical and unreasonable to deploy sensors for each
one [71–74]. The aim of a sensor optimization layout is to achieve comprehensive structural
information for bridges using the minimum number of sensors possible [75–78]. Conse-
quently, scholars engage in detailed research on criteria for structural modal evaluation
and network performance assessment. Presently, WSN-based structural health monitoring
(SHM) systems have been successfully deployed on various full-scale bridges, including
the Golden Gate Bridge in the United States [79], the second Jindo Bridge in Korea [80],
and the New Carquinez Bridge in the United States.

5.1. Modal Evaluation Criteria

In practical structural health monitoring (SHM) systems, there may be challenges in
accurately distinguishing identified mode shapes from one another, thereby potentially compro-
mising the precision of vibration analysis [81–84]. Hence, it is advisable to utilize measures of
information effectiveness, such as the modal assurance criterion (MAC) [22,25,27,85–89], modal
strain energy (MSE) [21,23,24,90,91], singular value decomposition ratio (SVDR) [26,92–94], least
square method (LSM) [95–97], and Fisher information matrix (FIM) [98–104], to assess the linear
independence of identified mode shapes. The various modal evaluation criterias are detailed in
Table 5 and Figures 13–17 as shown.

Table 5. Different modal evaluation criteria.

Category Uses Features References

Modal assurance criterion (MAC)
Measure the linear independence
among the identified
mode shapes.

Off-diagonal elements in the
MAC matrix offer a direct
measure of the information
effectiveness that is collected
by the wireless
sensor configurations.

[22,25,27,85–89,105]

Modal strain energy (MSE)
Measure the dynamic
contribution of each candidate
sensor to the target mode shapes.

MSE helps to select sensor
positions with possible large
amplitudes and to increase the
signal-to-noise ratio.

[21,23,24,90,91]

Singular value decomposition
ratio (SVDR)

Measure of the
mode orthogonality.

Offer a desirable metric of the
condition for mode expansion
and the observability of
the modes.

[26,92–94,106]

Least square method (LSM) Minimize the sum of squares
of deviations.

The sum of the squares of
distance from the fitting point
to straight line on the
coordinate system should be
the smallest.

[95–97,107]

Fisher information matrix (FIM)
Useful information among the
unknown parameters available in
the measured values.

FIM helps to select the
neighboring node around the
target node, while a large
number of nodes are available
around the target node.

[98–104]
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A significant numerical advantage arises when computing off-diagonal modal assur-
ance criterion (MAC) elements, particularly when the MAC matrix for vectors is already
available. This approach facilitates the evaluation of a vast array of degrees of freedom
(DOF) from a large finite element method (FEM) without encountering computational
challenges, thereby enabling the direct acquisition of a sensor set capable of reducing
off-diagonal MAC elements [85]. The quality of placement for strain gauges and accelerom-
eters is quantified by the ratio of the modal clarity index and mode shape expansion
values derived from a finite element model of the monitored bridge [23]. Compared to
the conventional method of gathering raw vibration data and performing singular value
decomposition (SVD) at a central location, conducting SVD within the network can lead
to significantly lower energy consumption and reduced latency [92,93]. A novel frame-
work is proposed for least-squares localization based on estimated ranges, encompassing
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cases such as time-difference-of-arrival (TDoA), time-of-arrival (ToA), and received signal
strength (RSS) [95]. This approach substantially reduces the computational workload in
each iteration compared to classical nonlinear least-squares (NLS) methods, resulting in a
67% reduction in computation for a 3-D positioning system. A higher trace of the Fisher
information matrix (FIM) indicates more information in the measurement, leading to more
accurate estimation results [102].

5.2. Wireless Sensor Network Performance Evaluation

Wireless sensors deployed within expansive civil structures spanning several miles
typically face challenges due to their distance from central systems, compounded by
the limited radio range and energy resources inherent in these sensors. This scenario
underscores the complexities involved in data collection. Achieving robust connectivity,
facilitating reliable communication between the wireless sensors and central systems (sinks),
emerges as a critical prerequisite for a wireless sensor network (WSN)-based structural
health monitoring (SHM) system [25,86]. Furthermore, ensuring a prolonged operational
lifespan spanning several decades remains paramount for any SHM system [25]. Presently,
the performance evaluation of wireless sensor networks predominantly centers on aspects
such as network connectivity and network longevity [25,26]. The detailed information is
presented in Table 6 as shown below.

Table 6. Performance evaluation of different wireless sensing networks.

Category Meaning Methods References

Network connectivity
Deliver data packets to a
destination that is beyond the
radio range.

Adjacency matrix,
Judgment matrix. [25,26,108–115]

Network lifetime Life cycle of a WSN-based
SHM system.

Inversely proportional to the
highest energy consumption
rate of the nodes.

[25,26,86,87,89,91,109,110,116–121]

In conjunction with sensor placement, we facilitate the development of “connectivity
trees” among sensor nodes, ensuring the maintenance of both structural health state and
network connectivity. This approach allows for decentralized management, which is
particularly useful in scenarios such as sensor faults [109]. Energy consumption in wireless
sensors encompass data sensing, processing, transmission, and reception [89].

5.3. Multi-Objective Optimization Models and Algorithms

The reliability and serviceability of evaluation results in a wireless sensor network
(WSN)-based structural health monitoring (SHM) system heavily depend on the placement
of wireless sensors [87,122,123]. Moreover, within WSNs, the energy stored in batteries
is limited, and the transmission range of wireless sensors is constrained. Considering
these factors, the objective of optimal wireless sensor placement (OWSP) is to identify
configurations that not only facilitate accurate structural parameter identification, but also
prolong network lifetimes [25]. Several researchers have made significant contributions to
the exploration of optimal wireless sensor configurations for WSN-based SHM systems.
The detailed information is presented in Table 7 as shown below.

The table illustrates that research on sensor layout optimization in bridges predominantly
revolves around single and double objectives. Key decision objectives include the adoption
of the modal assurance criterion (MAC) [22,25,27], modal strain energy (MSE) [21,23,24,90],
and singular value decomposition ratio (SVDR) as a modal evaluation criterion [26]. Notably,
these studies commonly employ the firefly algorithm (FA) [21,24–28], genetic algorithm
(GA) [22,25,27], and particle swarm algorithm (PSA) [20] as primary solving algorithms.
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Table 7. Evaluation of different optimization model applications.

Target
Number Decision Objectives Important Parameters Algorithm Effect Not Enough References

1

Optimal performance for
the bridge modal and the
energy consumption of
wireless networks.

• Strain modal
vector.

• Strain modal
coordinate.

• Length and width
of the bridge.

Improved particle
swarm algorithm

(IPSA)

• The actual modal
data of the bridge
must have some
deflection with the
simulation data.

• Number of sensors
is not taken as a
decision variable.

[20]

1 Optimal performance for
MSE.

• Mode shape
matrix of a
structure.

• Stiffness
coefficient.

Cluster-in-cluster
firefly algorithm

(CiCFA)

• Random selection
of indexes and
number of
elements avoid the
iteration falling
into local
optimization.

• CiCFA is at least
2% more accurate
than GA.

• The application
scope of CiCFA is
not verified.

[21,24]

1 Optimal performance for
MAC.

• Identified modal
matrix.

Modified variance
(MV) method

• A nonlinear
relationship
between the
numbers of target
modes and the
number of sensors
was observed.

• This study fails to
reflect the
influence of
dynamic changes
in the number of
sensors on MAC.

[22]

1

Optimal performance for
MAC, network
connectivity, and
network lifetime.

• Identified modal
matrix.

• Adjacency matrix.
• Data packet size.
• Transmission

distance.
• Number and

position of sensor.

Information-fusing
firefly algorithm

(IFFA)

• Solved the OWSP
single target
problem.

• Directly estimate
the connectivity of
the self-organizing
multi-hop
networks.

• IFFA is at least 11%
more accurate than
SDFA.

• Number of sensors
is not taken as a
decision variable.

• Multi-objective
problem between
MAC and network
performance is not
studied.

[25]

1

Optimal performance for
SVDR, network
connectivity, and
network lifetime.

• Mode shape
matrix.

• Adjacency matrix.
• Energy

consumption.

Automatic-learning
firefly algorithm

(ALFA)

• ALFA is at least
12% more accurate
than SDFA.

• Load and the
congestion of
wireless sensors
are left out of
consideration in
this study.

[26]

1

Optimal performance for
identified mode shapes,
network connectivity,
and network lifetime.

• Structural mass
matrix.

• Stiffness matrix.
• Damping matrix.
• Position, energy,

load of the
wireless sensors.

• Routing protocol.
• Cost.

Hybrid discrete firefly
algorithm (HDFA)

• Proposed
evaluation
criterion can
restrict the search
to a space that is a
trade-off between
the effectiveness of
the information
and the
performance of the
WSNs.

• HDFA
outperforms the
SDFA and the SGA
in terms of the
computational
efficiency (>20%)
and the capability
of searching the
global
optimization.

• Number of sensors
is not taken as a
decision variable.

[28]
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Table 7. Cont.

Target
Number Decision Objectives Important Parameters Algorithm Effect Not Enough References

1 Optimal performance for
MSE.

• Mode shape
matrix of a
structure.

• Stiffness
coefficient.

Generalized genetic
algorithm (GGA)

• The elite
conservation
strategy and worst
elimination policy
improve the
convergence speed
dramatically.

• The gradual
change and
sudden change
effectively prevent
solutions from
falling into local
optimal spaces.

• This work is only a
preliminary
attempt for the
OWSP.

• The real
applications of
WSNs are more
complex and the
performance of
WSNs is affected
by many factors.

[90]

2

• Optimal
performance for
MSE/MCI (Modal
Clarity Index).

• Network energy
consumption.

• Modal
identification
using vibration.

• Modal clarity
index.

• Power
consumption.

• Spent time.
• Residual energy

consumption.

Genetic algorithm
(GA)

• Multi-objective
layout
optimization of
wireless SHM
systems is feasible
with the
application of GA
and discrete
discrete-event
simulation.

• Optimization
yields 12 Pareto
Pareto-optimal
solutions with
different network
lifetime and
information
quality values that
can be used for
deciding on the
final deployment
layout.

• Further analysis is
required to
evaluate the
optimization
performance such
as the population
diversity.

[23]

2

• Optimal
performance for
MAC.

• Optimal
performance for
network
connectivity, and
network lifetime.

• Identified modal
matrix.

• Adjacency matrix.
• Data packet size.
• Transmission

distance.
• Energy

consumption.
• Number and

position of sensor.

Multiobjective discrete
firefly algorithm based

on neighboring
searching (MDFA/NS)

• Solved the OWSP
multiobjective
optimization
problem.

• Neighboring
searching instead
of the global
exploration
quickens the speed
of finding the
Pareto optimal
solution set.

• MDFA/NS has a
strong ability in
finding the Pareto
optimal wireless
sensor
configurations and
outperforms the
widely used
NSGA-II.

• Number of sensors
is not taken as a
decision variable.

[27]

5.4. Adverse Environmental Effects

Although wireless sensors have been developed and deployed in bridge applications,
lightweight sensors are susceptible to damage in harsh environments and may not continue
to function as planned [124–126]. Harsh environments include attacks such as high pressure
or vibration, like typhoons; sudden accidents such as fires; and the influence of corrosive
environments, such as acid rain [124,126]. Harsh environments may cause sensors to
malfunction, leading to sensor failures. When the number of failed sensors exceeds an
acceptable level, the structural health monitoring (SHM) system may provide unreliable
monitoring or predictions of structural performance. To avoid this situation, the current
practice is to use high-cost sensors designed to withstand harsh environments in SHM
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systems [127–129], with a large amount of redundant sensor placements, resulting in a
widespread application of costly and burdensome systems.

6. Challenges and Future Work

In the context of large-scale environmental wireless sensor networks (EWSN), sensor
nodes typically comprise a data processing and storage unit, a communication interface,
and a power source characterized by limited capacity, often deployed in remote envi-
ronments [94]. Nevertheless, several challenges persist alongside potential avenues for
enhancement, including issues related to efficiency, energy consumption, long-distance
transmission, and optimal layout solutions.

6.1. Efficiency

In practical engineering applications, it is customary to account for sensors operating
at varying sampling rates and communication bandwidths within a network [91]. Con-
current transmission of data from multiple neighboring nodes utilizing distinct frequency
channels holds the potential to augment data collection and transmission rates close to
the maximum laboratory transmission rate, thereby substantially enhancing the efficacy
of wireless sensors. Nevertheless, managing the transmission timing of numerous inde-
pendent sensors and achieving synchronized frequency switching can pose challenges [14].
Future research endeavors will expand the scope of dynamic channel and channel mode
optimization (DCCMO) to encompass heterogeneous wireless sensor networks, while also
considering the presence of multiple sinks and accommodating mobile sinks [91].

6.2. Energy Consumption

The majority of wireless sensors operate on batteries with limited energy resources.
Consequently, minimizing energy consumption and extending network lifetime present
significant challenges in the implementation of wireless sensor network (WSN)-based
structural health monitoring (SHM) systems [25,26]. However, the pursuit of low power so-
lutions introduces additional complexities. The imperative for reduced power consumption
dictates a corresponding decrease in data transmission rates for wireless sensor nodes [12],
complicating the delivery of large packets [8,11]. Optimal selection of routes characterized
by low load and congestion could potentially extend network lifetime and alleviate data
transmission delays, representing a focal point for our forthcoming research efforts [26].

6.3. Long-Distance Transmission

Long-distance data transmission relies on various techniques such as multi-hop com-
munication protocols [11,14], the multi-tier probabilistic polling protocol MTTP [16], topo-
logical network structures [12], other configurations of wireless sensor network nodes, or
specialized radio communication bands [8]. However, with an increase in the number of
multi-hop layers, there is a corresponding escalation in conflicts among polled packets, re-
sulting in heightened transmission delays [16]. This packet collision issue can be addressed
through frequency slot division, involving the utilization of multiple RF channels [14].
Similarly, U-node multi-hop communication networks encounter a comparable challenge:
the CDMA mode struggles to transmit large volumes of data simultaneously, leading to
packet loss. This issue can be mitigated by expanding the memory of the modulation
mediator, optimizing packets, and transitioning from CDMA to CMDA2 or 3G+ [11].

6.4. An Integrated Layout Solution

The discrete-event simulation, incorporating random input, lacks the capacity to provide
a singular representation of a layout’s average performance [23]. Advanced structural health
monitoring (SHM) necessitates a more adaptable sensor configuration to comprehensively
assess a structure’s performance [28]. Future endeavors will entail the integration of additional
factors such as quality of service, energy efficiency routes, and network topology within the
Optimal Wireless Sensor Placement (OWSP) framework [21]. Furthermore, the exploration of a
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multi-objective optimization algorithm that incorporates the effects of adverse environmental
conditions presents a promising avenue for future research endeavors. [24,124]. A Monte Carlo
method, involving the simulation of multiple replications to derive the empirical distribution
function for the layout, can be employed [23,130].

7. Conclusions

Wireless sensor networks (WSNs), which are characterized by their ease of deployment,
wireless communication capabilities, onboard computation, battery-powered operation,
low cost, and compact size, have emerged as novel paradigms for structural health monitor-
ing (SHM) [25,131]. They represent a promising technology for SHM applications [132–136].
The inherent limitations of wireless sensors and their constrained power resources under-
score the importance of optimal wireless sensor placement (OWSP) in the designing of SHM
systems. OWSP facilitates the capture of the most relevant information while maximizing
the network’s operational lifetime.

The present study summarizes and compares recent developments in wireless sensor
networks for bridge structural health monitoring, encompassing wireless sensing technolo-
gies, practical applications, data collection and transmission technologies, data processing
and analysis methods, and addresses common issues in data technologies such as efficiency,
power consumption, long-range transmission, and deployment schemes. Additionally, it
proposes future research directions and technical challenges:

1. Utilizing wireless sensor networks across different frequency channels to enable
multiple adjacent nodes to simultaneously transmit data, enhancing data collec-
tion and transmission efficiency while considering potential collisions during data
packet transmission.

2. Striking a balance between energy consumption and data transmission efficiency of
wireless sensors, while mitigating data blockage issues stemming from low
power consumption.

3. Implementing multi-hop communication protocols or topological network structures
to facilitate long-distance data transmission of wireless sensors, thereby reducing data
packet loss due to extended distances through increased memory and allocation of
frequency slots.

4. Develop multi-objective optimization algorithms that comprehensively consider fac-
tors related to harsh environments and the deployment of wireless sensor networks.

5. Exploring the integration of these technologies with building information model-
ing (BIM) and geographic information system (GIS) technologies to expand sensor
capabilities toward digital twin applications [137–142].

6. Furthermore, sensor deployment can be combined with bridge selection and site
selection to mitigate the aging of sensor equipment.

These strategies offer practical insights for practitioners in the field of bridge structural
health monitoring and aid in advancing the application of wireless sensor networks in
this domain.
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