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Abstract: Energy Performance Certification (EPC) systems are pivotal in addressing the global
energy challenge, particularly in the building sector. This study evaluates the efficacy of the EPC
offered by the Simplified Building Energy Model interface designed to indicate compliance with
the Cypriot building regulations, widely known as iSBEM-Cy Version 3.4a, by examining a typical
residential unit in Cyprus. Data on construction features and electromechanical systems were
collected, and actual monthly electricity and oil bills were analyzed to determine the total primary
energy consumption. Various factors were considered, including energy efficiency and operational
parameters for heating, cooling, lighting, auxiliary systems, and domestic hot water. The building
energy performance was simulated using iSBEM-Cy, allowing for comparison with real-world energy
consumption. Notable discrepancies were observed, particularly in cooling, with deviations reaching
377.4%. Conversely, domestic hot water consumption exhibited minimal variance at 7%, while
heating and lighting showed moderate discrepancies (24.3% and −113.9%, respectively). This study
underscores the need for rigorous evaluations to shape effective EPC and provides insights into
building energy performance in Mediterranean Cyprus. This research contributes to the broader
discourse on sustainable construction practices by aligning simulation results with real-world energy
consumption.

Keywords: sustainable buildings; energy efficiency; building energy upgrade; building energy
consumption discrepancies; building sustainability evaluation; climate change adaptation; resilience;
Cyprus

1. Introduction

In recent decades, global discussions have increasingly focused on regulations aimed
at reducing energy consumption and improving energy efficiency in buildings [1–3] and
high intensity economic sectors [4–6]. The urgency of these discussions is underscored by
the fact that in Europe, buildings alone account for 40% of total energy consumption [7–9],
with heating, cooling, and domestic hot water contributing up to 80% of this usage [10–13].
Moreover, the significant energy use in buildings is a critical contributor to climate change,
accounting for 36% of total greenhouse gas emissions associated with energy production;
this situation is driven by the fact that 75% of the current building inventory is deemed
energy-inefficient [14,15]. Energy-efficient buildings not only play a crucial role in reducing
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greenhouse gas emissions but also enhance the comfort of occupants and reduce operational
costs [16–18].

The majority of different technologies and types of energy sources have contributed
to this situation [19,20], with the choice of energy sources being significantly influenced
by political and economic factors [21,22]. The dual substitution policy has been effective
in promoting the transition to cleaner heating, with income, energy costs, and education
playing key roles [23,24]. In Europe, methods of power generation and political and institu-
tional constraints have historically shaped fuel use, with a shift towards market regulation
and refurbishment of existing plants [25,26]. Liberalization of the electricity market and
government policies have influenced investments in combined heat and power plants, with
subsidies and fuel prices playing a significant role [27,28]. Climate policy, including emis-
sions trading and taxes, has also impacted heat and power capacity investment decisions,
increasing the value of flexibility in energy investments [29,30].

The European Energy Performance of Buildings Directive (EPBD), introduced in the
2000s, is the cornerstone of the efforts to achieve high energy performance in buildings
and educate citizens on energy-saving practices to lower costs [31,32], a holistic approach
that plays a crucial role in navigating the complexities of diverse energy technologies and
sources. The initial version of the EPBD made the energy performance certificate a manda-
tory requirement for all European members, applicable to buildings under construction or
undergoing selling and renting procedures [33,34]. The latest iteration of the EPBD, intro-
duced in 2018, has amended previous directives, addressing aspects such as the long-term
renovation strategy, technical building systems, electromobility, smart readiness indicators,
inspection of heating systems, and building automation and control systems [34,35].

As a member of the European Union, Cyprus provides an intriguing case study
for examining the energy efficiency of buildings, given the island’s distinctive climatic
characteristics and the opportunity for upgrading its existing building stock [36,37]. The
majority of residential buildings in Cyprus were constructed between 1980 and 2000 [38,39],
a period during which no regulations on the energy performance of buildings were in
place, resulting in a low average energy efficiency rating [40,41]. Furthermore, despite the
current state of the building stock, Cyprus boasts a growth rate twice the average of other
EU member states, reaching 4% [42].

In Cyprus, the building sector accounts for over 30% of total energy consumption [43,44].
Addressing the high energy consumption in the existing building stock has become one
of the key challenges for the government in recent years [45,46]. A primary software tool
utilized for EPCs is the Simplified Building Energy Model interface, which is designed
to indicate compliance with the Cypriot building regulations, widely known as iSBEM-
CY [47,48]. iSBEM-Cy is an EPC designed to certify both residential and non-residential
buildings by evaluating their energy usage in accordance with Cypriot requirements [49,50].

Previous research has identified significant challenges and discrepancies in building
EPC processes. For example, Li (2015) [51] revealed that building energy models have
limited reliability in assessing the performance of energy conservation measures, citing
factors such as assumed occupancy data and cross-energy conservation measures estima-
tion. Similarly, Raslan (2010) [52] highlighted predictive inconsistencies among accredited
building energy performance compliance demonstration software in the UK. Later, Kelly
(2012) [53] raised concerns about the effectiveness of the standard assessment procedure
in estimating building energy efficiency, suggesting the potential for perverse incentives.
Brady (2017) [54] emphasized the need for improved energy management techniques,
particularly in existing buildings, due to high uncertainty in estimates of energy consump-
tion. More recently, Li (2019) [55] concluded that next-generation EPC should rely on
building information modeling technology, benefit from big data techniques, and use build-
ing smart-readiness indicators to create a more reliable, affordable, comprehensive, and
customer-tailored instrument. Additionally, both Berg (2019) [56] and Mattoni (2018) [57]
focused on the role of user behavior, with the first discussing the challenges of refurbish-
ing historic apartment buildings and the need for a bottom-up approach, and the latter



Buildings 2024, 14, 1009 3 of 16

providing a critical review of international green building rating tools, emphasizing the
need for a deeper understanding of the aspects included in these tools. Collectively, these
studies highlight the urgent need for more accurate and reliable tools and processes in
building EPC, tailored to user and case-specific needs. A reliable solution for assessing the
energy performance of buildings of any typology is represented by dynamic simulation
models [58,59]. Different tools are available on the market as commercial software [60,61];
however, the adoption of the these software options is often not flexible because they are
linked to specific weather data files [62] or are not capable of simulating novel technologies
that can be integrated into the building envelope [63]. To cope with these issues, the
adoption of in-house building energy performance simulation tool is a key strategy [64–66].
Despite prior research shedding light on associated challenges and the utility of software
tools, there remains a lack of clarity regarding their real-world performance and reliability,
especially in Mediterranean regions like Cyprus.

Consequently, the principal aim of this study is to evaluate the accuracy and effec-
tiveness of the iSBEM EPC, a widely utilized tool in Cyprus. This comparative analysis
serves to uncover the reliability of the iSBEM EPC in practical applications and addresses
an additional research gap pertaining to software precision. While recognizing that iSBEM
EPC is not designed for direct measurements, being algorithmic in its approach to contin-
uous comfort conditions, its widespread use in public and private sectors necessitates a
thorough examination of its trustworthiness.

This study holds significant implications for policymakers, practitioners, and stake-
holders in the building sector. By evaluating the accuracy and effectiveness of the iSBEM
EPC, this research fills critical gaps in the wider understanding of building EPC, particularly
in Mediterranean regions like Cyprus. Insights gained from this study can inform policy
decisions, guide improvements in building energy efficiency regulations, and contribute
to the development of more effective and sustainable building energy certification prac-
tices. Ultimately, this research aims to support efforts toward achieving energy efficiency
goals, reducing greenhouse gas emissions, and enhancing the overall sustainability of the
built environment.

To achieve the objectives set, the current research is structured in six sections. Fol-
lowing the introduction, the paper delves into existing research on EPC, underscoring the
significance of considering user behavior and regional factors in building energy simula-
tions. This comprehensive analysis sets the stage for the empirical section, which begins
with the methodology. Here, the study’s approach is outlined, detailing data collection
methods and the selection of a representative building sample for comparison. Subse-
quently, the results section provides a comprehensive outline of the disparities between
measured and simulated energy consumption using the iSBEM-Cy software, with a partic-
ular focus on household appliances and user habits. Following this detailed examination,
the paper transitions to the discussion section, which reflects on the implications of the
findings. Specifically, it emphasizes the necessity for adaptive methodologies that better
accommodate diverse user behaviors and regional conditions, calling for collaborative
efforts among policymakers, researchers, and industry experts to advance energy perfor-
mance certification practices. Finally, the conclusions section succinctly summarizes the
key findings and underscores the importance of continual improvement in energy perfor-
mance prediction models to ensure they accurately reflect real-world energy usage, thereby
contributing to sustainable construction practices and effective energy management in the
built environment.

2. Literature Review

EPC is part of a rating scheme that delineates the energy efficiency of buildings and
devices [55,67]. Within the building sector, three general categories describe the approach
to building certification and energy efficiency improvement: asset rating, operational rating,
and combined rating [68,69]. Asset rating centers on the primary energy required to meet
predetermined theoretical energy efficiency standards, while operational rating assesses
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the consumed energy over a defined period compared to other buildings of a similar
type [70,71].

2.1. EPC Global Significance and Challenges

EPC serves as a valuable global tool, providing engineers and consumers with insights
into building energy performance and strategies for cost-effective enhancements [55,72]. A
plethora of studies utilizing EPC software tools have concentrated on improving building
energy performance through diverse scenarios, comparing and evaluating data derived
from EPC [55,67,73,74]. Furthermore, certain studies have scrutinized EPC methods by jux-
taposing measured and calculated energy ratings [75–77]. For instance, Charalambides et al.
(2019) [78] conducted surveys across twelve European countries, revealing the significant
role of EPC in guiding both renovation and property acquisition decisions, with 72% of the
respondents acknowledging its importance.

EPC functions as an indicator of building energy performance, typically under EPBD
guidelines [79]. However, while the directive outlines these guidelines, Member States have
the flexibility to employ their calculation methods for energy performance and energy label
designs, leading to a lack of uniformity across the EU [80]. This variation is particularly
evident in the approach to energy performance assessment, with operational rating relying
on actual energy use (measured) and/or asset rating based on assumed standard usage
(calculated) [81]. Research by Semple and Jenkins (2020) [80] investigated EPC schemes in
six countries, revealing how different methodologies can yield disparate conclusions about
building stocks, while Ferrantelli and Kurnitski (2022) [82] found that EPCs issued using
four distinct methodologies resulted varying, and at times unrealistic, renovation rates for
Estonian building. These findings underscore the necessity for a standardized EPC energy
labeling system.

Gonzalez-Caceres et al. (2020) [83] examined the recommended measures in EPC
schemes and noted a lack of consistent design for engaging building owners, with limited
information on implementation discouraging renovations. Previous research has high-
lighted the technical language and lack of user-friendliness in many EPC schemes [84–86].
Nonetheless, EPC has demonstrated its importance in improving energy efficiency and
sustainability by evaluating building energy efficiency and carbon emissions as well as
monitoring the EU’s building stock [74,87].

Li et al. (2019) [55], in their analysis of the current EPC landscape in the EU, concluded
that EPC information can be valuable for energy performance monitoring and building
renovation planning. However, they note challenges that hinder its reliability as a tool for
large-scale building renovations. Specifically, the lack of access to trustworthy information
and financial support contributes to hesitations, resulting in a low refurbishment rate in
the EU.

While the EPC has demonstrated its effectiveness globally, its implementation in the
Mediterranean region presents unique challenges [88]. With diverse climatic conditions and
architectural styles prevalent in countries surrounding the Mediterranean Sea (see [89]),
the applicability and accuracy of EPCs require special consideration [32]. Research by
Mediterranean-focused studies has highlighted discrepancies in energy performance as-
sessments due to factors like high temperatures, extensive use of air conditioning systems,
and architectural designs optimized for passive cooling [76,90–92]. These factors often
lead to significant deviations between calculated and actual energy consumption, affecting
the reliability of EPCs in the region [93,94]. Moreover, socioeconomic factors and varying
levels of technological infrastructure further complicate the adoption of EPCs and hinder
energy efficiency improvement initiatives [95,96]. Understanding these regional nuances
is crucial for enhancing the effectiveness of EPCs and promoting sustainable building
practices across the Mediterranean basin.
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2.2. Discrepancies between Real and Simulated Data

The frequently observed poor quality of EPC limits its effectiveness in supporting
building renovations because it may not accurately reflect actual energy performance, which
can be influenced by user behavior [55,97]. Despite the establishment of EPC databases and
quality control measures in most member states, the uncertainty in quality underscores the
importance of quality control and the need for consistent input data [98,99].

Pérez-Lombard et al. (2009) [69] recommend that existing buildings utilize both calcu-
lated and measured ratings to assess energy performance. They advocate for a preference
for measured rating to mitigate risks such as uneconomical retrofit investments or credibil-
ity issues. Measured ratings involve on-site energy metering, further categorized into asset
and tailored ratings. For new buildings, the authors (ibid) recommend employing asset
rating compared to reference values stipulated by regulations, which relies on standard
usage patterns, independent of occupant behavior, actual weather, and indoor conditions.

Herrando et al. (2016) [100] employed the Calener GT energy simulation software
to evaluate the energy performance of buildings based on specified general operating
conditions. Their study, focusing on 21 faculty buildings in Spain, revealed an average
30% deviation between real and simulated energy consumption results. This discrepancy is
attributed to the use of standard operating conditions in the software, which differ from
actual conditions. A significant discrepancy, reaching up to 83%, was observed in some
cases, where real consumption surpassed the simulated results. The study underscores
user behavior in (public) buildings as a primary factor contributing to the gap between real
and simulated data.

Fokaides et al. (2011) [101] conducted a study comparing the measured and calculated
energy consumption of ten residential units in Cyprus. Employing a combination of
questionnaires, energy consumption records, and the SBEM software, they found that, in
some cases, the ratio of the average calculated to measured energy consumption exceeded 4.
Furthermore, calculated primary energy consumption consistently surpassed measured
consumption in all ten cases, indicating the significant impact of user behavior on measured
energy consumption.

In a separate study in Cyprus, Dimitriou et al. (2020) [102] evaluated the energy
and economic viability of various scenarios for a public office building, utilizing iSBEM
and Design Builder. This research underscores the integration of energy and economic
considerations in research, a well-established theme in energy-related discourse [103,104],
often accompanied by policy analysis [105,106]. Their findings revealed that cooling,
lighting, and equipment collectively contribute up to 85% of the total energy consumption
in a typical office building in Cyprus. The study also concluded that while minimum energy
performance requirements in Cyprus can reduce heating needs by 85%, the reduction in
cooling needs is less effective at 50%.

Another study in Cyprus by Foikaides et al. (2014) [40] explored scenarios aimed at
achieving zero-energy consumption residences following the implementation of EPBD reg-
ulations. Their results demonstrated a 40% reduction in energy consumption, underscoring
the significance of European directives in promoting energy efficiency. The research team
further concluded that technologies such as photovoltaics, solar thermal, and biomass for
space heating directly contribute to reducing energy production from fossil fuels.

2.3. Research Gap and Objectives

While the existing body of literature extensively delves into EPC, a critical gap persists
regarding studies scrutinizing the EPC accuracy vis-à-vis real-world data. These discrepan-
cies often hinge on regional variations and building-type factors. This research endeavors
to address this identified gap by providing a focused examination of the precision of the
energy certification system in Cyprus, an aspect hitherto unexplored in current scholarship.

The paramount aim of this study is to conduct a meticulous comparison between
measured and calculated ratings of an existing building, utilizing the Cyprus Government’s
building energy certification software, iSBEM-Cy. The evaluation of results will be con-
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ducted with scientific rigor, emphasizing consumption compliance by categorizing energy
loads into specific end uses. This research, concentrating on a typical residence in Cyprus,
aims to contribute valuable insights into the nuanced interplay between real-world energy
consumption and iSBEM-Cy’s computational outputs, thereby advancing our understand-
ing of the practical efficacy of energy certification systems in the Cypriot context.

3. Methodology

The study aims to evaluate the energy performance of a typical residential unit in
Cyprus through a comprehensive methodology employing both simulations (iSBEM-Cy)
and real-world data. A representative partially insulated, 180 square-meter, four-bedroom
residential unit in Limassol is selected to characterize the prevailing Cypriot building
stock. Examination of passive envelope components and collection of construction and
electromechanical system details precede the analysis of monthly electricity and oil bills.
Using iSBEM-Cy, simulations are conducted under standardized operation schedules and
climatic conditions, categorizing results into primary energy consumption for Heating,
Cooling, Lighting, Auxiliary, and Hot Water. A subsequent comparison between real and
simulated data enables the identification of deviations, essential for assessing the efficacy
of the iSBEM-Cy system.

3.1. Cyrpus Building Stock

Based on data from the Cyprus Statistical Service [www.cystat.gov.cy], the average
floor area of dwellings in the last decade is 190 square meters and decreasing, with the ma-
jority being two-story structures [102]. Most of the Cypriot building stock was constructed
before 2008 without any thermal insulation measures. Since 2008, the thermal insulation
regulations have been gradually implemented in Cyprus, with the requirement that all new
residences must be nearly Zero Energy Buildings (nZEB) from 2020 onwards [107]. The
thermal insulation characteristics of most Cypriot residences are presented in Table 1 and
are compared with the modern requirements of 2020, which apply to new residences.

Table 1. Comparison of the Cyprus’ current building stock typical thermal conductivity coefficient
values to the nZEB standards. Source: [107,108].

Thermal Conductivity Coefficient Values W/(m2k)

Element Cyprus Building Stock Typical Thermal
Conductivity Coefficient Values (before 2008)

nZEB Standards
(after 2020)

External Walls 1.400 0.400
Roofs 3.300 0.400

Load Bearing Structures 2.800 0.400
Floors 2.000 0.400

Windows 6.000 2.250

Considering that 34% of the Cypriot building stock lacks any thermal insulation mea-
sures in its envelope [107], and only a small percentage of the existing building stock is
nZEB, the selected building for this study should represent the transition from the pre-
2008 era and the absence of thermal insulation measures to nZEB structures, serving as
a sample of the current Cypriot building stock. Thus, for the assessment of iSBEM-Cy,
a representative partially insulated, 180 square meters, four-bedroom residential unit in
Limassol, Cyprus, is chosen, aiming to typify the residential building stock in Cyprus.
All constructional details of the residence, as well as the type and efficiency of the elec-
tromechanical systems, are gathered. The total energy consumption of the residence is
determined through monthly electricity bills from the Electricity Authority Cyprus (EAC)
and oil bills, translated into primary energy. By considering the energy efficiency of the elec-
tromechanical systems and estimating the operation time for each system, the total energy
consumption for Heating, Cooling, Lighting, Auxiliary, and Hot Water is recorded. Subse-

www.cystat.gov.cy
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quently, all collected data on construction and electromechanical characteristics are input
into the iSBEM-Cy software. Using standardized operation schedules and climatic condi-
tions, energy performance calculations are conducted, categorizing results into primary
energy consumption for Heating, Cooling, Lighting, Auxiliary, and Hot Water. The final
step in the methodology involves a comparison between real and estimated consumptions,
pinpointing deviations between real and simulated data for the same residence.

3.2. Data Collection

The subject of this study is a two-story, four-bedroom residential building located in
Limassol, with a total usable area of 180.00 m2 (155.84 m2 thermal zone area, as entered
in iSBEM). The initial phase of data collection focuses on the passive components of the
building, commencing with the envelope. The building’s envelope comprises insulated
brick walls, columns lacking thermal insulation, and an insulated concrete roof. The
windows are of the typical double-glazed variety without thermal improvement. The
U-Values and the Cm of the elements of the building were calculated based on the official
guide; Cyprus Building Energy Performance Calculation Methodology [109]. Table 2
presents the features of the existing envelope elements.

Table 2. Existing Building Masonry.

External Masonry

Element U-Value
W/(m2k) Cm (kJ/m2K)

External Wall (Insulated 29 cm) 0.684 116.000
Roof (Insulated 28.9 cm) 0.469 240.000

Load Bearing Structure 1 (No Insulation 29 cm) 1.667 228.000
Load Bearing Structure 1 (No Insulation 24 cm) 3.448 228.000

Windows 2.800

Internal Masonry

Internal Wall 1 (No Insulation 24 cm) 1.250 116.000
Internal Wall 2 (No Insulation 14 cm) 1.818 86.000

Internal Doors (5 cm) 2.155 18.000
First Floor Slab (No insulation 29 cm) 0.740 93.000

In juxtaposing the simulated and actual consumption, the total energy consumption
for one year is documented using bills obtained from the Electricity Authority Cyprus
(EAC). The chosen timeframe spans from December 2012 to the end of November 2013, with
total consumption grouped every two months. The recorded consumption, as provided by
EAC, is then converted into primary energy and expressed in primary energy per square
meter to ensure comparability with the iSBEM-Cy results. These values are detailed in
Table 3.

It is essential to highlight that the residence utilizes a diesel boiler with a perfor-
mance factor of 0.90 for both heating and domestic hot water purposes. Throughout the
investigation period, a total of 450 liters of diesel is consumed for heating and hot water.
Consequently, the overall primary energy consumption for heating and hot water is calcu-
lated to be 5305.85 kWh, equivalent to 34.05 kWh/m2. Of this total, 26 kWh/m2 pertain to
heating, while 8.05 kWh/m2 are attributed to hot water.
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Table 3. Recorded Consumption.

Period
Recorded

Consumption
from EAC (kWh)

Primary Energy
Consumption (kWh)

Primary Energy
Consumption

(kWh/m2)

December 2012–
January 2013 890.06 2403.16 15.42

February–
March 2013 761.1 2054.97 13.19

April–
May 2013 643.09 1736.34 11.14

June–
July 2013 786.03 2122.28 13.62

August–
September 2013 661.02 1784.75 11.45

October–
November 2013 696.06 1879.36 12.06

Total 4437.36 11,980.87 76.88

4. Results

Following a comprehensive analysis of the collected data, the results are presented
herein. A meticulous examination of all electricity-consuming devices, encompassing
both indoor and outdoor installations, was conducted throughout the selected timeframe.
Device consumption is assessed on an annual basis, with classifications based on energy
consumption levels by estimating the operational durations for each device. The ensuing
graphical representation categorizes consumption into distinct segments, including lighting,
cooling, and home appliances. This analytical breakdown is paramount, particularly given
the omission of home appliances in iSBEM-Cy, as depicted in Figure 1, highlighting their
significant role in overall energy consumption.
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Figure 1. Energy Consumption Percentage Per Use.

The percentage analysis of household energy consumption reveals that the use of
household appliances accounts for 39.5% of the total household energy consumption. This
finding is noteworthy as this energy consumption is entirely user-dependent and not
readily replicable, posing a challenge in transparently representing the energy footprint of
each building.
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Subsequently, Figure 2 presents the total energy consumption for lighting, heating,
cooling, hot water, and home appliances per square meter of the building.
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Figure 2. Primary Energy Consumption of the Actual Building.

The total energy consumption of the actual building amounts to 111 kWh/m2, of
which 43.8 kWh/m2 is attributed to household appliances. Since household appliances are
not considered in iSBEM-Cy, a comparable figure for analysis is adjusted to 67.2 kWh/m2.
Notably, the lowest energy consumption is observed for Domestic Hot Water purposes,
while heating registers the highest energy consumption after household appliances, ac-
counting for 26 kWh/m2. It is noteworthy that the actual cooling consumption is lower
than the heating needs, a seeming paradox considering the climatic conditions in Cyprus.
This observation may be interpreted by the incorporation of fundamental bioclimatic el-
ements in the building’s design and adequate, though not complete, thermal insulation.
Furthermore, the usage of air conditioning systems is influenced by the user’s subjective
perception, significantly impacting the final energy consumption of the building.

Comparison with iSBEM

iSBEM-Cy computes the total primary energy consumption for cooling, heating, light-
ing, and domestic hot water. The simulated building’s total annual primary energy con-
sumption is calculated at 320 kWh/m2. As depicted in Figure 3, a significant deviation
exists between the actual primary energy production and the simulated results, reaching
up to 377.4%. The actual building’s energy consumption is 67.2 kWh/m2, contrasting with
the iSBEM-Cy-modeled consumption of 320 kWh/m2. The discrepancy ratio in annual
consumption for lighting, heating, cooling, and domestic hot water amounts to 4.77.

For a more detailed analysis of the results, it is essential to categorize the energy
consumption by use, as illustrated in Figure 4. Notably, the deviations for heating loads
and Domestic Hot Water are −25% and 7%, respectively. However, there is a significant
deviation for Lighting, amounting to 114%, while the deviation for Cooling is exceptionally
high, reaching 1908%, with a ratio as high as 20. The smallest deviation is observed in the
energy consumption for Domestic Hot Water, with a margin of up to 7%.
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5. Discussion

The results of this study bring to light substantial disparities between real-world and
simulated data, emphasizing the pivotal role of user behavior and the limitations inherent
in the current certification methodologies.

Upon examining household energy consumption, it becomes evident that user-dependent
factors, particularly those related to household appliances, account for a significant por-
tion, approximately 39.5%, of the total household energy usage. This finding, on the
one hand, aligns with previous studies emphasizing the importance of considering user
behavior in building energy simulations [110]. On the other hand, this reliance on user
behavior introduces complexities in accurately representing the energy footprint of build-
ings, as individualized consumption habits are challenging to replicate uniformly within
simulation frameworks.

In comparison to iSBEM-Cy, the software exhibits commendable accuracy in certain
aspects, such as calculating heating and domestic hot water consumption, with deviations
of −25% and 7%, respectively. However, a more profound analysis exposes the software’s
limitations in predicting user behavior, especially concerning lighting and cooling. Notably,
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there is a considerable deviation of 114% in lighting and an alarming 1908% deviation in
cooling, with a ratio as high as 20. These discrepancies underscore the critical importance of
user-specific behavior, such as limited use of cooling systems during the day and adoption
of alternative cooling methods like mobile fans, which are not adequately accounted for by
the software algorithms. In particular, regarding lighting, deviations can be explained by
users’ habits and their preferences in lighting fixtures. This discrepancy is less worrisome
as such detailed user behavior cannot be inputted into the software, which is primarily
designed for energy certification, rather than building design. Conversely, the substantial
deviation in cooling can be traced to the software inability to accommodate user-specific
behaviors, such as the reduced use of cooling systems during certain times and reliance
on mobile fans (averaging 1.7 kWh/m2) instead of HVAC systems. These factors are not
encompassed within the software’s algorithms. This elucidation underscores the critical
role of user behavior in shaping energy consumption patterns and underscores the necessity
for enhanced algorithms capable of capturing such nuanced dynamics for more accurate
building energy simulations.

Furthermore, it is essential to note that the iSBEM-Cy certification system operates
within specific parameters, such as mandating the introduction of certain systems, like
the “Split unit with oil boiler heating source 0.9 and cooling with seasonal efficiency 3.2”
into the software for zones without air conditioning. However, in cases where there are
no air conditioning units, the software calculates cooling loads based on these conditions.
While these characteristics align with the software’s intended use for comparative building
energy certification, they underscore the importance of applying methodologies that closely
align with both certification requirements and the actual energy dynamics in the existing
building stock.

The assessment of Cyprus’ iSBEM-Cy certification system for a representative four-
bedroom residential unit in Limassol reveals critical disparities between simulated and
actual energy consumption. These disparities particularly pronounced in the context of
household appliances and user habits, emphasize the urgent need for refined certification
methodologies. Spherically, the identified limitations of iSBEM-Cy, especially its oversight
of household appliances constituting nearly 40% of total energy consumption, underscore
a crucial blind spot in current certification frameworks.

Addressing these discrepancies effectively requires a shift towards adaptive systems
that integrate real-world data, accounting for diverse user behaviors and regional climatic
conditions. Collaborative efforts among policymakers, researchers, and industry experts
are necessary to evolve certification systems, fostering a more accurate, adaptive, and
user-centric approach.

In specific terms, the actual building’s total energy consumption is measured at
111 kWh/m2, with 43.8 kWh/m2 attributed to household appliances. This stark contrast
with the iSBEM-Cy simulation, which calculates a total annual primary energy consump-
tion of 320 kWh/m2, reveals a significant deviation of 377.4% from the actual building’s
consumption. The observed ‘paradox’ in the balance between cooling and heating fur-
ther highlights the need for adaptive methodologies that better accommodate diverse
user habits.

Moving forward, actionable steps must be taken to enhance the accuracy of energy
performance certification. Policymakers should consider implementing adaptive method-
ologies that better accommodate diverse user habits, while researchers and industry experts
collaborate to refine existing frameworks. These advancements are pivotal not only for the
effectiveness of energy performance certification but also for broader goals of sustainability
and environmental responsibility in the built environment.

While this study has highlighted the disparities between iSBEM-Cy simulations and
actual energy data for a building, further research is necessary to identify specific trends in
these deviations. A more extensive analysis of additional case studies is planned to identify
specific trends in these deviations. Incorporating these trends into iSBEM-Cy results aims
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to continually improve the accuracy of outcomes and contribute to the ongoing dialogue
surrounding sustainable construction practices and energy certification.

6. Conclusions

This study aimed to scrutinize the effectiveness of energy performance certification,
particularly focusing on the disparities between iSBEM-Cy simulations and actual energy
data for buildings. Through a comprehensive analysis, the study revealed significant
discrepancies between simulated energy performance and real-world energy consumption.
These findings underscore the necessity for ongoing research to refine predictive models
and enhance the accuracy of energy performance certification.

All in all, the study emphasizes the importance of continual improvement in energy
performance prediction models to ensure they accurately reflect real-world energy usage.
Such enhancements are crucial not only for regulatory compliance but also for advancing
sustainable construction practices. Furthermore, the findings underscore the need for
broader analysis encompassing diverse case studies to discern overarching trends and
refine predictive algorithms, ultimately contributing to environmental sustainability and
effective energy management in the built environment.
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