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Abstract: Due to various factors such as aging, natural environment erosion, and man-made destruc-
tion, architectural heritage has formed various diseases and cracks, especially in pathology cracks,
which are the most typical masonry–timber architectural heritages, directly affecting the structural
stability of masonry–timber buildings. This paper uses artificial intelligence and architecture and
other multi-disciplinary research methods, taking James Jackson Gymnasium, a famous masonry–
timber architectural heritage in Wuhan, as an example, using 3D laser scanning technology to obtain
disease details and crack data of architectural heritage, using a Mask R-CNN model to detect crack
area, using an FCN model to identify and calculate single cracks, and finally summarizing the type,
location, and characteristics of cracks, analyzing the causes of cracks, and then putting forward
corresponding hierarchical restoration strategies. The research results build a set of detection and
repair systems of masonry–timber architectural heritage pathology cracks, which provide a set of
accurate and objective pathology cracks data for architectural heritage protection and repair, and
provide a reference for architectural heritage repair.

Keywords: architectural heritage; pathology cracks; artificial intelligence application; deep learning;
3D laser scanning

1. Introduction

Due to the passage of time and the effects of natural forces [1], architectural heritage
is confronted with significant challenges stemming from various diseases and forms of
damage, ultimately resulting in the emergence of pathology cracks [2,3]. Left unchecked
and untreated, these pathology cracks in architectural heritage can escalate to cause surface
damage and structural failure. In the case of architectural heritage created from masonry
and timber structures, the unique properties of these materials render them susceptible
to the development of corrosive architectural diseases through the propagation of disease
cracks, culminating in brittle and ductile damage to the architectural heritage and even
potential building collapse [4].

The conventional methods used in pathology crack research rely excessively on manual
observation and empirical judgments, rendering them subjective and unreliable. This
approach is associated with several issues, including lengthy research cycles, potential
oversight, low precision, and limited research sample sizes. Hence, the key to preserving
architectural heritage lies in promptly and accurately identifying these pathology cracks and
devising targeted restoration strategies. In recent years, efforts by Chen, Y., Wang, N., and
Wang, Z. [5–7], among other scholars, have resulted in the development of a single-crack
recognition model based on convolutional neural networks for building surfaces, marking
the application of deep learning in architectural research. However, the model’s limited
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range of recognition capabilities restricts it to identifying concrete structures and single
cracks on building surfaces, with image acquisition relying solely on manual observation
and camera capture. A pioneering study by Yin, Y. [8] blends 3D laser scanning with a
deep learning model, enabling the construction of a building cracks depth identification
model that can extract crack features from building surfaces but falls short in identifying
crack regions and single cracks. Similarly, the deep learning model devised by Wang
and Z [7] facilitates the calculation of individual cracks on building surfaces, albeit with
results obtained by adding reference lines to the cracks, limiting the geometric information
garnered and lacking accuracy and relevance.

Therefore, this paper presents a novel solution to address the aforementioned chal-
lenges: by integrating 3D laser scanning technology with a deep learning model, a building
3D laser scanning area detection model and an architectural heritage monomer recognition
and calculation model are established using high-precision and large-scale geometric in-
formation images obtained through pathology cracks technology [9]. This allows for the
detection of architectural heritage areas within pathology cracks, the individual identifi-
cation of cracks, and the calculation of length, width, and area within these areas. This
approach lays the foundation for a sustainable strategy for the detection, division, recogni-
tion, and calculation of architectural heritage areas within pathology cracks. By leveraging
advanced technical tools in the information age, the identification and scientific restoration
of architectural heritage pathology cracks will be enhanced.

Moreover, 3D laser scanning technology offers high-precision and non-invasive char-
acteristics, enabling the acquisition of precise building geometric information [8–10]. This
technology can generate millions of images and point cloud models that aid in calibra-
tion [11], thus providing a rich and highly precise database for further in-depth research.
Furthermore, deep learning models have demonstrated significant accomplishments in
image recognition and classification [12,13], and have been widely utilized in various
computer vision tasks such as human posture estimation, medical image analysis, and
autonomous driving [14–17]. However, deep learning models are rarely applied in the field
of architectural heritage diseases, and their development in this area remains limited [8].
These models possess adaptive learning capabilities and high-accuracy image segmentation
abilities, making them ideal for detecting, recognizing, and calculating pathology cracks in
architectural heritage. Therefore, the integration of these two technologies not only enables
precise pathology crack detection but also furnishes detailed three-dimensional information
for subsequent restoration efforts and establishes a comprehensive and accurate database
essential for the protection of architectural heritage.

Specifically speaking, the purpose of this study is to integrate 3D laser scanning
technology with a deep learning model to develop a system for detecting and restor-
ing architectural heritage pathology cracks. Initially, a detection model for architectural
pathology crack areas based on the Mask R-CNN deep learning model [18] is established.
Subsequently, a model for identifying and calculating architectural pathology cracks based
on FCN [19] is developed. This enables the detection of pathology crack areas in archi-
tectural heritage, the identification of cracks within those areas, and the calculation of
their length, width, and area, resulting in accurate information on each pathology crack
in the building. The research strategy involves utilizing the high-precision and extensive
geometric information of architectural heritage images obtained through 3D laser scanning
to detect, categorize, identify, and calculate pathology crack areas in architectural heritage.
James Jackson Gymnasium, located in the Tanhualin Historic District [20] of Wuchang
District, Wuhan City, China, is chosen as the study subject to validate the proposed meth-
ods for regional detection, categorization, identification, and calculation of architectural
heritage 3D laser scanning based on pathology cracks technology and a deep learning
model, as well as the resulting architectural heritage detection and restoration system. The
outcomes of this research will not only offer robust technical support for the conservation
and restoration of architectural heritage but also hold significance for the advancement of
scientific knowledge in the field of architectural preservation and restoration. Additionally,
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the study will provide a novel reference and inspiration for the fusion of information
technologies such as architecture and artificial intelligence.

The innovations in this article are as follows:

1. The research method is novel as it combines 3D laser scanning with a deep learning
model, providing millions of high-definition images for computer adaptive recogni-
tion and achieving an organic combination of architecture and artificial intelligence.

2. A single identification and calculation model for regional detection and pathology
cracks of architectural heritage diseases is developed, applicable to all masonry and
timber structure architectural heritage sites, significantly enhancing monitoring and
protection levels.

3. Research strategies focusing on disease details, cracks data, regional detection, and
single-crack identification calculation of architectural heritage are derived through 3D
laser scanning and deep learning model techniques. Additionally, targeted restoration
strategies are proposed based on identification and calculation outcomes, leading to
the development of a detection and repair system for masonry and timber architec-
tural heritage pathology cracks, offering valuable insights for architectural heritage
repair practices.

2. Materials and Methods
2.1. Materials
Study Area

Wuhan, situated centrally within Hubei Province in China, is located in close proximity
to the Yangtze River and is easily accessible through a well-developed transportation
network (Figure 1a,b). Since the establishment of Hankou in 1861, Wuhan emerged as a
significant hub for missionary activities, attracting numerous churches and scholars who
established schools in the region. Additionally, the Western Church introduced innovative
educational approaches and architectural styles to Wuhan. Notably, Tanhualin Historic
Street (Figure 1c) stands out as an ancient neighborhood with the richest history and
cultural heritage in Wuhan [20,21]. This area is recognized as the birthplace of China’s first
library and served as a pivotal hub for modern education in the country.
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Figure 1. (a) Location of Hubei Province in China; (b) location of Wuhan City in Hubei Province;
(c) location of James Jackson Gymnasium in the Tanhualin historic district and the overview of
the architectural heritage in the Tanhualin historic district. (d) Exterior picture of James Jackson
Gymnasium before restoration. (a,b) Source: produced by the standard map service website: https:
//www.resdc.cn; (c,d) Source: self-drawn by the authors.

In addition, James Jackson Gymnasium, located in the Tanhualin Historic District,
was constructed in November 1921. It stands as one of the oldest university buildings in
Wuhan and served as the earliest indoor fitness center in China. This gymnasium holds
significance as a representative educational architectural heritage within the Tanhualin
Historic District [21,22]. James Jackson Gymnasium features a modern style, combining
Western-style masonry–timber mixed structure walls with a Chinese-style double-eaved
roof. This unique blend of architectural influences makes it a valuable subject for historical
research as a prime example of Chinese–Western combination building.

2.2. Methods
2.2.1. Research Methods

1. Three-dimensional Laser Scanning

Three-dimensional laser scanning is an automated, non-contact, high-precision stereo
scanning technology (Figure 2). It serves as an extremely efficient method for acquiring
initial data in architectural heritage studies, with three-dimensional scanning stations

https://www.resdc.cn
https://www.resdc.cn
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strategically positioned for field data collection. These stations conduct an omni-directional
scan along the X–Y–Z axes of the target building, resulting in the capture of millions of
image data points [23]. Subsequently, computer processing involves using overlaps in
images as references to generate panoramic images and aid in the verification of the point
cloud data model in later stages [24].
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Figure 2. Calculation principle of 3D laser scanner target point imaging (left); James Jackson
Gymnasium was surveyed using a 3D laser scanner on site (right).

This study uses the Leica BLK 360 G1 3D laser scanner, laser wavelength 830 nm;
scanning range 0.6–60 m; ranging accuracy 4 mm @ 10 m/7 mm @ 20 m; point cloud
accuracy 6 mm @ 10 m/8 mm @ 20 m. Using WFD waveform digitization technology
and HDR image technology, three-dimensional space point cloud information and 360◦

panoramic images can be quickly obtained within 3 min.
The operational principle of a three-dimensional laser scanner is such that a laser pulse

signal is emitted from the transmitter, striking the object surface for diffuse reflection before
eventually returning to the receiver along a nearly identical path. This process allows for the
calculation of the distance S between the target point P and the scanner. Concurrently, an
encoder monitors and synchronously measures the transverse scanning angle observation
value α and the longitudinal scanning angle observation value β for each laser pulse. The
measurement system of 3D laser scanning utilizes a specialized coordinate system, with
the X-axis situated in the transverse scanning plane, the Y-axis perpendicular to the X-axis
in said plane, and the Z-axis perpendicular to the transverse scanning plane. Following
the scanning procedure, target points P (XP, YP, ZP) (Figure 2) are computed according
to Formula (1), resulting in the final scanning data through the collective contribution of
numerous target points [25,26]. This dataset not only encompasses the three-dimensional
coordinates along the X, Y, and Z axes of each point but also includes color information
denoted by R, G, and B values alongside the reflectivity of each point. These comprehensive
and high-precision datasets serve as a factual foundation and robust research support for
identifying structural issues like pathology-induced cracks’ architectural heritage.

In the scanning process, a total of 282 high-precision two-dimensional images were
captured of James Jackson Gymnasium. However, only 270 of these images were deemed
effective for further analysis due to weather conditions, angles, and equipment-related factors.

XP= S cos β cos α, YP= S cos β sin α, ZP = S cos β (1)

2. Pathology crack area detection model based on Mask R-CNN

Mask R-CNN is a deep learning model based on a regional convolutional neural net-
work (RCNN) [27,28]. It works by generating candidate regions from the image, extracting
features, classifying the features, and refining the location of candidate regions. The Mask
R-CNN network consists of four main components: (1) basic convolution layer; (2) Region
Proposal Network (RPN); (3) RoI Align; (4) detection layer [29]. The Mask R-CNN model
follows a two-stage framework. In the first stage, candidate regions are generated by scan-
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ning the image. In the second stage, classification results and bounding boxes are obtained
based on the candidate regions. Additionally, a segmentation branch is incorporated into
the original Faster RCNN model to produce mask results, thus decoupling the relationship
between mask and category prediction (Figure 3).
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Mask R-CNN demonstrates high performance in object detection tasks [30]. In our
study, we trained this model to accurately locate, segment, and classify wall surfaces,
capturing spatial features in images and providing precise pixel-level information about
the target. Therefore, the pathology crack detection model based on the Mask R-CNN
deep learning model can segment areas suspected of pathology cracks in two-dimensional
images and conduct crack detection in these segmented areas, effectively completing tasks
related to the accurate detection of building surfaces and structures in crack-prone areas.
Ultimately, a total of 408 crack areas were identified during the detection of James Jackson
Gymnasium pathology crack areas, including 253 instances of repeated crack areas, with
155 effective pathology crack detection areas ultimately identified.

3. Identification and calculation model of single pathology cracks based on FCN

FCN (Fully Convolutional Neural Network) is an enhanced form of convolutional
neural network (CNN) that transforms the fully connected layer found in traditional CNNs
into a convolutional layer. This modification allows the network to process input images of
various sizes and generate classification maps that match the original input size [31,32]. The
FCN network architecture consists of convolutional layers, pooling layers, and upsampling
layers. Convolutional and pooling layers are responsible for extracting features, while the
upsampling layer restores the feature map to the original input image resolution for precise
pixel-level classification. This capability makes the FCN model ideal for tasks involving
pixel-level image interpretation [33], such as image segmentation, target detection, and
scene parsing [34] (Figure 4).
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Figure 4. FCN pathology crack identification and computational model generation principle. The
numbers below each convolutional layer represent the number of images stacked in each layer. For
example, 256 means that the layer is composed of 256 × 256 × 256 images stacked.

In this study, the model was trained to identify crack areas detected by the Mask
R-CNN model, categorize the types of cracks present in each building pathology, and
calculate their length, width, and area. This approach enables comprehensive monitoring
of building pathology cracks, from detection and identification to dimension calculation,
and provides data to support tailored repair strategies. With artificial intelligence assistance,
traditional manual surveys’ long cycle, low precision, low efficiency, and limited scope of
research errors can be effectively avoided.

2.2.2. Research Framework

Based on 3D laser scanning and deep learning models, this paper proposes a research
system for pathology crack analysis of architectural heritage structures made of timber and
brick. The system includes data acquisition, regional detection, single-crack identification
and calculation, as well as a targeted hierarchical restoration strategy. The regional crack
detection model and the single-crack identification and calculation model for masonry
and timber structures have been successfully developed in this study. The results of these
models have been optimized and retrained. Additionally, a pathology crack hierarchical
restoration strategy table has been created, and a detection and restoration system for
masonry–timber architectural heritage has been established.

Finally, using James Jackson Gymnasium in Wuhan as a case study, the architectural
geometry information was captured using 3D laser scanning. This enabled the detection
of pathology crack areas, as well as the identification and calculation of individual cracks.
Subsequently, a targeted hierarchical restoration strategy was developed based on the
identification results. The methodology presented in this study is illustrated in Figure 5.
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3. Results and Discussion
3.1. Using 3D Laser Scanning to Obtain High-Precision Images of James Jackson Gymnasium
3.1.1. Setting of Measuring Points and Layout of Measuring Stations

The study uses the Leica BLK 360 G1 3D laser scanner, laser wavelength 830 nm;
scanning range 0.6–60 m; ranging accuracy 4 mm @ 10 m/7 mm @ 20 m; point cloud
accuracy 6 mm @ 10 m/8 mm @ 20 m. On 19 September 2023, we conducted 3D laser
scanning in James Jackson Gymnasium to obtain laser point cloud data. Supplementary
mapping was also carried out on 11, 12, and 15 October.
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According to measurements, the architectural heritage James Jackson Gymnasium has
dimensions of 30,854 m in the north–south direction, 17,452 m in the east–west direction,
a height of 13,950 m, and a circumference of 96,612 m. The perimeter of the gymnasium
is divided into six equidistant stations, spaced 16 m apart, with each station containing
15 measuring points [35], resulting in a total of 90 measuring points (Figure 6). This division
allows for high-precision 3D laser scanning to be conducted on the entirety of James Jackson
Gymnasium [35,36].
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3.1.2. Field Scanning to Obtain High-Precision Images of Millions of Orders of Magnitude

During the scanning process, there are a limited number of feature objects in two
adjacent stations. To enhance the accuracy of images and the mosaic accuracy of point
cloud data models, it is essential to artificially place targets as feature objects [36]. These
targets serve as boundary points and matching points for scanning in different areas [37].
The placement of these added targets must adhere to the following criteria: (1) uniform
and equidistant placement within the scanning range of the 3D laser scanner; (2) in cases
where the distinguishing features of different measuring points in the same station are not
prominent, each measuring point should have no fewer than four targets, with at least three
common targets between two adjacent measuring points; (3) prominent feature points of
ground objects can be utilized as targets for different measuring points.

Through high-precision and omni-directional 3D laser field scanning, millions of
image data points of James Jackson Gymnasium were captured, resulting in the creation of
highly accurate real 2D images through integration of the 3D laser scanner [38–40]. Further,
the real panorama of James Jackson Gymnasium (Figure 7) was produced by computer-
aided splicing of features such as targets as reference points. A total of 282 high-precision
two-dimensional images of James Jackson Gymnasium were generated during scanning,
with 270 effective two-dimensional images obtained, accounting for factors such as weather,
angle, and equipment limitations. These detailed and high-precision real image data of
James Jackson Gymnasium serve as valuable support for future identification and study of
structural issues.
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3.1.3. Build Point Cloud Model to Assist Post-Calibration

During the James Jackson Gymnasium 3D laser scanning, six stations were set up,
each consisting of 15 measuring points, totaling 90 measuring points. The measuring
points accumulated a total of 986,258,832 point cloud data points, with an average of
10,600,000 point cloud data points per measuring point (Figure 8). Furthermore, the scanned
scattered point cloud data from the 90 measuring points were integrated with the same
characteristics as the target using a computer, resulting in a complete cluster of 90 point
cloud data. Subsequently, the adjacent point cloud data clusters were stitched together [41]
to form a comprehensive point cloud data model [42,43], aiding in the calibration of
pathology cracks in the later stages. Additionally, based on the assembled point cloud
data model, the external and internal building components of James Jackson Gymnasium
were inventoried.
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Figure 8. James Jackson Gymnasium point cloud data model at spliced measuring station 1 (mea-
suring points 1–15) and the scanning panorama corresponding to each measuring point, and the
right text part is the total number of point cloud data points contained in the measuring point (left);
the scanning panorama corresponding to each measuring point of James Jackson Gymnasium point
cloud data model at spliced measuring station 6 (measuring points 76–90), and the right text part is
the total number of point cloud data points contained in the measuring point (right).

Lastly, given that doors and windows are the most vulnerable areas to pathology cracks
in masonry–timber architectural heritage [43], we created the James Jackson Gymnasium
Doors and Windows Details Database (Tables 1 and 2) to ensure no overlooks in subsequent
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crack detection, identification, calculation, and repair strategies. This initiative aims to
enhance the completeness and relevance of repair strategies.

Table 1. Schedule of James Jackson Gymnasium doors details database.

Door Type Floor Level Width
(mm)

Height
(mm)

Bottom Height
(mm)

Total
(Piece)

Main entrance double-sided veneer
wooden door First floor 1800 2100 0 2

Interior single-panel wooden door First floor 700 2900 0 2
Interior double-leaf hinged wooden door First floor 1100 2900 0 9

Interior door opening-1 First floor 900 2400 150 2
Interior door opening-2 First floor 1060 2100 0 2
Interior door opening-3 First floor 1300 2400 0 6
Interior door opening-4 First floor 1500 2400 150 1

Interior single-recessed panel wooden door Second floor 900 2400 0 1
Interior single-recessed panel glass door Second floor 700 2100 0 2

Corridor single-recessed panel glass door Second floor 900 2100 20 1
Corridor double-sided recessed panel

wooden door Second floor 1200 2100 20 2

Table 2. Schedule of James Jackson Gymnasium windows details database.

Window Type Floor Level Width
(mm)

Height
(mm)

Bottom Height
(mm)

Total
(Piece)

East elevation single-leaf
casement window-1 First floor 700 1500 900 2

East elevation single-leaf
casement window-2 First floor 700 2000 600 2

East elevation single-leaf
casement window-3 First floor 700 2000 900 5

East elevation double-leaf
casement window-1 First floor 900 1500 900 1

East elevation double-leaf
casement window-2 First floor 1060 1500 900 1

North elevation single-leaf
casement window-1 First floor 1300 900 530 1

North elevation single-leaf
casement window-2 First floor 1500 1500 900 10

North elevation single-leaf
casement window-3 First floor 900 1500 1730 9

South elevation single-leaf
casement window-1 First floor 700 900 530 10

South elevation single-leaf
casement window-2 First floor 1200 1500 1000 2

Window opening Second floor 1340 400 0 2
Round fixed window Second floor 1200 1200 900 2

South elevation single-leaf
casement window-1 Second floor 900 1500 1730 6

South elevation single-leaf
casement window-2 Second floor 980 1500 1730 1

South elevation double-leaf
casement window-1 Second floor 1200 1500 1730 2

South elevation double-leaf
casement window-1 Second floor 1500 1800 1730 1
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3.2. Construction of Pathology Crack Area Detection Model of Architectural Heritage Based on
Mask R-CNN
3.2.1. Pathology Cracks Training Set for Labeling Architectural Heritage

The first aspect is to create a conda virtual environment, to create an environment named
labelme_env, python version 3.8; for example, conda create -n labelme_env python = 3.8. Af-
ter the creation is completed, enter the new environment: conda activate labelme_env. Sec-
ond, install labelme, directly using pip to install: pip install labelme pip install pycocotools-
windows.

Finally, after the installation is completed, enter “labelme”at the terminal to start
labelme. The labeled image (Figure 9) will serve as input data for the neural network,
providing guidance for deep learning algorithms to classify various components such
as cracks, doors, windows, and other architectural elements in heritage structures. In
the initial image screening process, selection of masonry–timber structure architectural
heritages from different countries and regions occurred to enhance the relevance of the
subsequent training model for recognizing cracks in such structures. Subsequently, a total
of 500 valid images were labeled as the training dataset for detecting pathology cracks in
masonry–timber structures of architectural heritage [44].
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3.2.2. Training Pathology Crack Area Detection Model and Optimization of Results 

Figure 9. Architectural heritage pathology cracks training dataset. In order to enhance recognition
accuracy, annotated images are predefined and displayed within a white box. Green signifies the
window category, yellow signifies another category, purple signifies architectural heritage pathology
cracks, and the portion within the black box represents the running code.

3.2.2. Training Pathology Crack Area Detection Model and Optimization of Results

The prepared training set of architectural heritage pathology cracks was annotated in
COCO format. Each image corresponds to a JSON file, which contains information such
as image path, category, bounding box, and instance segmentation mask. Use torchvision
transforms for data conversion and enhancement. At the same time, a Mask R-CNN model
was created and the classifier and masking bits were modified as needed [45]. Finally, create
a data loader and optimizer and perform data iteration, performing forward propagation,
calculating loss, backpropagation, and optimization on each batch [46].

3.2.3. James Jackson Gymnasium Fracture Area Detection Based on Mask R-CNN Deep
Learning Model

The process of detecting cracks in James Jackson Gymnasium using the Mask R-CNN
deep learning model consists of the following steps: 1. Developing the Mask R-CNN model
and making necessary adjustments to the classifier and mask tower [47]; 2. setting up data
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loaders and optimizers; 3. iterating through the data loader to execute forward propagation,
calculate losses, perform backpropagation, and optimization on each batch.

Subsequently, 270 high-precision two-dimensional images acquired through 3D laser
scanning were inputted into the crack detection model based on the Mask R-CNN deep
learning model for crack detection (Figure 10). A total of 408 crack areas were identified,
out of which 253 were found to be duplicate crack areas, resulting in the detection of
155 effective pathology crack areas (Figure 11).
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Figure 10. Operation interface and result display of a pathology crack area detection model based
on the Mask R-CNN deep learning algorithm. Green marks indicate windows, while purple marks
indicate building pathology cracks (left). The black box on the right side represents the running
code (right).
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Figure 11. Based on Mask R-CNN crack area detection model, the James Jackson Gymnasium area
detection results of pathology cracks are displayed. Green is marked as window class, yellow is
marked as category, and purple is marked as architectural heritage pathology cracks.

3.3. Construction of Single Pathology Crack Identification and Calculation Model Based on FCN
3.3.1. Pathology Cracks Training Set for Labeling Architectural Heritage

The first aspect is to create a conda virtual environment, to create an environment named
labelme_env, python version 3.8; for example, conda create -n labelme_env python = 3.8. Af-
ter the creation is completed, enter the new environment: conda activate labelme_env. Sec-
ond, install labelme, directly using pip to install: pip install labelme pip install pycocotools-
windows. Finally, after the installation is completed, enter “labelme” at the terminal to
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start labelme. In order to ensure the accuracy of the dataset and later crack calculation, the
pixel size of all the labeled images is 300 pixels, with an error of 50 pixels [48]. Through
the multi-point labeled crack image (Figure 12), the label as deep learning supervision is
inputted into the neural network [49]. In order to improve the range and accuracy of model
recognition, we expanded the selection of crack types in the labeling process and marked
510 pathology crack sheets of masonry structure and 490 pathology crack sheets of timber
structure, totaling 1000 sheets (Figure 12).
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Figure 12. Training set for identifying and quantifying pathology cracks in architectural heritage. The
image on the left displays pathology cracks in masonry structure (left), while the image on the right
shows annotated pathology cracks in timber structure (right). To enhance recognition accuracy, the
annotation image is predefined and displayed within a white box, with the black box containing the
running code.

3.3.2. Training Single Pathology Crack Recognition and Calculation Model and
Result Optimization

In the training process of a single pathology crack identification and calculation model
for architectural heritage, we aimed to enhance the accuracy of the model and minimize
losses by setting four initial learning rates (Figure 13). Through comparison, we observed
that, when the initial learning rate is 1 × 10−6, the model’s convergence speed is excessively
slow. Conversely, with an initial learning rate of 1 × 10−5, the loss value drops rapidly
and exhibits poor stability. For an initial learning rate of 1 × 10−4, the loss value decreases
steadily, although the overall decline is gradual and reaches a stable point early on. This
provides sufficient momentum for the model to facilitate quick learning. Finally, at an
initial learning rate of 1 × 10−3, the loss value experiences significant fluctuation and
demonstrates signs of overfitting [50]. In conclusion, we selected 1 × 10−4 as the optimal
initial learning rate (Figure 14).

3.3.3. Establishment of Single Pathology Crack Segmentation Model of Architectural
Heritage Based on FCN

In order to enhance the accuracy of the single-crack identification and calculation
model based on FCN, image segmentation and crack extraction functions were incorporated
prior to model identification and calculation [51]. Initially, the cracks were categorized
into five types for computer recognition: (1) thin cracks; (2) wide cracks; (3) intersected
cracks; (4) mixed cracks; (5) complex cracks (Figure 15). Next, the pathology crack and its
surrounding area were segmented based on image gray levels. Subsequently, the pathology
crack was divided by color according to its area. Finally, the center point of the pathology
crack was determined and the structure of the pathology crack was extracted.
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Figure 13. The influence of different initial learning rates in the training process of pathology
crack recognition and calculation model of architectural heritage. The horizontal axis in the figure
represents the training iteration (step), while the vertical axis represents the loss value. In each
subgraph, the solid line represents the training loss, and the dotted line marked with ‘x’ represents
the loss verification.
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Figure 14. In the training process of pathology crack recognition and calculation model of architectural
heritage, the training accuracy and verification accuracy change with the training period (epoch)
under different initial learning rates. The horizontal axis in the figure represents the training period,
while the vertical axis represents the training accuracy and verification accuracy of the model.
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Figure 15. Process demonstration of a pathology crack segmentation model based on the FCN deep
learning algorithm. The division of cracks is indicated by a gradient from purple to light yellow
based on area size. The extraction of fracture structure assigns the yellow part as the center point of
the fracture, the orange part as the edge of the fracture, and the remaining parts decrease in intensity
relative to their distance from the center point.
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3.3.4. Identification and Calculation of Single Crack in James Jackson Gymnasium Based
on FCN Deep Learning Model

According to the 155 pathology crack areas detected in James Jackson Gymnasium
using the Mask R-CNN pathology crack area detection model, the fractures within these
areas were further examined using the FCN-based pathology crack identification and cal-
culation model [52]. The resulting separation of fractures was then individually identified
and calculated (Figure 16). Since James Jackson Gymnasium is a masonry–timber building,
cracks were classified and identified within both timber structures (Figure 17) and masonry
structures (Figure 18).

To enhance recognition and calculation accuracy, the image size of the training set used
for the model was set at 300 pixels, with the calculation unit defined as millimeters. High-
precision 3D laser scanning technology was employed to obtain images of James Jackson
Gymnasium, which were then adjusted to a multiple of 300 to align with the model’s
calculation unit for fracture geometry information. A total of 375 pathology crack areas
were identified and calculated within the 155 areas detected in James Jackson Gymnasium
using the Mask R-CNN pathology crack area detection model. Within these, 156 cracks
were found in timber structures and 219 in masonry structures.

Buildings 2024, 14, x FOR PEER REVIEW 18 of 26 
 

3.3.4. Identification and Calculation of Single Crack in James Jackson Gymnasium Based 

on FCN Deep Learning Model 

According to the 155 pathology crack areas detected in James Jackson Gymnasium 

using the Mask R-CNN pathology crack area detection model, the fractures within these 

areas were further examined using the FCN-based pathology crack identification and cal-

culation model [52]. The resulting separation of fractures was then individually identified 

and calculated (Figure 16). Since James Jackson Gymnasium is a masonry–timber build-

ing, cracks were classified and identified within both timber structures (Figure 17) and 

masonry structures (Figure 18). 

To enhance recognition and calculation accuracy, the image size of the training set 

used for the model was set at 300 pixels, with the calculation unit defined as millimeters. 

High-precision 3D laser scanning technology was employed to obtain images of James 

Jackson Gymnasium, which were then adjusted to a multiple of 300 to align with the 

model’s calculation unit for fracture geometry information. A total of 375 pathology crack 

areas were identified and calculated within the 155 areas detected in James Jackson Gym-

nasium using the Mask R-CNN pathology crack area detection model. Within these, 156 

cracks were found in timber structures and 219 in masonry structures. 

 

Figure 16. Operation interface and result display of pathology crack area detection model based on 

FCN deep learning algorithm. The selected area in the green box on the left side is the pathology 

crack part recognized by the model, and the white text part is the calculation result of pathology 

crack geometric information after recognition (W: width, L: length Area: path crack area); The black 

box on the right side is the running code. 

Figure 16. Operation interface and result display of pathology crack area detection model based on
FCN deep learning algorithm. The selected area in the green box on the left side is the pathology
crack part recognized by the model, and the white text part is the calculation result of pathology
crack geometric information after recognition (W: width, L: length Area: path crack area); The black
box on the right side is the running code.
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Figure 17. James Jackson Gymnasium recognition and calculation results display of pathology crack
timber structure based on FCN deep learning model. The selected area in the green box is the
pathology crack part recognized by the model, and the white text part is the calculation result of
pathology crack geometric information (W: width, L: length Area: path crack area) after recognition.
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Figure 18. James Jackson Gymnasium recognition and calculation results display of pathology crack
masonry structure based on FCN deep learning model. Among them, the green box selected area
is the pathology crack part recognized by the model, and the white character part is the calculation
result of pathology crack geometric information after recognition.
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3.4. Pathology Crack Restoration Strategy of Architectural Heritage
3.4.1. Analysis of the Causes of Pathology Crack

In order to effectively mitigate the impact of pathology cracks on masonry and timber
structures in architectural heritage, we have compiled pathology crack analysis in Table 3
for timber structure architectural heritage and pathology crack analysis and in Table 4
for masonry structure architectural heritage based on the research findings and relevant
literature [7,53–57]. This compilation aims to delve deeper into the underlying causes of
these pathology cracks.

Table 3. Pathology crack analysis table of timber structure architectural heritage.

Crack Properties Causes of Cracks Occurring Locations Crack Forms

Shrinkage crack

Own defects Door and window openings Horizontal crack
Fungal corrosion Roof trusses Vertical crack

Natural weathering Sunny side is shallower Oblique crack
biological invasion Shady side is deeper Intersected crack

Load crack

Local compression Column under concentrated
load

Vertical cracks on the side with
higher pressure; Horizontal crack

on the other side

Eccentric compression Column subjected to eccentric
load Vertical crack

Shear failure Beam under horizontal load Horizontal crack
Stepped crack

Metal parts corroded and
loose

take off

Door window opening
Roof truss

Horizontal crack
Vertical crack

Table 4. Pathology crack analysis table of masonry architectural heritage.

Crack Properties Causes of Cracks Occurring Locations Crack Forms

Shrinkage crack

Cooling and shrinking
Door and window opening

Sunny surface is deeper
than shallow shade

Oblique crack
Horizontal crack

Vertical crack
Intersected crack

Solar thermal expansion

Material shrinkage

Load crack

Pressure damage Middle part of the load-bearing
wall and its window Vertical crack

local compression Walls or columns subject to
concentrated loads

Vertical crack on the side with
higher pressure; Horizontal

crack on the other side

Eccentric compression Walls or columns subject to
eccentric loads Vertical crack

Shear failure Walls subject to horizontal loads Horizontal crack
Stepped crack

Settlement crack
Uneven settlement due to

damp weather or change of
foundation soil

Wall between windows Horizontal crack

Junction of vertical and horizontal
walls, bottom windowsill Vertical crack

Window corners with large vertical
deformation of longitudinal and

transverse walls
Orthogonal oblique crack

Window corners with large
deflection of longitudinal and

transverse walls

Inverted splayed
oblique crack
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3.4.2. Pathology Cracks’ Graded Repair Strategy Table

Modern masonry–timber architectural heritage, which integrates many valuable ele-
ments such as history, art, science, and social value, is an important part of historical and
cultural relics. However, in today’s era, many modern masonry–timber structures have
developed cracks to varying degrees due to external factors, such as man-made destruction,
wind and snow disasters, and environmental erosion. These cracks can have a detrimental
impact on ancient masonry–timber structures. In addition, due to the different causes and
environments of cracks in masonry structures and timber structures, we have developed a
graded repair strategy table for timber structure architectural heritage pathology cracks
(Table 5) and masonry structure architectural heritage pathology cracks (Table 6) based on
the research findings of our team [57] and relevant specifications [58,59]. This approach
aims to enhance the relevance of renovation strategies.

Table 5. Graded repair strategy table for cracks in timber structure architectural heritage (unit mm).
Note: l0 in the table is the calculated span of components; h0 is the calculated height of components;
lc is the length of the unsupported part of the column; ρ is the inclination rate of the member: ρ = y/x
(x is the length of the member on the selected horizontal plane, and y is the height of the member
perpendicular to the horizontal plane); Sc is the corrosion area on the section; S is the total section area.
Lateral bending in the table is mainly caused by wood growth, drying, and improper construction.
Original data sources: National Standard of the People’s Republic of China-Reliability Appraisal
Standard of Civil Buildings (GB50292-2015) [58]; Beijing Local Standard-Building Structure Safety
Appraisal Standard (DB11/T637-2009) [59].

Items for Inspection Grade A Grade B Grade C Grade D

Maximum deflection

Truss or bracket <l0/250 ≥l0/250
<l0/200

≥l0/200
<l0/120 ≥l0/120

Main beam <l0/250 ≥l0/250
<l0/200

≥l0/200
<l0/150

≥l2
0/3000 h0

or ≥/150

Joist or purline <l0/250 ≥l0/250
<l0/150

≥l0/150
<l0/120

≥l2
0/2400 h0

or ≥/120

Rafter <l0/150 ≥l0/250
<l0/120

≥l0/120
<l0/100 ≥l0/100

Vertical height of
lateral bending

Columns or other
compressive members <lc/250 ≥lc/250

<lc/200
≥lc/200
<lc/150 ≥lc/150

Rectangular section
timber beam <l0/250 ≥l0/250

<l0/200
≥l0/200
<l0/150 ≥l0/150

Texture or crack

Tension member None ρ < 3% 3% ≤ ρ < 7% ρ ≥ 7%
Bending member None ρ < 5% 5% ≤ ρ < 10% ρ ≥ 10%

Eccentric compression
member None ρ < 7% 7% ≤ ρ < 15% ρ ≥ 15%

Axial compression
member None ρ < 10% 10% ≤ ρ < 20% ρ ≥ 20%

Surface corrosion

Load-bearing structural
members at the top None Sc ≤ 3%S 3%S < Sc ≤

5%S Sc > 5%S

Column None Sc ≤ 5%S 5%S < Sc ≤
10%S Sc > 10%S

Internal corrosion All members None Sc ≤ 3%S Sc ≤ 5%S Sc > 10%S

Graded renovation
strategy All members Direct

repair
Direct
repair

Reinforce
before repair

Reinforce
before repair
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Table 6. Graded repair strategy table for cracks in masonry structure architectural heritage (unit
mm). Note: W in the table represents the crack width of components. Original data sources:
National Standard of the People’s Republic of China-Reliability Appraisal Standard of Civil Build-
ings (GB50292-2015) [58]; Beijing Local Standard-Building Structure Safety Appraisal Standard
(DB11/T637-2009) [59].

Items for
Inspection

Member
Category Crack Type Grade A Grade B Grade C Grade D

Bearing crack Wall
Insufficient local

pressure None W < 1.0 1.0 ≤ W < 3.0 W ≥ 3.0

Insufficient bearing
capacity None W < 1.0 1.0 ≤ W < 2.0 W ≥ 2.0

Column Insufficient bearing
capacity None W < 0.5 0.5 ≤ W < 1.0 W ≥ 1.0

Non-bearing crack
Wall Temperature

difference,
shrinkage, foundation

settlement

None W < 5.0 5.0 ≤ W < 10 W ≥ 10

Column None W < 1.0 1.0 ≤ W < 2.0 W ≥ 2.0

Graded renovation
strategy All members Direct

repair
Direct
repair

Reinforce
before repair

Reinforce
before repair

3.4.3. Strategies for Direct Restoration of Architectural Heritage in Pathology Cracks

According to the graded repair strategy table (Table 5), the direct restoration strategy
is recommended for most cracks in non-load-bearing members and smaller cracks in load-
bearing members. Additionally, a targeted direct repair strategy is formulated based on the
component type of the pathology crack [60].

1. For timber structure members, the pathology crack direct repair strategy involves
maintaining the original appearance and function while ensuring that the structure
and stability are not compromised. Cracks are fixed and bonded tightly using timber
strips and water-resistant adhesives. In cases of large damage area and developing
trends, rectangular grooves with corresponding sizes are cut along the crack shape and
sprinkled with water. The cracks are then filled with 1:1–1:2 cement mortar material
consistent with the architectural heritage style, applied 2–3 times, and calendared for
a smooth finish.

2. For masonry structural members, the pathology crack direct restoration strategy
involves cleaning the crack base and filling it with stones of similar styles. In cases of
large damage area and developing trends, a V-shaped groove, approximately 5 mm
wide, is cut along the crack shape and filled with cement mortar, polyurethane, or
synthetic rubber for sealing purposes.

3.4.4. Strategy of Strengthening and Then Restoring the Pathology Cracks of
Architectural Heritage

According to the pathology crack Graded Restoration Strategy Table (Table 5), the
strategy of strengthening first and repairing later is recommended for cracks in non-load-
bearing members with large damage area and most cracks in load-bearing members.
Additionally, a targeted strategy of strengthening first and then repairing is formulated
based on the type of components where the pathology crack is located [61].

1. For timber structure members, steel anchor bolts and bolts are used to penetrate
and clamp the strengthened section, improving the shear resistance. The pressure
from tightening bolts helps to limit the expansion of the crack while reinforcing the
section. Timber or steel plates are added to enhance the shear performance of timber
members, ensuring structural stability and preventing further crack expansion. After
reinforcement, appropriate repair strategies for the components are implemented.
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2. For masonry structural members, outer sides or the other three sides of the structure
can be covered with reinforced concrete sheaths to enhance steel bars and sections,
boosting the original members’ bearing capacity. Alternatively, steel plates can be
attached to the concrete surface with a structural adhesive to create a unified stress-
bearing system [7]. Following reinforcement, the surface is painted with anti-corrosion
paint to match the architectural heritage’s color and style, and a targeted restoration
strategy for the pathology crack is executed.

4. Conclusions

Based on 3D laser scanning and two deep learning models, this paper proposes a
pathology crack research system for the acquisition of pathology crack data, regional
detection, single-crack identification and calculation, and a targeted hierarchical restoration
strategy for masonry–timber architectural heritage. The regional crack detection model and
single-crack identification and calculation model for masonry–timber architectural heritage
are successfully established in this study, with the related model results being optimized
and retrained. Subsequently, targeted hierarchical restoration strategies are proposed based
on the pathology crack identification and calculation results, leading to the development
of a detection and restoration system for masonry–timber architectural heritage. These
research findings represent an innovative intersection of architecture and computer science,
enabling the detection of crack areas and the identification and calculation of individual
cracks in all masonry–timber architectural heritage. This study addresses the dearth of
artificial intelligence research in the field of architectural heritage diseases, offering a novel
research strategy for architectural heritage protection in the information age.

Considering that many architectural heritages are composed of masonry and timber
structures, and that these structural types are susceptible to pathology cracks due to
weather, materials, human activities, and other factors, this paper focuses on the pathology
cracks of such structures. While the deep learning models presented demonstrate high
identification and calculation accuracy for masonry–timber structures, other structural
types have not been explored. Future research should consider expanding the model
training set to include a wider variety of materials and pathology crack states in order to
broaden the identification capabilities for architectural heritage of various structural types.

Furthermore, we aim to integrate deep learning with Historic Building Information
Modelling (HBIM) in order to construct a three-dimensional disease model based on the
two-dimensional geometric data of architectural heritage. This approach will establish
a sustainable method for recording, monitoring, repairing, and managing information
related to architectural heritage diseases. Ultimately, it will lead to the creation of dig-
ital twins [62] of architectural heritage, facilitating the seamless integration of artificial
intelligence and architecture.
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