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Abstract: Due to the high prices, the popularity of radiation shielding concrete (RSC) has been
greatly limited. To solve this, this research reused the lead–zinc tailings (LZT) as a fine aggregate
replacement ranging from 0% to 60% for the RSC. The results revealed that the RSC containing 30%
LZT presented better workability and achieved 95.84% of the compressive strength and 98.49% of the
linear attenuation coefficient of the RSC, and reached the highest splitting tensile strength values,
which increased by 4.43%. Meanwhile, after the heat treatments, there were favorable correlations
between the relative velocity and relative strength, as well as between the damage index and the
relative linear attenuation coefficient, which could accurately reflect the degradation of not only the
mechanical but also the shielding properties. Considering the temperature and shielding thickness,
the reuse of LZT can bring considerable economic and environmental benefits.

Keywords: high temperature; lead–zinc tailings; radiation shielding concrete; mechanical strength;
gamma ray shielding; ultrasonic pulse velocity

1. Introduction

With the deterioration of the natural environment, the negative impact of traditional
energy on the environment urgently needs to be addressed. As an emerging form of
green power, nuclear energy can almost replace the traditional fossil fuels to mitigate
the significant contributions of energy production to ecological degradation. However,
there exists a potential risk of nuclear radiation leakage during the utilization of nuclear
energy [1]. At present, the majority of materials employed for radiation shielding are heavy
concrete, also recognized as radiation shielding concrete (RSC), which typically comprises
high-density natural coarse aggregates possessing a specific gravity of 3.0 or greater [2–4].
However, due to the high prices of hematite, barite and magnetite (the main components
of high-density natural coarse aggregates), the popularity of RSC has been greatly limited.
Therefore, it is crucial to explore a more suitable and cost-effective alternative.

The main difference between RSC and ordinary concrete is the type of aggregates used.
Therefore, the paramount objective is to investigate novel materials that demonstrate supe-
rior performance across all other parameters while concurrently being more economical.
Categorically, these potential substitute compositions can be differentiated based on their
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origin into industrial by-products, virgin materials, commercial wastes, domestic refuse
and mine tailings [5–9]. Moreover, the large quantities of wastes generated by the iron
steel industry, slags produced from iron smelting, slags from blast furnace slag, slags from
the smelting of lead–zinc ore and copper slags from copper extraction could be applied
as aggregates or cement due to their shared property of retaining heavy elements [10–15].
Furthermore, mine tailings, which are produced in vast amounts annually worldwide, hold
immense potential for application in radiation shielding concrete (RSC).

Mineral extraction, an industry deeply entrenched within the global economic frame-
work, is concurrently recognized for its substantial environmental implications [16]. Fur-
thermore, the large volume of tailings stored in tailings dams is also one of the major
potential hazards [17,18]. For decades, the catastrophic failure of tailings dams has pre-
cipitated severe environmental calamities globally [19–21]. This reality underscores the
imperative to regard tailings, a form of solid waste, with the utmost seriousness. Nowa-
days, research on the use of tailings for building materials is well established [22–25].
Tailings are mainly used in building materials such as clinker production, supplementary
cementitious materials (SCMs) and concrete aggregates, etc. Studies have shown that the
designed clinker by tailings can control the leaching of heavy metals after hydration [26].
Additionally, the principal issue with employing tailings as cement clinker is that tailings
are not normally cemented and are usually accompanied by the reduced strength of the
cement and concrete mortars [27]. To address this issue, mechanical activation is consid-
ered to be a viable and highly effective treatment method, which can be useful to increase
the cementitious activity index and enhance the compressive strength of concrete [28,29].
However, the utilization of tailings in radiation shielding concrete (RSC) requires further
systematic research to expand the range of applications for tailings sand. It has been ob-
served that lead mine tailings have a positive influence on the compressive strength when
used as a substitute for RSC aggregates [30], and barite–fluorspar mine waste (BFMW) is
also beneficial to the compressive strength of radiation shielding cement mortar [31]. The
reason why there is no significant linear increase or decrease in the radiation absorption
coefficients of the mixed aggregates can be attributed to the variability of the lead content
in the tailings [32]. Similarly, the incorporation of lead–zinc tailings sand (LZT) into plain
concrete follows a similar trend [33,34].

Over the course of its operational lifespan, RSC may be exposed to high temperatures,
so the determination of heat distribution and heat effect or thermal stress is a significant
aspect of the shielding design [35]. Heavy concretes with aggregates of ilmenite, magnetite
and hematite have good phase stability when exposed to high temperatures [36–38]. The
reason why the mechanical and shielding properties of heavy concrete deteriorate is
mainly due to the loss of crystalline water, the development of internal cracks [39] and
severe bursting phenomena [36,37,40]. For ultra-high-performance concrete (UHPC), the
bursting phenomenon is more serious [41]. Meanwhile, the crystalline water directly
affects the neutron shielding ability of RSC, owing to its hydrogen content [42–44]. But
there is currently a lack of research on the effect of high temperatures on RSC mixed with
tailings sand.

As the accumulation of old tailings sand continues unabated within tailings dams, and
with the ongoing production of new tailings sand, there exists a pressing need to further
broaden the application scope of tailings sand. To solve this problem, this literature study
investigated the reuse of lead–zinc tailings sand (LZT) as a fine aggregate replacement
ranging from 0% to 60% for magnetite radiation shielding concrete, whose workability,
mechanical performance (including compressive strength and splitting tensile strength)
and γ-ray shielding performance have been studied. Afterwards, in consideration of
the possibility that radiation shielding concrete (RSC) may encounter high-temperature
exposure during its operational lifetime, this paper also opts for the concrete mix with
superior overall performance to conduct a high-temperature trial aimed at examining the
residual capabilities. Meanwhile, throughout this experiment, ultrasonic nondestructive
testing was employed to indirectly assess and evaluate the degradation of the mechanical
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performance and γ-ray shielding performance of the lead–zinc tailings sand radiation
shielding concrete (LZTRSC) after exposure to elevated temperatures.

2. Raw Materials and Test Methods
2.1. Raw Materials

(1) Cement: The experiments employed ordinary Portland P.O 42.5 cement, which was
procured from Hunan Province in China. The chemical constituents of the utilized
cement are delineated in Table 1. The cement possesses a density of 3100 kg/m³ and a
fineness value of 370 m²/kg. For the relevant regulations, we referred to Common
Portland Cement (GB 175-2007) [45].

Table 1. Chemical composition of the cement and the used aggregates (wt.%).

Composition Na2O MgO Al2O3 SiO2 SO3 CaO MnO Fe3O4 Fe2O3 ZnO PbO LOI

Cement 0.18 2.78 5.24 17.88 0.95 68.38 - - 2.33 - - 2.25
LZT 0.19 1.47 6.83 76.91 5.45 2.88 0.17 - 4.02 0.26 0.19 1.64

Magnetite 0.46 2.43 3.24 7.90 0.72 2.68 0.23 80.52 - 0.05 0.04 1.73

The above data in Table 1 come from www.eceshi.com.

(2) Aggregates: The test methods employed in this study adhere to the standards outlined
in Sand for Construction (GB/T 14684-2022) [46] and Pebble and Crushed Stone for
Construction (GB/T 14685-2022) [47]. The lead–zinc tailings sand (LZT) and magnetite
aggregates were sourced from a tailings dam located in Shuikou Mountain, Hunan
Province, China, and Henan Province, China, respectively. To prepare the LZT, which
was initially stored in a wet state, it was dried in an oven at 105 ◦C for 24 h and
subsequently sieved. The magnetite coarse and sand aggregates underwent washing
and were then naturally dried in an open outdoor area for one week. These aggregates
were then sieved using standard square-hole sieves, with needle-like and flaky stones
being removed. Magnetite coarse aggregates with a maximum particle size of 20 mm
were prepared and proportioned according to standardized mass ratios. Magnetite
fine aggregates were obtained by sieving magnetite sand with a particle size range
of 0–5 mm. The principal chemical composition and fundamental properties of the
aggregates are detailed in Tables 1 and 2, respectively. The grading curves for both
coarse and fine aggregates are depicted in Figure 1.
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Table 2. Basic properties of the aggregates.

Aggregate
Type

Particle
Size (mm)

Apparent
Density (kg/m3)

Crush
Index (%)

Water
Absorption (%)

Water
Content (%)

LZT 0–0.6 2620.00 - 6.10 10.80

Magnetite 0–5 4620.00 - 0.70 0.20
5–20 4440.00 7.10 0.20 0.10

The above data in Table 2 were obtained from the test followed in GB/T 14684-2022 and GB/T 14685-2022.

(3) Water: Tap water was supplied within the laboratory premises.

2.2. Mix Proportion and Specimen Arrangement

The initial mix proportion was derived from the mix ratio standard specified in GB/T
34008-2017 [48]. After a series of preliminary trials, an optimal mixing ratio for the radiation
shielding concrete (RSC) was achieved, as detailed in Table 3.

Table 3. Mix proportion of the concrete.

LZT Ratio
(%)

Water–Binder
Ratio

Mix Proportion (kg/m3)

Cement LZT Magnetite
Sand

Magnetite
Coarse Water

0

0.54 398

0 1077.8

1835.2 215

10 100.1 901.3
20 187 748.1
30 263.1 613.9
40 330.3 495.4
50 390 390
60 443.6 295.7

A total of 156 RSC specimens, each measuring 100 × 100 × 100 mm, were prepared
for testing. Of these, 84 specimens were designated for room-temperature tests, while the
remaining 72 were allocated for high-temperature tests. The RSC samples were removed
from their molds 24 h post-casting and subsequently cured in a standardized environment
for a period of 28 days. Upon completion of the curing process, the test blocks were
promptly extracted for immediate testing.

2.3. Test Methods
2.3.1. Work Performance Test

The working performance of the concrete was assessed by examining the consistency
of the concrete slurry, which included measurements of the slump, the extent of water
separation and the degrees of delamination and segregation. Table 4 presents the results of
the slump test.

Table 4. Results of the concrete mix consistence slum test.

LZT Ratio (%) Cohesion Bleeding Slump
Values (mm)

Slump
Class

0 Poor

None of them
have obvious

water bleeding
phenomena

2

S1

10 Slightly poor 15
20 Plain 17
30 Good 20
40 Good 16
50 Good 8
60 Good 7
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2.3.2. High-Temperature Heating Test

The experiment was performed using an SX2-36-13-1300 ◦C chamber muffle furnace
(Fenghua Industrial Furnace Factory, Xinghua, China). A heating rate of 3.5 ◦C/min was
employed to attain the desired temperatures of 200, 300, 450, 600 and 800 ◦C, respectively.
The test commenced from a room temperature of 25 ◦C (the external surface temperature
of the specimen reached the target temperature) and subsequently maintained the target
temperature for a duration of 2 h. Figure 2 illustrates the high-temperature test’s heating
process diagram.
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2.3.3. Mechanical Test

The WAW-EY1000C (Jinan Shijin Group Co., Ltd., Jinan, China) microcomputer-
controlled electro-hydraulic servo universal testing machine was utilized for the evaluation
of the mechanical strength in the concrete during the mechanical testing. The cube com-
pressive strength test was executed using stress-controlled loading at a rate of 0.5 MPa/s,
while the splitting tensile strength test was conducted with stress-controlled loading at a
rate of 0.05 MPa/s, adhering to the Standard for Test Method of Concrete Physical and
Mechanical Properties (GB/T 50081-2019) [49].

2.3.4. Ultrasonic Nondestructive Testing

The experiment was performed using a non-metallic ultrasonic detector (ZBL-U5200,
Beijing Zhibolian Technology Co., Ltd., Beijing, China) on a 100 mm concrete cube specimen.
The detector had a sampling period of 0.4 µs, an acoustic time accuracy of 0.025 µs, a
reception sensitivity of no more than 10 µV and a gain accuracy of 0.5 dB. The transducer
frequency used was 45 kHz. The pair test method was employed to derive the wave velocity
parameter, as depicted in Figure 3. To enhance data precision, an ultrasonic coupling agent
was uniformly applied to the contact areas between the ultrasonic detector probe and the
specimen. Additionally, to ensure the accuracy of the specimen’s actual damage state, nine
measurement zones were evenly selected on the specimen (as shown in Figure 3). Each
measurement zone was measured three times to calculate the mean value. The testing
methodology adhered to the Technical Specification for Inspection of Concrete Defects by
Ultrasonic Method (CECS21:2000) [50].
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2.3.5. γ-ray Shielding Test

The BH-1326 nuclear physics testing platform was utilized to perform the γ-ray
shielding test, utilizing a γ-ray source that emitted 0.662 MeV photon energy from the
137Cs radioisotope. The objective of the test was to assess the attenuation of γ-rays in the
RSC. Concrete samples measuring 100 × 100 mm with varying thicknesses of 25, 50, 75,
100 and 125 mm were employed as experimental specimens. In addition, the test block
was partitioned into 9 measurement zones, with each zone being subjected to γ radiation
three times and with each exposure lasting 60 s. The mean value of the measurements
was subsequently computed for each area. Figure 4 illustrates the schematic of the γ-ray
shielding test apparatus. The linear attenuation coefficient (µ) of the RSC was derived
from the Lambert–Beer law, as depicted in Equation (1). The mass attenuation coefficient
(µm) was obtained from Equation (2), while the mean free path (Mfp) was calculated using
Equation (3). The thicknesses of the half-value layer (HVL) and tenth-value layer (TVL)
typically contribute to the assessment of the material’s γ-ray shielding efficacy [51], as
defined by the necessary thickness of the RSC when the γ-ray intensity diminishes to half
and one-tenth of the initial emission value, respectively [52], which can be determined
using Equations (4) and (5). Finally, the transmission rate can be derived from Equation (6).

I = I0e−µx (1)

µm =
µ

ρ
(2)

Mfp =
1
µ

(3)

HVL =
ln2
µ

(4)

TVL =
ln10
µ

(5)

Transmission rate =
I
I0

(6)

where I represents the γ-ray counting rate after transmission through a concrete sample
of thickness x; I0 represents the initial counting rate without the sample in place; x is the
thickness of the RSC sample (cm); µ is the linear attenuation coefficient of the RSC sample
(cm−1); µm is the mass attenuation coefficient of the RSC sample (cm2/g); ρ is the density
of the RSC sample (g/cm3).
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3. Results and Discussion
3.1. Properties of Radiation Shielding Concrete with Different LZT Ratios at Room Temperature
3.1.1. Workability

The slump values of the concrete slurries with varying LZT ratios are presented in
Table 4. As indicated in Table 4, the slump value of the concrete slurry initially increased
and then decreased as the substitution ratio increased. The optimal substitution ratio is
identified as 30%. This phenomenon can be explained by the fact that a small amount of
LZT fine particles can fill the voids, leading to an increase in the amount of free water in
the system and, consequently, improving the fluidity of the mixture. However, due to the
relatively large specific surface area of the LZT, more free water is required in the slurry as
the LZT dosage increases. This counteracts the water-reducing effect caused by the filling
effect, resulting in reduced fluidity [38,53].

3.1.2. Compressive Strength

The 28d compressive strength (fc) of the concrete with various LZT replacement ratios
is depicted in Figure 5. It is evident that the compressive strength of the concrete slightly
decreases as the LZT content increases, particularly when the substitution ratio is below
30%. Concrete with a 30% LZT admixture exhibits a compressive strength of 95.84% relative
to the control group (0% LZT). However, the strength begins to diminish rapidly beyond
this point, dropping to 75.27% of the control group’s strength at a 60% admixture ratio.
This deterioration in strength could be attributed to the lower density and strength of the
LZT compared to the magnetite sand. Moreover, the LZT contains a high level of sulfides,
which react with cement to form calcium sulfate. This reaction results in a reduction in
C-S-H and other cement hydration products, which are essential for cohesion and concrete
strength [54]. Additionally, it is important to note that, although LZT is categorized as
a type of fine aggregate, its particles are smaller and have a larger specific surface area
compared to magnetite sand due to its unique origin. As the LZT dosage increases, the
particles act as fillers, potentially enhancing the slurry content in the mix and improving
the workability of the magnetite concrete. The optimal workability is attained at a 30%
LZT dosage. However, as the substitution ratio continues to rise, an increased amount of
LZT fine particles necessitates additional water consumption, leading to a decline in the
compressive strength. When the substitution ratio surpasses 40%, the concrete gradation
worsens, culminating in a significant drop in the compressive strength.
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3.1.3. Splitting Tensile Strength

Figure 5 demonstrates the splitting tensile strength (ft) at room temperature for varying
percentages of the LZT replacement. Initially, the splitting strength increases and then
decreases as the LZT replacement ratio rises. The peak strength is observed at a 30%
replacement level, where there is a 4.40% increase in comparison to the control sample. As
the LZT ratio continues to escalate, the strength gradually diminishes. At a 60% replacement
ratio, the strength falls to 88.93% of the control value. The initial enhancement in splitting
tensile strength can be attributed to the improved workability achieved with an optimal
LZT replacement ratio. However, the subsequent reduction in strength may result from the
detrimental effects on the gradation, which outweigh the positive impacts of the improved
fluidity in the mixture.

3.1.4. Ultrasonic Pulse Velocity

When defects such as holes or cracks are present in the propagation path of an ultra-
sonic pulse, its pattern alters, leading to a decrease in wave velocity [55]. Consequently,
ultrasonic flaw detection techniques can be employed to investigate and evaluate the
degree of internal densification, and to infer the porosity and compressive strength [56].
Additionally, the ultrasonic wave velocity can be used to assess the damage and degrada-
tion of the concrete following heat treatment. The concrete’s durability diminishes due to
cracking, spalling, bursting and the gradual degradation of the hardened cement paste [57],
which in turn affects the ultrasonic pulse rate [58,59]. Figure 6 depicts the variation in
the ultrasonic wave velocity for the concrete with different LZT replacement ratios. The
wave velocity tends to increase initially and then decrease as the LZT substitution ratio
rises. It remains relatively stable below a 30% admixture, but beyond this point, the rate
of decrease accelerates. This phenomenon can be attributed to the finer LZT particles,
which can reduce the inner pores of the concrete [6]. However, once the substitution ratio
surpasses 30%, the workability of the concrete slurry deteriorates, followed by a worsening
of the gradation conditions, resulting in an increase in the number of voids within the
concrete and a concomitant decline in the ultrasonic wave velocity [55].



Buildings 2024, 14, 1104 9 of 23
Buildings 2024, 14, 1104 9 of 23 
 

 
Figure 6. Wave velocity of the concrete with different LZT ratios. 

3.1.5. γ-ray Shielding Performance Results and Analysis 
The results presented herein derive from concrete samples with a uniform thickness of 

10 cm. In Table 5, µ is the linear attenuation coefficient, µm is the mass attenuation coefficient, 
Mfp is the mean free path, HVL is the thickness of half-value layer, TVL is the thickness of 
tenth-value layer and the relative coefficient is the percentage of the linear attenuation coef-
ficient for different doping levels versus the control group (0% LZT). The absence of a value 
after the ±sign indicates that the standard error is less than one-thousandth. 

Table 5. Test results of the γ-ray shielding test with different LZT ratios at room temperature. 

LZT Ratio (%) μ 
(cm−1) 

μm 
(cm2/g) 

Mfp 
(cm) 

HVL 
(cm) 

TVL 
(cm) 

Relative Coefficient (%) 

0 0.265 0.075 3.767 ± 0.002 2.611 ± 0.001 8.673 ± 0.004 100 
10 0.264 0.075 3.784 ± 0.002 2.623 ± 0.001 8.714 ± 0.004 99.594 
20 0.264 0.076 3.793 ± 0.005 2.629 ± 0.004 8.734 ± 0.013 99.465 
30 0.261 ± 0.001 0.077 3.825 ± 0.008 2.651 ± 0.005 8.808 ± 0.018 98.440 
40 0.260 0.078 3.842 ± 0.006 2.663 ± 0.004 8.848 ± 0.015 97.982 
50 0.259 0.078 3.865 ± 0.001 2.679 ± 0.001 8.899 ± 0.003 97.514 
60 0.256 0.078 3.910 ± 0.003 2.710 ± 0.002 9.003 ± 0.007 96.405 

The relationship between the thickness of the concrete sample and ln (I/I0) is depicted 
in Figure 7. By analyzing the slope of the regression line between ln (I/I0) and the thickness 
of the concrete sample, the µ of the concrete specimen was acquired. Considering the com-
monly used test block sizes specified in the standard (GB/T 50081-2019), this paper mainly 
shows the results of the test block size of 10 cm with different LZT ratios (Table 5). The 
consequences indicate that the µ of the RSC doped with LZT declines with the enhance-
ment of the LZT ratio. However, the decrease is not significant, and the µ of the 60% dos-
age can reach 96.60% of the control group (0% group). This can be attributed to the im-
provement in the workability of the RSC and the finer fineness of the LZT fine particles. 
Despite its lower density, which reduces the overall density of the RSC [60], the LZT pro-
duces a less porous concrete specimen. This trend can also be explained according to the 
ultrasonic wave velocity shown in Figure 6. Additionally, the LZT admixture introduces 
a small amount of heavy metals, such as Pb and Zn, which may compensate to some extent 
for the increase in the LZT admixture [32]. These factors contribute to the γ-ray shielding 
property of the LZT radiation shielding concrete. Figure 8 illustrates the relationship be-
tween the γ-ray transmission rate and the thickness of the LZT radiation shielding con-
crete. The results demonstrate that, at the same γ-ray transmittance rate, the minimum 
thickness required for the effective shielding of the RSC doped with LZT increases with 
the LZT dosage. Therefore, in practical engineering applications, selecting an appropriate 

Figure 6. Wave velocity of the concrete with different LZT ratios.

3.1.5. γ-ray Shielding Performance Results and Analysis

The results presented herein derive from concrete samples with a uniform thickness
of 10 cm. In Table 5, µ is the linear attenuation coefficient, µm is the mass attenuation
coefficient, Mfp is the mean free path, HVL is the thickness of half-value layer, TVL is
the thickness of tenth-value layer and the relative coefficient is the percentage of the
linear attenuation coefficient for different doping levels versus the control group (0%
LZT). The absence of a value after the ±sign indicates that the standard error is less than
one-thousandth.

Table 5. Test results of the γ-ray shielding test with different LZT ratios at room temperature.

LZT Ratio (%) µ

(cm−1)
µm

(cm2/g)
Mfp
(cm)

HVL
(cm)

TVL
(cm)

Relative
Coefficient (%)

0 0.265 0.075 3.767 ± 0.002 2.611 ± 0.001 8.673 ± 0.004 100
10 0.264 0.075 3.784 ± 0.002 2.623 ± 0.001 8.714 ± 0.004 99.594
20 0.264 0.076 3.793 ± 0.005 2.629 ± 0.004 8.734 ± 0.013 99.465
30 0.261 ± 0.001 0.077 3.825 ± 0.008 2.651 ± 0.005 8.808 ± 0.018 98.440
40 0.260 0.078 3.842 ± 0.006 2.663 ± 0.004 8.848 ± 0.015 97.982
50 0.259 0.078 3.865 ± 0.001 2.679 ± 0.001 8.899 ± 0.003 97.514
60 0.256 0.078 3.910 ± 0.003 2.710 ± 0.002 9.003 ± 0.007 96.405

The relationship between the thickness of the concrete sample and ln (I/I0) is depicted
in Figure 7. By analyzing the slope of the regression line between ln (I/I0) and the thickness
of the concrete sample, the µ of the concrete specimen was acquired. Considering the com-
monly used test block sizes specified in the standard (GB/T 50081-2019), this paper mainly
shows the results of the test block size of 10 cm with different LZT ratios (Table 5). The
consequences indicate that the µ of the RSC doped with LZT declines with the enhancement
of the LZT ratio. However, the decrease is not significant, and the µ of the 60% dosage can
reach 96.60% of the control group (0% group). This can be attributed to the improvement
in the workability of the RSC and the finer fineness of the LZT fine particles. Despite its
lower density, which reduces the overall density of the RSC [60], the LZT produces a less
porous concrete specimen. This trend can also be explained according to the ultrasonic
wave velocity shown in Figure 6. Additionally, the LZT admixture introduces a small
amount of heavy metals, such as Pb and Zn, which may compensate to some extent for the
increase in the LZT admixture [32]. These factors contribute to the γ-ray shielding property
of the LZT radiation shielding concrete. Figure 8 illustrates the relationship between the
γ-ray transmission rate and the thickness of the LZT radiation shielding concrete. The
results demonstrate that, at the same γ-ray transmittance rate, the minimum thickness
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required for the effective shielding of the RSC doped with LZT increases with the LZT
dosage. Therefore, in practical engineering applications, selecting an appropriate thickness
for the shielding layer, and with 30% of the fine aggregate replacement of the radiation
shielding concrete, can yield significant economic and environmental benefits. The γ-ray
shielding performance is comparable to that of pure magnetite RSC.
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Based on the above results, it was found that replacing magnetite sand with 30% of
LZT as fine aggregates for RSC does not significantly reduce the compressive strength and
γ-ray shielding performance of the RSC. It can also improve the workability and splitting
tensile strength. Considering the cost, the magnetite used in the experiment is raw ore,
while the LZT belongs to solid wastes, which has a very low cost. The accumulation of LZT
may also cause serious safety accidents and environmental pollution. If used widely, it will
bring considerable economic and environmental benefits.

In practical applications, RSC may be subjected to both radiation and elevated temper-
atures simultaneously over the course of its operational lifespan. For instance, in certain
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nuclear facilities, the inner surface of concrete is often directly exposed to temperatures as
high as 150 ◦C for extended periods, while some nuclear reactors may reach temperatures
as high as 400 ◦C [12,36,61]. Taking into account the effect of elevated temperatures, this
study integrated the workability, mechanical performance and γ-ray shielding performance
of RSC and conducted the high-temperature test on the lead–zinc tailings sand radiation
shielding concrete with a 30% admixture. The experimental results are as follows.

3.2. Properties of Lead–Zinc Tailings Radiation Shielding Concrete (LZTRSC) Exposed to
Elevated Temperatures
3.2.1. Failure Characteristics

The apparent observations of the LZTRSC samples after the heat treatment are pre-
sented in Figure 9. The results indicate that the LZTRSC specimens display a limited
number of short-segment microcracks on their exterior surface when the temperature
rises from 200 ◦C to 450 ◦C. A substantial increase in the number of microcracks is noted
at 450 ◦C, and these continue to propagate. At 600 ◦C, noticeable short-segment cracks
begin to form and extend. Wider cracks are observed at 800 ◦C, accompanied by bursts
and spalling in specific areas. The heat treatment results clearly demonstrate that the
appearance of LZTRSC progressively deteriorates with increasing temperature.
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3.2.2. Mass Loss

The variations in the mass (M) and the density (ρ) of the LZTRSC after exposure
to elevated temperatures are presented in Table 6, which indicates that the mass of the
LZTRSC declines as the temperature grows due to the transformations occurring within
the material. After exposure to a temperature of 200 ◦C, the concrete mass loss is 3.88%,
while the mass stabilizes between 200 ◦C and 300 ◦C. This stabilization is primarily due
to the evaporation of free water and the water of crystallization in the hydration products
of the concrete. Furthermore, the mass loss at 450 ◦C, 600 ◦C and 800 ◦C is 5.08%, 5.69%
and 6.86%, respectively. With the rise in temperature from 450 ◦C to 600 ◦C, the cement
hydration products undergo decomposition, leading to a significant decrease in mass [62].
When the temperature is raised from 600 ◦C to 800 ◦C, the decomposition of CaCO3 and
the polycrystalline transformation of the aggregate occur [63–65]. These processes result in
the bursting and spalling of the concrete, consequently leading to a substantial mass loss.
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Table 6. Mass (M), density (ρ) and wave velocity (V) of the LZTRSC at different temperatures.

T ( ◦C) M (g) ρ (kg/m3) V (km/s)

25 3366.25 ± 3.41 3337.13 ± 7.53 5.150 ± 0.02
200 3235.38 ± 3.31 3232.63 ± 9.54 4.361 ± 0.04
300 3231.67 ± 3.62 3221.60 ± 6.27 4.283 ± 0.03
450 3195.40 ± 5.95 3223.46 ± 9.90 3.475 ± 0.04
600 3174.84 ± 5.73 3190.74 ± 24.23 2.343 ± 0.06
800 3135.44 ± 8.31 3138.29 ± 18.98 1.932 ± 0.09

3.2.3. Compressive Strength

There are three mechanical test methods, including transient, steady-state and residual
tests, after high-temperature treatment [66]. The test method used in this research is the
residual test.

The remaining compressive strength (fc,T) of the LZTRSC after exposure to different
temperatures is given in Figure 10. The result of the test indicates that the remain compres-
sive strength of the LZTRSC after exposure to different high temperatures follows a trend
of initially increasing and then declining. At 300 ◦C, the compressive strength increases
by 9.55% compared to the control group at room temperature (25 ◦C). The increase can be
due to the rehydration of unhydrated cement particles in the concrete stimulated by the
high temperatures from 200 ◦C to 300 ◦C [67]. Meanwhile, the removal of absorbed water
in the concrete increases the surface force between the cementitious particles, which further
enhances the compressive strength [68]. However, as the temperature exceeds 300 ◦C,
cracks begin to form between the different aggregates, as well as between the aggregates
and the products of cement hydration, due to the different coefficients of expansion at high
temperatures. At 450 ◦C, the compressive strength decreases by 2.73% compared to the
control group. From 450 ◦C to 600 ◦C, the decomposition of Ca(OH)2 as well as the increase
in and extension of cracks lead to a residual compressive strength of only 78.18% of the
room-temperature strength when the temperature is up to 600 ◦C. When the temperature
exceeds 600 ◦C, the decomposition of CaCO3 and the polycrystalline transformation of
aggregates occurs [63–65]. The results indicate that the wider cracks, localized bursting
and spalling have a role in the continuous decline in the compressive strength. At 800 ◦C,
the compressive strength drops to only 46.82% of the room temperature.
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3.2.4. Splitting Tensile Strength

As shown in Figure 10, it is known that the remaining splitting strength (ft,T) of the
LZTRSC does not decline, but rather slightly increases after exposure to temperatures below
300 ◦C. At 200 ◦C, the residual splitting tensile strength reaches its highest point, with a
6.88% increase compared to the control group (at room temperature). The splitting strength



Buildings 2024, 14, 1104 13 of 23

then decreases at 300 ◦C, but it still remains slightly higher than at room temperature.
However, when exposed to 450 ◦C, the splitting strength decreases by 9.42% compared to
the control group. Similarly, at 600 ◦C, as well as at 800 ◦C, the splitting strength declines to
60.87% and 30.80% of the room temperature, respectively. The major reasons for the decline
in the splitting strength are similar to those for the remaining compressive strength.

Having determined the remaining ft,T of the LZTRSC, a comparison study was made
using the results of the concrete specimens from the published literature, as shown in
Table 7. From Table 7, it can be seen that, when the temperature is lower than 600 ◦C, the
ft,T of the LZTRSC decreases slowly, while the decline is significantly more severe than
the MC when the temperature ranges from 600 ◦C to 800 ◦C. This may be due to the fact
that the inclusion of LZT results in a denser and more homogeneous microstructure, which
enhances the resistance of the RSC to elevated temperatures [69]. But the development of
enlarged cracks with a less intact microstructure in the RSC when the temperature ranges
from 600 ◦C to 800 ◦C leads to the severe decline of ft,T [70].

Table 7. Experimental results.

Reference Specimen ID Fine
Aggregates

Coarse
Aggregates T (◦C) ft,T

Relative ft,T
(%)

[37]
Magnetite
concrete

(MC)
Magnetite Magnetite

25 2.60 ± 0.08 100.00
300 2.39 ± 0.07 91.92
450 2.16 ± 0.08 83.08
600 1.37 ± 0.06 52.69
800 1.00 ± 0.05 38.46

Current
research

LZTRSC
70% Magnetite

and
30% LZT

Magnetite

25 2.76 ± 0.06 100.00
300 2.81 ± 0.09 101.81
450 2.50 ± 0.07 90.58
600 1.68 ± 0.12 60.87
800 0.85 ± 0.11 30.80

3.3. Ultrasonic Nondestructive Testing Results and Analysis

In order to establish a link between the ultrasonic wave velocity and the mechanical
properties of the LZTRSC, this paper investigates the relationship between the relative
wave velocity and the relative strength after high-temperature treatment with reference
to related studies [37,58]. The wave velocity (V) of the LZTRSC after exposure to elevated
temperatures is provided in Table 6. The relative ultrasonic wave velocity, relative compres-
sive strength and relative splitting strength were obtained after normalization, as shown in
Figures 11 and 12.
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According to Table 6, the ultrasonic wave velocity of the LZTRSC decreases as the 
temperature increases, while the strength initially slightly enhances and then declines. 
This is mainly owing to the fact that lower temperatures (below 350 °C) may not signifi-
cantly affect the mechanical performances but enhance the inhomogeneity of the concrete 
[60]. As is indicated in Figure 11, the wave velocity declines more significantly at 200 °C, 
with a decrease of 15.32%. However, there is almost no obvious change in the wave veloc-
ity from 200 °C to 300 °C. The wave velocity at 450, 600 and 800 °C decreases to 67.48%, 
45.50% and 37.51% of the room temperature, respectively. Notably, the wave velocity de-
creases the most from 450 °C to 600 °C, with a decrease of 21.98%. This can be attributed 
to the decomposition of a significant quantity of cement hydration products [62]. 
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sion analysis was performed using an appropriate function, whose fitting consequences are 
recorded in Figures 13 and 14. The consequence indicates that, as the temperature increases, 
the mechanical performance gradually deteriorates, accompanied by a decline in the wave 
velocity. Meanwhile, the relative wave velocity demonstrates a good fit with the two me-
chanical parameters, with R2 values greater than 0.95. Therefore, the ultrasonic wave veloc-
ity can be effectively applied in evaluating the remaining compressive strength and splitting 
strength of the LZTRSC after exposure to elevated temperatures. 
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According to Table 6, the ultrasonic wave velocity of the LZTRSC decreases as the
temperature increases, while the strength initially slightly enhances and then declines. This
is mainly owing to the fact that lower temperatures (below 350 ◦C) may not significantly
affect the mechanical performances but enhance the inhomogeneity of the concrete [60]. As
is indicated in Figure 11, the wave velocity declines more significantly at 200 ◦C, with a
decrease of 15.32%. However, there is almost no obvious change in the wave velocity from
200 ◦C to 300 ◦C. The wave velocity at 450, 600 and 800 ◦C decreases to 67.48%, 45.50%
and 37.51% of the room temperature, respectively. Notably, the wave velocity decreases
the most from 450 ◦C to 600 ◦C, with a decrease of 21.98%. This can be attributed to the
decomposition of a significant quantity of cement hydration products [62].

3.4. Relationship between Relative Compressive Strength as Well as Relative Splitting Strength and
Relative Wave Velocity

The relationships between the relative compressive strength as well as relative splitting
strength and relative wave velocity are depicted in Figures 13 and 14, respectively. Regres-
sion analysis was performed using an appropriate function, whose fitting consequences
are recorded in Figures 13 and 14. The consequence indicates that, as the temperature
increases, the mechanical performance gradually deteriorates, accompanied by a decline
in the wave velocity. Meanwhile, the relative wave velocity demonstrates a good fit with
the two mechanical parameters, with R2 values greater than 0.95. Therefore, the ultrasonic
wave velocity can be effectively applied in evaluating the remaining compressive strength
and splitting strength of the LZTRSC after exposure to elevated temperatures.
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Figure 14. Relationship between the relative velocity and relative splitting strength. 

where fc,T and fc,25 represent the compressive strength of LZTRSC subjected to different 
temperatures; ft,T and ft,25 represent the splitting strength of LZTRSC subjected to different 
temperatures; VT and V25 represent the wave velocity of LZTRSC specimens subjected to 
different temperatures. 

3.5. Shielding Performance Results and Analysis 
The results presented herein derive from concrete samples with a uniform thickness 

of 10 cm. In Table 8, µ is the linear attenuation coefficient, µm is the mass attenuation coef-
ficient, Mfp is the mean free path, HVL is the thickness of half-value layer, TVL is the 
thickness of tenth-value layer and the relative coefficient is the percentage of the linear 
attenuation coefficient at different temperatures compared to the control group (at 25 °C). 
The absence of a value after the ±sign indicates that the standard error is less than one-
thousandth. 

Table 8. Test results of the γ-ray shielding of the LZTRSC exposed to elevated temperatures. 

T 
(°C) 

μ 
(cm−1) 

μm 
(cm2/g) 

Mfp 
(cm) 

HVL 
(cm) 

TVL 
(cm) 

Relative 
Coefficient (%) 

Current 
Research 

[37] 

25 0.264 ± 0.001 0.079 3.793 ± 0.009 2.629 ± 0.006 8.734 ± 0.020 100.000 100.000 
200 0.259 ± 0.001 0.080 3.867 ± 0.011 2.680 ± 0.008 8.904 ± 0.026 97.996 - 
300 0.255 0.079 3.929 ± 0.008 2.724 ± 0.005 9.047 ± 0.018 96.481 96.665 
450 0.251 ± 0.001 0.078 3.977 ± 0.012 2.757 ± 0.008 9.158 ± 0.028 95.245 93.360 
600 0.246 ± 0.002 0.077 4.070 ± 0.031 2.821 ± 0.021 9.372 ± 0.071 93.194 91.997 
800 0.239 ± 0.001 0.076 4.193 ± 0.025 2.906 ± 0.018 9.654 ± 0.058 90.448 89.558 

The relationship curve between the thickness of the LZTRSC samples and ln (I/I0) 
after exposure to high temperatures is presented in Figure 15, from which the µ was ob-
tained on the basis of the slope of the curve. Considering the commonly used test block 
sizes specified in the standard (GB/T 50081-2019), this paper mainly shows the results of 
the test block size of 10 cm at different temperatures (Table 8). Figure 16 shows the rela-
tionship between the thickness and γ-ray transmission rate after exposure to high temper-
atures. The µ and µm of the diverse thicknesses of the concrete are shown in Figures 17 
and 18, respectively. Figures 19 and 20 show the changes in the thickness of the HVL and 
the thickness of the TVL after heat treatment. 
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where fc,T and fc,25 represent the compressive strength of LZTRSC subjected to different
temperatures; ft,T and ft,25 represent the splitting strength of LZTRSC subjected to different
temperatures; VT and V25 represent the wave velocity of LZTRSC specimens subjected to
different temperatures.

3.5. Shielding Performance Results and Analysis

The results presented herein derive from concrete samples with a uniform thickness
of 10 cm. In Table 8, µ is the linear attenuation coefficient, µm is the mass attenuation
coefficient, Mfp is the mean free path, HVL is the thickness of half-value layer, TVL is
the thickness of tenth-value layer and the relative coefficient is the percentage of the
linear attenuation coefficient at different temperatures compared to the control group (at
25 ◦C). The absence of a value after the ±sign indicates that the standard error is less than
one-thousandth.

Table 8. Test results of the γ-ray shielding of the LZTRSC exposed to elevated temperatures.

T
(◦C)

µ

(cm−1)
µm

(cm2/g)
Mfp
(cm)

HVL
(cm)

TVL
(cm)

Relative
Coefficient (%)

Current
Research [37]

25 0.264 ± 0.001 0.079 3.793 ± 0.009 2.629 ± 0.006 8.734 ± 0.020 100.000 100.000
200 0.259 ± 0.001 0.080 3.867 ± 0.011 2.680 ± 0.008 8.904 ± 0.026 97.996 -
300 0.255 0.079 3.929 ± 0.008 2.724 ± 0.005 9.047 ± 0.018 96.481 96.665
450 0.251 ± 0.001 0.078 3.977 ± 0.012 2.757 ± 0.008 9.158 ± 0.028 95.245 93.360
600 0.246 ± 0.002 0.077 4.070 ± 0.031 2.821 ± 0.021 9.372 ± 0.071 93.194 91.997
800 0.239 ± 0.001 0.076 4.193 ± 0.025 2.906 ± 0.018 9.654 ± 0.058 90.448 89.558

The relationship curve between the thickness of the LZTRSC samples and ln (I/I0) after
exposure to high temperatures is presented in Figure 15, from which the µ was obtained
on the basis of the slope of the curve. Considering the commonly used test block sizes
specified in the standard (GB/T 50081-2019), this paper mainly shows the results of the test
block size of 10 cm at different temperatures (Table 8). Figure 16 shows the relationship
between the thickness and γ-ray transmission rate after exposure to high temperatures.
The µ and µm of the diverse thicknesses of the concrete are shown in Figures 17 and 18,
respectively. Figures 19 and 20 show the changes in the thickness of the HVL and the
thickness of the TVL after heat treatment.
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The µ of the LZTRSC shows a linearly decreasing trend with the increase in the tem-
perature. The µm presents a stable tendency below 450 °C, then decreases linearly. On the 
contrary, the thickness of the HVL and TVL increase linearly. As shown in Table 8, the µ 
and µm decrease by 9.47% and 3.80% at 800 °C, respectively, compared to at room temper-
ature, while the Mfp, thickness of HVL and TVL enhanced by 10.56%. By comparing the 
results with the published literature, it is found that the trend of the µ of the LZTRSC is 
consistent with the RSC after the high-temperature treatment. 

Figure 16 shows the relationship between the thickness and γ-ray transmission rate 
of the LZTRSC subjected to elevated temperatures. The results indicate that, at the same 
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The µ of the LZTRSC shows a linearly decreasing trend with the increase in the
temperature. The µm presents a stable tendency below 450 ◦C, then decreases linearly. On
the contrary, the thickness of the HVL and TVL increase linearly. As shown in Table 8,
the µ and µm decrease by 9.47% and 3.80% at 800 ◦C, respectively, compared to at room
temperature, while the Mfp, thickness of HVL and TVL enhanced by 10.56%. By comparing
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the results with the published literature, it is found that the trend of the µ of the LZTRSC is
consistent with the RSC after the high-temperature treatment.

Figure 16 shows the relationship between the thickness and γ-ray transmission rate
of the LZTRSC subjected to elevated temperatures. The results indicate that, at the same
γ-ray transmission conditions, the minimum thickness of the γ-ray shielding layer of the
concrete increases with the rise in temperature. From Figure 19, it can be found that, as the
temperature rises, the deterioration of the LZTRST increases along with the increase in the
width of the cracks, which may be due to the evaporation of the pore water. This results in
a gradual decrease in the γ-ray shielding performance [39,71]. Thus, in the actual project,
taking into account the special high-temperature environment, selecting the appropriate
thickness of the LZTRSC can bring considerable economic and environmental benefits
under the premise of satisfying the γ-ray shielding performance of the RSC.

After the high-temperature treatment, the mass of the LZTRSC is continually lost,
accompanied with the decay in the ultrasonic wave velocity, which is not only reflected in
the loss of strength, but also reflected in the γ-ray shielding properties of the attenuation for
the RSC. The γ-ray shielding performance is mainly linked to the density of the RSC, and
also linked to the concrete crack width [39]. When subjected to elevated temperatures, the
internal cracks increase and expand. Some studies have shown that there is a great correla-
tion between the crack width and the wave velocity [58]. Meanwhile, Lincheng et al. [37]
found that the damage index (D) [72] fits well with the splitting strength, with R2 values
greater than 0.95. The rate of mass loss (Ms) and the D of the sacrificial RSC under the
effect of elevated temperatures are introduced to evaluate the attenuation of γ-ray shielding
subjected to different temperatures. The Ms and D are calculated by Equations (7) and (8),
as follows:

Ms =

(
M − MT

M

)
× 100% (7)

D =

[
1 −

(
VT
V

)2
]
× 100% (8)

where Ms represents the rate of mass loss of the LZTRSC after exposure to different high
temperatures; M and MT represent the mass of the LZTRSC at room temperature and after
exposure to different high temperatures, respectively; D represents the index of damage of
the LZTRSC after exposure to different high temperatures; V and VT represent the wave
velocity of the specimen of the LZTRSC at room temperature and after exposure to different
high temperatures, respectively. Equation (8) is merely appropriate to the RSC which is
naturally cooled after the heat treatment.

The rate of mass loss and the damage index after exposure to elevated temperatures are
shown in Figures 21 and 22, from which the relationships between the rate of the mass loss,
the damage index and the relative linear attenuation coefficient were obtained. The results
are shown in Figures 23 and 24. On this basis, the appropriate function of the regression
analysis was selected, whose results are shown in Figures 23 and 24. After exposure to
different temperatures, the mass of the LZTRSC continuously decreases, which leads to
a gradual increase in the damage index and a decrease in the density. Consequently, the
γ-ray shielding property of the LZTRSC declines. This consequence indicates that the rate
of the mass loss and damage index are all suitable methods for evaluating the degradation
in the γ-ray shielding property after exposure to elevated temperatures. Furthermore,
the correlation between the mass loss rate and the relative linear attenuation coefficient
is stronger than that of the damage index. The γ-ray shielding property of the RSC is
primarily influenced by the density of the concrete. However, magnetite exhibits better
thermal stability, and after the heat treatment, the main factors affecting the concrete are
water evaporation and the loss of water of crystallization. The high atomic number element
content is not significantly reduced. Thus, the LZTRSC still retains a certain degree of its
γ-ray shielding property after exposure to different high temperatures.
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ing performance after occasional exposure to high temperatures, similar to the role of fire, 
in the future. 
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where µ25 and µT represent the linear attenuation coefficient at room temperature and at
different temperatures, respectively.

The consequence of a leak in the RSC structure or vessel would be catastrophic.
During the service period of the RSC, high-temperature treatment will be a major hidden
danger. According to the above study, the γ-ray shielding performance of the RSC after
high-temperature treatment has a high correlation with the damage index. Therefore,
ultrasonic nondestructive testing technology will be used to detect the structure of the
long-term exposure to high temperatures, as well as to predict and evaluate the residual
γ-ray shielding performance after occasional exposure to high temperatures, similar to the
role of fire, in the future.

4. Conclusions

(1) According to the above study, lead–zinc tailings sand can be used as a suitable and
sustainable substitute for fine aggregates in radiation shielding concrete, and can
achieve good mechanical properties and γ-ray shielding performance at room tem-
perature. In practical engineering applications, it is important to select an appropriate
shielding layer thickness based on the temperature environment of the concrete. If
a reasonable large-scale utilization of lead–zinc tailings sand can be achieved, it can
bring considerable economic and environmental benefits.

(2) By incorporating a dosage of 30% of the lead–zinc tailings sand, the workability
and splitting tensile strength of the radiation shielding concrete can be improved.
Moreover, this dosage can also achieve a high compressive strength and good gamma
ray shielding performance, reaching up to 95.84% of the strength and 96.60% of the
linear attenuation coefficient of the control group (0% dosage), respectively.

(3) After exposure to elevated temperatures, the apparent degradation of the lead–zinc
tailings radiation shielding concrete is mainly manifested by the generation, expansion
and extension of cracks, with localized bursting occurring at 800 ◦C. The compressive
strength shows an initial increase before 300 ◦C, followed by a linear decrease. Simi-
larly, the splitting tensile strength exhibits a slight increase before 200 ◦C, but starts to
decline beyond that temperature.

(4) After exposure to elevated temperatures, the relative wave velocity shows a strong
correlation (R2 > 0.95) with both the compressive strength and splitting tensile strength,
indicating that ultrasonic nondestructive testing is a suitable method for evaluating the
extent of the damage to the mechanical properties of the lead–zinc tailings radiation
shielding concrete.
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(5) After exposure to elevated temperatures, the mass loss rate, damage index and relative
linear attenuation coefficient of the lead–zinc tailings radiation shielding concrete
are closely related (R2 > 0.95), which can be used to evaluate the remaining γ-ray
shielding efficiency of the concrete. Between these factors, the mass loss rate exhibits
a stronger correlation with the relative linear attenuation coefficient compared to the
damage index.
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