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Abstract: Automated and seamless integration of reinforcement is one of the main unresolved
challenges in large-scale additive construction. This study leverages a dual-reinforcement solution
consisting of high-dosage steel fiber (up to 2.5% by volume) and short vertical reinforcements as
a complementary reinforcement technique for 3D-printed elements. The mechanical performance
of the printing material was characterized by measuring the compressive, flexural, and uniaxial
tensile strengths of mold-cast specimens. Furthermore, the flexural performance of the plain and
fiber-reinforced 3D-printed beams was evaluated in the three main loading directions (X, Y, and
Z-directions in-plane). In addition, short vertical threaded reinforcements were inserted into the
fiber-reinforced 3D-printed beams tested in the Z-direction. The experimental results revealed the
superior flexural performance of the fiber-reinforced beams loaded in the longitudinal directions
(X and Y). Moreover, the threaded reinforcement significantly increases the flexural strength and
ductility of beams loaded along the interface, compared to the control. Overall, the proposed
dual-reinforcement approach, which exhibited notably less porosity compared to the mold-cast
counterpart, holds great potential as a reinforcement solution for 3D-printed structures without the
need for manual operations.

Keywords: construction 3D printing; extrusion; steel fiber; automated reinforcement

1. Introduction

Traditional construction heavily depends on manual labor, leading to low and stag-
nant productivity levels [1,2]. In recent years, specialized robotic construction techniques
such as construction 3D printing (C3DP) have gained popularity for their large-scale, auto-
mated construction capabilities in sectors like housing, infrastructure, and beyond [3–6].
C3DP offers significant economic benefits by reducing the construction time, waste, and
costs associated with traditional methods, such as formwork expenses and labor-intensive
activities [7–10]. In extrusion-based C3DP, cementitious materials are commonly used fol-
lowing a careful selection of ingredients, well-tailored mixture proportions, and optimized
3D-printing process parameters [11,12]. However, efficient and effective incorporation of
reinforcement into the 3D-printed structures, without significantly increasing the construc-
tion time and cost, remains a major challenge and has been the focus of numerous recent
studies [13,14].

To improve the structural integrity of 3D-printed structures, different reinforcement
strategies from manual to automated implementations were proposed and investigated
in previous studies. Manual implementation of traditional reinforcements in 3D print-
ing may result in insufficient structural performance, often due to inadequate execution
precision [15]. Some researchers also adopted the post-integration of traditional reinforce-
ment; however, automating this construction process is complex and not feasible in the near
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future [16,17]. In-process (in-line) reinforcement is an interesting possibility for integrating
reinforcement during the layer-by-layer deposition process. It can be achieved by adding
continuous reinforcement such as entrained cables, barbs, and tapes [18–21]. Furthermore,
it can also be achieved by using discrete reinforcing elements such as fibers that can be
premixed with the printing materials [22–28]. The process of adding short discrete fibers
eliminates the need for additional hardware and systems for reinforcement installation,
avoiding the complexities associated with other reinforcing techniques.

Fiber characteristics such as type, length, and dosages can significantly impact the
strength behavior of 3D-printed cementitious materials. However, printing at high doses
of fibers can lead to increased viscosity and present challenges like potential clogging of
printing nozzles. In a recent study by the authors, mixtures with 2.5% vol. steel fibers
were 3D printed using a 40 mm × 20 mm specialty nozzle without printability issues
and revealed a flexural strength of 129% compared to the control [29,30]. This was the
highest steel fiber dosage that has been incorporated into printing mixtures, surpassing the
previous maximum of 2.1% based on the existing literature [27]. Similar to fiber dosage,
fiber length influences the printability and performance of the mixtures. Pham et al. found
that longer fibers aligned better and prevented brittle failure in both cast and printed
specimens [28]. Arunothayan et al. studied 3D-printed UHPFRC with 6 mm steel fibers (up
to 2% volume) and observed a superior flexural performance with up to 39% improvement,
mainly due to fiber alignment parallel to the printing direction compared to the mold-cast
specimens [31]. However, apart from its effect on the layer-by-layer printing process, fibers’
preferential alignment to the printing direction can lead to anisotropy. Singh et al. observed
the anisotropic behavior given by the reduction in compressive strength in the following
order: 90◦ > 45◦ > 0◦ loading direction, for 3D-printed mixtures with 13 mm steel fibers [32].
The results of previous studies provide no evidence of fibers vertically bridging across the
printed layers [8,28,33,34].

Insertion of discrete reinforcement elements during the layer-deposition process can
vertically bridge 3D-printed layers. However, Marchment and Sanjayan observed that
inserting a 350 mm long, 7 mm diameter rebar into a 3D-printed wall led to a significant
decrease in bond strength due to disturbances and voids created during the process [35].
This result underlines the importance of a seamless reinforcement insertion process. Park
et al. studied interlayer reinforcement inserted in 3D-printed specimens with and without
overlapping. Anisotropic properties were observed in all specimens, indicating further
research is needed to understand the effects of overlapping [36]. Marchment and San-
jayan investigated center- and off-center-lapping for lengths of 20, 17, 14, and 11 times
the bar diameter (7 mm diameter deformed steel bar) and found that a minimum lap of
20 times diameter was necessary for the 3D-printed specimen to achieve a flexural strength
comparable to that of a single rebar [35]. Some researchers also explored short discrete rein-
forcement elements such as screws, nails, U-nails, staples, etc. [37–39]. U-nails’ (1–3 mm)
penetration at layer interfaces improves bonding strength significantly but factors such
as nail spacing, depth, and thickness significantly affect the strength [38]. To avoid void
creation during the insertion process, Marchment and Sanjayan adopted a paste-coated
penetration technique and the results showed that paste on rebar filled the voids in only the
top 47–56% portion of a 350 mm bar length [40]. The penetration process created additional
cavities around the reinforcement in addition to the porosity of the printing material [35].
Hass et al. explored helical screw-type reinforcements and screwing mechanisms that can
improve bond strength, potentially creating fewer voids; however, they recommended
further investigation is needed using different materials to establish its effectiveness [41].
Hence, the penetrative reinforcement integration approach requires careful design of the
automated insertion system and the reinforcement details and specifications.

Although previous studies have investigated the performance of these reinforcement
techniques at different lengths, the potential of adopting a complementary reinforcement
approach has not been well explored. As such, this paper focuses on the fresh-state
properties and mechanical performance of 3D-printed steel fiber-reinforced materials
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with very high dosages of steel fiber. Next, the fiber-reinforced 3D-printed elements
were further strengthened with vertical discontinuous threaded reinforcements inserted
using an automated insertion device. The proposed reinforcement approach is studied
under different loading directions to provide insights into its effectiveness for structural
applications of C3DP.

2. Materials and Methods
2.1. Materials

The printing mixture ingredients were selected following the authors’ previous work
to achieve the desired printability properties and performance [30]. ASTM C150 Type I/II
Portland cement was used as the binder [42]. Table 1 shows the chemical composition
of the Portland cement used in this study. Silica sand with a maximum nominal particle
size of 1 mm was used as the aggregate, and ADVA Cast 585 superplasticizer was used to
achieve the desired flowability properties.

Table 1. Chemical oxide composition of Portland cement (% by mass).

Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI

Cement 20.0 4.3 3.1 64.3 2.1 3.3 3.1

In this study, two types of reinforcement were considered, namely, discrete steel fibers
and threaded stainless steel mini-rods. ASTM 820 Type 1 [43] brass-coated straight 13 mm
steel fibers with a 0.2 mm diameter (aspect ratio = 65) were used in this study. The physical
and mechanical properties of steel fiber are presented in Table 2. The details of threaded
reinforcement elements are presented in Section 2.5.2.

Table 2. Physical and mechanical properties of steel fiber.

Fiber Type Length (mm) Diameter
(mm) Aspect Ratio Elastic Modulus

(GPa)
Tensile Strength

(MPa)
Density
(g/cm3)

Fracture
Elongation (%)

Brass-Coated
Straight Steel 13 0.2 65 210 2850 7.8 2.3

2.2. 3D-Printing System

A gantry-style linear concrete printing platform developed at Louisiana State Uni-
versity (LSU) was used for fabricating specimens (Figure 1). The embedded closed-loop
extrusion system ensures consistent and uniform fabrication of high-quality specimens.
This printer has a build envelope of 2100 mm (L) × 900 mm (H). The printing system is
designed such that various nozzle configurations can be quickly attached to the extrusion
system. The printer is also equipped with a touchscreen user interface to precisely control
the extruder movement (printing speed) and the extrusion rate. To fabricate 3D-printed
beams, a specialized rectangular nozzle was designed with a 100 (L) × 25 (H) mm opening,
equipped with side trowels to improve the surface quality of the extruded layers. The
selected nozzle dimension allows the printing of the exact width of the beam specimens.
Hence, the contours of the printed elements are achieved with fewer tool paths, eliminating
the occurrence of defects from adjacent layers if a smaller nozzle dimension is used.

To automate threaded bar insertion into the 3D-printed beams, an electromechanical
module was designed, developed, and integrated into the extrusion system (Figure 2).
The device was equipped with a 200-step bipolar stepper motor controlled by an Arduino
microcontroller with an ATmega328P processor. As a result, the reinforcement insertion
process was conducted at a consistent insertion speed, resulting in a higher quality of
reinforced specimens. After initial testing and evaluation, an insertion speed of 3 mm/s
(vertical) was selected to minimize the voids created during the insertion process.
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2.3. Mixing and Material Preparation

In a previous study by the authors [30], the printability and mechanical performance
of 33 different plain and fiber-reinforced mixtures were evaluated. Based on the results,
two mixtures were selected as the printing materials used to fabricate the test specimens in
this study (Table 3).

Table 3. Mixture proportions of the selected mixtures used in the study.

Mixture ID Portland Cement
kg/m3 W/C 1 SSD 2 Sand (S)

kg/m3
HRWRA

% 3

Fiber
kg/m3

[vol.%]

F0 818 0.35 1145 0.02 0 [0.0]

F2.5 798 0.35 1117 0.22 190 [2.5]
1 Water to cement ratio. 2 Saturated surface dried. 3 Percentage of Portland cement by mass.

A 20-L planetary mixer operated at a fixed speed of 80 RPM was used to prepare the
printing material. The cement and sand were initially mixed in a dry state to achieve a
homogenous mixture. After 2 min, water was gradually added to the mixture. The mixing
process was then continued for 3 min, and the superplasticizer was added. Finally, steel
fibers were added (if applicable) and the mixture was mixed for 5 additional minutes.

2.4. Characterization Tests: Conventional Mold-Cast Specimens

The properties of the printing materials were evaluated through a systematic exper-
imental program. First, the fresh and mechanical properties of mixtures were examined
using mold-cast specimens. Next, 3D-printed specimens were fabricated out of these
materials and were tested. The experimental program includes fresh properties such as
flowability and printability; as well as the mechanical properties such as flexural strength
of the standard 3D-printed beams, including beams with threaded reinforcement.
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2.4.1. Fresh Properties

Wet density and flowability tests were conducted to assess the fresh properties of the
two mixtures. The wet density test involved determining the mass of a given volume of the
freshly mixed mixtures. Additionally, the flowability of the mixtures was measured using a
flow table test according to ASTM C1437 [44].

2.4.2. Mechanical Properties

The mechanical properties were assessed to evaluate the performance of the mixtures,
and different tests were conducted to evaluate properties such as compressive strength,
flexural strength, and tensile strength. The setups for these tests are presented in Figure 3. To
evaluate the compressive strength of the two mixtures, tests were conducted following the
guidelines stated in ASTM C109 specifications [45]. For this test, mold-cast cubes measuring
50 mm × 50 mm × 50 mm were prepared and tested after 28 days. To evaluate flexural
performance, 4-point bending tests (using third-point loading) were conducted according
to ASTM C78 [46] and ASTM C1609 [47] for plain and steel fiber-reinforced mixtures,
respectively. Six mold-cast beams (F0-MC and F2.5-MC) were fabricated to perform the
tests. The flexural tests were conducted using a 500kN MTS hydraulic servo-control system.
A closed-loop displacement control system was used, with the rate set to 0.076 mm/min for
ASTM C1609. For ASTM C78, the load was applied at a rate of 3.6 kN/min. Two magnetic
arms were used to hold the linear variable differential transducers (LVDTs) on both sides
of the specimens during the ASTM C1609 test. These LVDTs were used to measure the
mid-point displacement of the specimens during the test.
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Equation (1) was used to determine the maximum flexural tensile stress ( fi), occurring
at the bottom of the beam, for any given load (Pi). Using the same equation, the Modulus
of Rupture (MOR) or flexural tensile strength ( fp

)
was calculated by setting Pi equal to the

peak load (Pp).

fi =
PiL
bd2 (1)

where L is the effective beam span (300 mm), and b and d are the width and depth of the
beam, respectively.

The deflection capacity or deflection at peak load ( δp
)

was obtained from the ex-
perimental data. Additionally, the toughness ( T100

150
)

of the beams up to a deflection of
L/150 (i.e., 2 mm deflection in load-deflection curves) was calculated following ASTM
C1609—only for the fiber-reinforced beams. Equation 1 was also used to calculate the MOR
for unreinforced beams using the peak load obtained from ASTM C78. Next, the uniaxial
tensile test was carried out to evaluate the tensile performance of the printing materials.
Then, 28-day mold-cast dumbbell-shaped specimens were used for both mixtures, with
3 specimens tested for each mixture. The testing protocol followed the guidelines outlined
by the Japan Society of Civil Engineers (JSCE) [48]. Experimental tests were carried out by
a servo-hydraulic machine with a tensile capacity of 250 kN connected to a computer to
record tensile strength, tensile strain capacity, and dissipated energy. The uniaxial tensile
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test was performed by controlling the displacement of the loading head at a constant rate of
0.5 mm/min. The displacement was recorded using two LVDTs attached to the specimen,
one on each side. The toughness (GTv) of each material is calculated using Equation (2).

GT_v =
∫ ε lim

0
σ(ε)dε (2)

where σ(ε) is the tensile stress vs. strain relation, and εlim is the limiting strain (considered 2.5%).

2.5. Characterization Tests: 3D-Printed Specimens
2.5.1. Printable Fresh Properties

The flowability of the printable mixtures was measured using a flow table test. Based
on initial trials, it was observed that average flow values lower than 170 mm result in nozzle
blockage or poor surface quality due to tearing, and flow values higher than 185 mm result
in considerable layer deformations. Hence, an acceptable flowability range of 170–185 mm
was determined for printing materials.

The print quality and shape stability of mixtures were also evaluated [49]. Print
quality was assessed based on the dimensional accuracy and consistency of the printed
layers and the surface quality of each layer. Printing parameters were carefully adjusted
to prevent under-extrusion or over-extrusion, and to minimize deformations in the layers.
The dimensions of the printed layers were measured to ensure conformity and consistency,
with a layer height of 25 mm and a layer width of 100 mm, corresponding to the nozzle
dimensions. A 40 mm/s printing speed and a 5 mm clearance between the nozzle and the
previous layer were used for fabricating all specimens. The shape stability of the layers was
evaluated based on the deformation of the first layer after the deposition of two subsequent
layers, with no more than 10% maximum variation in each layer.

Since the actual object dimension influences the selection of the optimal nozzle size
used for the printing process, this study additionally evaluates how nozzle dimensions
affect the shape stability of the printed layers. As such, the shape stability results from this
study were compared to the results from the authors’ earlier study where a smaller nozzle
dimension (40 mm (W) × 20 mm (H)) was employed (with similar test configurations and at
a printing speed of 50 mm/s) [29,30]. In all cases, a variable flow rate (80 to 160 RPM) was
adopted to ensure desirable layer dimensions and consistent material flow given changes
in material rheology over time.

2.5.2. Fabrication of the Test Beams

A total of 21 3D-printed beams (100 mm × 100 mm × 350 mm) were fabricated,
according to ASTM C1609 and ASTM C78 specifications. Plain beams were 3D printed and
tested under different loading directions (F0-3DP-X, F0-3DP-Y, and F0-3DP-Z). Similarly,
steel fiber-reinforced beams were tested under different loading directions (F2.5-3DP-X,
F2.5-3DP-Y, and F2.5-3DP-Z). Beams with threaded reinforcement (F2.5-3DP-Z-TR) were
tested in the Z direction only (Figure 4). In all cases, three replicates were fabricated
and tested.
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X- and Y-direction beams were extracted from 4-layer 500 mm long printed specimens.
The extraction process was conducted within 2 h after printing by cutting the two ends of
the beam using a rotary cutting device. Figure 5 shows 3D-printed beams for testing in X
and Y directions.
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For the Z-direction beams, 14-layer 500 mm long wall specimens were 3D printed, and
then beams with the desired dimensions were extracted within 2 h of the printing process.
A maximum of 3 min of interlayer time gap was maintained during the fabrication of all
specimens, to prevent cold joint formation and potential impacts on the structural perfor-
mance of 3D-printed elements. Figure 6 shows the extraction process of the Z-direction
beams from the 14-layer elements.
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Figure 6. (a) 3D-printed wall specimen for testing in the Z direction; (b) The extraction process of
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The beams with threaded vertical reinforcement were printed and tested similarly to
the unreinforced specimens, except for the automated insertion of the vertical reinforcement
during fabrication. Preliminary experimentation was carried out to select the reinforcement
element before conducting the main experiments with the automated insertion device to
investigate potential issues such as void creation or deformations in the layers during the
insertion process.

Multiple reinforcing elements were tested, including a 40 Grade 10 mm rebar (with
both flat and sharpened tips) and threaded screws of different diameters with a sharpened
tip or with a flat end. Figure 7 shows a few examples of manually inserted vertical rein-
forcement elements. The aim was to inspect, compare, and determine the effect of different
configurations on void creation and layer deformations of the printed layers, considering
the reported issues in previous studies [50–52]. The results showed that reinforcement
elements with a flat tip resulted in significant voids and deformations in the printed layers,
especially in the case of steel fiber-reinforced layers. In terms of reinforcement diameter, it
was observed that 6 mm is the maximum size that resulted in minimal void creation and
deformation of 3D-printed layers. Larger reinforcement diameters resulted in visible voids
and significant layer deformations. Additionally, threaded reinforcement elements were
found to create smaller voids when simultaneous rotational and translational movements
were applied. The use of threaded reinforcement with a pointed tip reduces void creation
compared to flat-end reinforcements. Moreover, it was observed that the manual insertion
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process created inconsistencies and difficulty in maintaining an upright orientation, leading
to an imperfect implementation. These initial findings led to the selection of a threaded,
tapered-point 6 mm reinforcement element. Finally, trial experiments were conducted to
test the effectiveness of the automated insertion device for placing 6 mm diameter and
150 mm long reinforcement. The automated insertion process resulted in fewer visible
voids as expected (Figure 7d) compared to the manual processes using similar reinforcing
elements. This observation was further examined by quantitative evaluation of the voids
using an X-ray micro-CT scanning technique.
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Figure 7. Examples of different reinforcement types and the resulting voids: (a) 10 mm rebar with a
flat tip; (b) 10 mm rebar with tapered tip; (c) 6 mm threaded bar with a tapered tip; (d) 6 mm threaded
reinforcement (selected for the main experiments).

Figure 8 shows the selected reinforcement element based on the preliminary trials:
a 304 stainless steel threaded bar with a minimum tensile strength of 500 MPa, 150 mm
length, 6 mm diameter, 1 mm thread pitch, with a pointed tip angle of 26.5◦.
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Figure 8. Dimensions of the stainless steel threaded reinforcement used in this study.

The 3D-printed beams were designed with the selected 6 mm diameter threaded rein-
forcement. Design specifications from ACI 318 were considered during the reinforcement
design for the 3D-printed beams [53]. This study only considered the placement of the
threaded reinforcement for tensile reinforcement purposes when tested in the Z direction.
However, shear or additional reinforcement may be added to the beam to improve its
strength and ductility, or to meet other specific design requirements which are not within
the scope of this study. Figure 9 shows the reinforcement design implemented in this
study. The first reinforcement element was inserted after the deposition of the initial
six layers, each 25 mm thick, followed by reinforcing elements inserted every four layers.
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The top 5 mm of the screw was left out to allow for a better connection to the following
layers while avoiding conflicts with the nozzle movement during the deposition of the
following layers. To avoid collision with the previous reinforcement element, a 5 mm gap
between the subsequent reinforcements was designed. An experiment by Marchment and
Sanjayan investigated different center- and off-center-lapped lap lengths and concluded
that a minimum lap of 20 times the bar diameter was required for a 350 mm long rebar
with a diameter of 7 mm [54]. However, another study by the same authors observed
that penetrating a 350 mm long rebar can create poor bonding in single penetration due
to stiff concrete materials [35]. As such, in the present study, 150 mm was considered
as the maximum length of penetration. Park et al. used two different lapping lengths
of 20 mm and 40 mm, which is approximately 6 and 13 times of rebar diameter (3 mm),
respectively, for 100–300 mm length reinforcement [36]. These studies show that different
lapping lengths could be required based on reinforcement characteristics. An effective
lapping of 55 mm was implemented in the current study (approx. 8 times the diameter),
with the reinforcement placed at least 19 mm from the beam edge—see Figure 10.
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Figure 10. (a) Discontinuous threaded reinforcement insertion during the 3D-printing process;
(b) Inserted threaded reinforcement with minimal resulting voids.

2.5.3. Mechanical Properties

To evaluate the mechanical properties of the 3D-printed beams, a flexural strength test
was performed using 4-point bending tests following the same testing standard (ASTM C78
and ASTM C1609) as used for mold-cast beams. The beams with vertical threaded reinforce-
ment were tested according to ASTM C1609. These beams were tested in three different
loading orientations as shown in Figure 11. During the ASTM C1609 test, two magnetic
arm hands were employed at the midspan, as stated before, to securely hold the LVDTs.
These arms aim to address the possible cross-sectional variations in the 3D-printed beams
compared to the attached mounting fixture.
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Figure 11. 4-point bending tests for beams in (a) X direction, (b) Y direction, and (c) Z direction
following ASTM C1609.

All 3D printed and mold-cast specimens were covered by a plastic sheet at room
temperature for 24 h and then placed inside a lime-saturated water tank (20 ± 2 ◦C) until
the 28-day age.

2.6. CT Scanning of 3D-Printed Specimens

To determine the distribution of voids surrounding the threaded reinforcing elements,
X-ray micro-CT scanning was conducted using a SCANCO Medical AG scanner (model µCT
40), manufactured in Basserdorf, Switzerland. The imaging procedure employed a tube
voltage of 55 kV and a tube current of 145 µA. The Digital Imaging and Communications
(DICOM) data were reconstructed for 3D visualization and analysis using Avizo 2021
version 1 (software developed by Thermo Fisher Scientific). The imaging output was a
16-bit grayscale image map. These images were divided into 3D pixels (or voxels) with a
voxel resolution of 36 µm. The percentage void (or porosity) of a sample was calculated by
dividing the number of void or pore voxels by the total number of voxels. The binarization
image separated the voids from the solid skeleton. To calculate it, the model was first
binarized into a map that included voxels with a value of 0 (pore) or 1 (concrete matrix
and reinforcement), and thresholding values for these components were investigated from
the gray value curve using ImageJ version 1.54i. From the initial grayscale analysis, it was
observed that the gray value of voids was below 6000 and the gray value of the cement
matrix and threaded reinforcement was above 10,000. Accordingly, a threshold value
of 8000 was considered to separate voids from surrounding threaded reinforcement and
reinforced cement matrix. Three-dimensional pore structure analysis was performed on
each specimen to calculate connected porosity (consisting of effective voids) and total
porosity or percentage voids. This analysis aimed to quantify the voids created during
the proposed reinforcement insertion process. Figure 12 shows the analysis framework to
calculate pores surrounding the reinforcement.
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For the CT scan imaging, four fiber-reinforced specimens with threaded reinforcement
were prepared. Two of these specimens (CT-F2.5-MC-1 and CT-F2.5-MC-2) were obtained
from mold-cast specimens while the other two specimens (CT-F2.5-3DP-1 and CT-F2.5-
3DP-2) were extracted from a 6-layer 3D-printed specimen. Results of a previous study by
Wang et al. showed better reinforcement-concrete bonding as a result of lower cavities in
mold-cast concrete compared to 3D-printed concrete [55]. To evaluate the created voids
during the automated reinforcement penetration process, the results were compared to the
mold-cast specimens prepared with pre-installed reinforcement. A customized mold was
designed, and 3D printed with Acrylonitrile Butadiene Styrene (ABS) polymer measuring
75 mm × 75 mm × 150 mm. The 150 mm threaded reinforcement was placed inside
the mold before the fiber-reinforced cementitious material with an average flow value
of 182 mm was then poured into the mold and compacted to remove the entrapped air.
The two samples were extracted, CT-F2.5-MC-1 from the top 60 mm of the specimen and
CT-F2.5-MC-2 from the bottom 60 mm of the specimen. Two other samples were extracted
from a 6-layer 3D-printed specimen which incorporated threaded reinforcement inserted
using the semi-automated device. Similarly, CT-F2.5-3DP-1 was extracted at a depth of
60 mm from the top, and CT-F2.5-3DP-2 from the bottom layers (Figure 13). Each extracted
specimen measured 20 mm × 30 mm × 60 mm. For analysis, a Region of Interest (ROI) of
14 mm × 20 mm × 60 mm was selected with a threaded reinforcement at the center.
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3. Results and Discussions
3.1. Characterization Tests: Conventional Mold-Cast Specimens

Table 4 presents information regarding the wet density of the selected mixtures. The
average wet density of the mixture with a steel fiber dosage of 2.5% (by volume) was mea-
sured as 2397 kg/m3, while the plain mixtures had an average wet density of 2283 kg/m3.
These observations highlight that the inclusion of steel fibers in the mixtures resulted in a
higher density, which potentially could impact the deformations in 3D-printed elements
made of fiber-reinforced materials. For the mold-cast specimens, the same workability
range as the printing materials (170–185mm flow range) was targeted to ensure sufficient
flowability of the mixtures without any segregation.

The compressive strength values for the two studied mixtures are presented in Table 4.
The results revealed that the incorporation of steel fiber at 2.5% by volume helped to reach
a compressive strength of 73.3 MPa, while the plain mixture only reached a compressive
strength of 48.6 MPa. The fiber-reinforced mixture demonstrated a considerable 51%
improvement in compressive strength compared to the control mixture. The inclusion of
steel fibers in the mixture, especially at high dosages, evidently helped to distribute internal
stresses when the load was applied. As a result, this improved the resistance against crack
growth and collectively led to an increase in compressive strength.
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Table 4. The results of conventional characterization tests.

ID
Wet

Density

Flow
Table
Value

f’c

Flexural Properties Tensile Properties

MOR δp T100
150

First-Cracking
Strength

Tensile
Strength

Strain at
Peak Stress GTv

kg/m3 mm MPa MPa mm Joule MPa MPa % KJ/m2

F0 2259 170–185 48.6 7.21 - - 2.04 2.04 0.01 -

F2.5 2397 170–185 73.3 10.05 0.886 38.502 3.22 4.74 0.62 4.76

Note: f ′c = Compressive strength; δp = Deflection capacity; T100
150 and GTv = Toughness values from the flexural

strength test and uniaxial strength test, respectively.

The flexural strength of the two mixtures is also presented in Table 4. It was observed
that the inclusion of 2.5% steel fibers improved flexural strength by 39% (for the mold-cast
specimens). From Table 4, the deflection capacity of the fiber-reinforced beam was observed
at 0.886 mm, while the plain beam showed a near-zero deflection capacity due to sudden
brittle failure—hence, it is not included in Table 4. Similarly, the toughness value of the
fiber-reinforced beam was measured as 38.502 J, while the plain beams revealed a negligible
toughness capacity, as anticipated. The inclusion of steel fibers reinforced the tensile zone
of the beam, controlled crack growth, and enhanced the ductility of these beams. The
special brass coating on the used steel fiber seems to have promoted the interfacial bond
strength between the fibers and the surrounding matrix. Hence, it might have contributed
to stress transfer between the fiber and the matrix and enhanced the overall strength and
integrity of the fiber-reinforced composites.

Next, the plain and fiber-reinforced mold-cast dumbbell-shaped specimens were tested
for the uniaxial tensile strength test (UTT). Table 4 shows the first-cracking strength, tensile
strength, strain capacity, and toughness of these specimens. The results reveal that the
fiber-reinforced specimens outperform the control specimens in terms of first-crack strength
and peak strength. Furthermore, a significantly higher strain (0.62%) was observed at peak
load for F2.5 specimens, in contrast to the control specimens where the strain capacity was
negligible. Control specimens showed a brittle failure upon first cracking. The test results
show a considerable 132% improvement in tensile strength as a result of 2.5% steel fiber
addition. A total dissipated energy of 4.76 KJ/m2 was also measured for the fiber-reinforced
F2.5 specimens. This confirms the superior tensile strength and post-cracking behavior of
the fiber-reinforced mixtures compared to the plain control specimens.

3.2. Characterization Tests: 3D-Printed Specimens
3.2.1. Fresh Properties

The printability and shape stability of the two selected mixtures were previously
studied by the authors using a 40 mm × 20 mm nozzle [29,30]. In this study, the shape
stability of the deposited layers was assessed using a wider 100 mm × 25 mm nozzle,
which was designed and used for the fabrication of standard 3D-printed beams. The results
in Figure 14 show the bottom layer deformations during the shape stability test for both
printing mixtures. It was observed that using the new nozzle (100 mm × 25 mm) with
the same printing materials results in improved shape stability and smaller deformations
compared to the previous nozzle (40 mm × 20 mm), both in the presence and absence of a
high dosage of steel fiber.

This observation is justified by the impact of the nozzle design and the aspect ratio
of the printed layers, defined as the ratio of the width to the height of each layer. When
using a 100 mm × 25 mm nozzle with an aspect ratio of 4:1, less deformation was observed
compared to the smaller nozzle with an aspect ratio of 2:1. Figure 14 shows that the use
of the smaller nozzle with the fiber-reinforced material (F2.5) resulted in a considerable
15% bottom layer deformation. The F2.5 mixture has a higher unit weight and different
rheological properties due to a greater HRWRA dosage compared to the plain F0 mixture.
When printing the highly reinforced F2.5 mixture, a wider nozzle with a higher aspect ratio
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proved effective in achieving a more uniform load distribution across the horizontal plane,
which reduced layer deformations compared to the nozzle with a smaller aspect ratio. It
should be mentioned that the addition of steel fibers at a high dosage affects the rheological
properties of the mixture and significantly increases its viscosity, resulting in reduced
extrudability or nozzle blockage issues. Increasing the superplasticizer dosage increases
the flowability of the cementitious matrix of the fiber-reinforced materials necessary to
ensure continuous extrudability, which in turn increases the plastic deformations [29,30].
In summary, the observations from this study confirmed the positive impact of the use of a
wider nozzle with a higher aspect ratio on the extrudability (preventing nozzle blockage)
and shape stability of steel fiber-reinforced 3D-printed concrete.
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3.2.2. Mechanical Properties

Flexural strength: The Modulus of Rupture (MOR) of the 3D printed fiber-reinforced
and plain beams is presented in Figure 15. For plain 3D-printed beams, the MOR of F0-3DP-
X beams was measured as 6.19 MPa, which is 29% and 41% higher than the F0-3DP-Y and
F0-3DP-Z beams, respectively. The observed anisotropy in the 3D-printed plain specimens
is mainly due to the orientation of the beam and the layer interfaces relative to the loading
direction. Compared to the X direction, the observed lower strength values in the Y and
Z directions are attributed to the lower bond strength and the weak interfaces aligned
vertically in the plane as the loading direction. In contrast, the interfaces of X-direction
plain beams are aligned along the length of the layer, with the load acting perpendicular
to the interfaces. Overall, the 3D-printed beams underperformed compared to mold-cast
F0-MC beams in all cases when no steel fiber was incorporated. The average MOR for the
highest-performing 3D-printed beams (F0-3DP-X) was 14% lower than the average MOR
of the mold-cast beams (F0-MC). The inferior performance of the 3D-printed plain beams
compared to mold-cast beams is attributed to the printing process creating multiple weak
bonding interfaces between the layers compared to the monolithic mold-cast specimens.
Compared to mold-cast concrete, the lack of vibration in 3D-printed concrete is also likely to
contribute to the lower mechanical strength of 3D-printed beams due to a potentially higher
porosity in the absence of compaction [56]. Concerning fiber-reinforced beams, the average
MOR of the F2.5-3DP-X and F2.5-3DP-Y beams containing steel fibers was 14.67 MPa and
13.37 MPa, respectively, which is 137% and 179% higher than the respective plain printed
beams tested in the same directions. The superior performance of the F2.5-3DP-X and F2.5-
3DP-Y beams is attributed to the more uniform alignment of the steel fibers in the printing
direction [30,57–59]. In contrast to the plain beams where samples in the Y direction showed
approximately a 29% reduction in strength compared to the X-direction beams, the steel
fibers were effective in achieving significantly higher and relatively similar mechanical
performance in the X and Y directions (a 9% reduction in the Y direction relative to X).
F2.5-3DP-Y beams had strength values comparable with the X-direction printed samples
due to the steel fibers’ alignment in the printing direction, which helps transfer the stress
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across the beam. Interestingly, unlike the plain mixtures, the MOR of the F2.5-3DP-X and
F2.5-3DP-Y was higher (46% and 33%, respectively) compared to the mold-cast F2.5-MC
beams. This is attributed to the random distribution and orientation of steel fibers in
the mold-cast beams resulting in a lower strength than the 3D-printed fiber-reinforced
beams in both the X and Y directions [60]. Z-direction beams, on the other hand, exhibited
inferior performance compared to both mold-cast beams and 3D-printed beams in X and Y
directions. The average MOR of F2.5-3DP-Z beams was 10% lower than plain F0-3DP-Z
beams, which was anticipated due to the layered nature of the 3D-printed specimen and
the large number of interfaces in the Z-direction beams parallel to the loading direction.
The inferior performance of F2.5-3DP-Z beams compared to the other two directions,
however, is attributed to the steel fibers being aligned in the direction of printing, without
penetration across the layers, leaving the interfaces unreinforced. When these interfaces are
tested perpendicular to the direction of loading, the lack of fiber-bridging action leads to
a decrease in flexural strength [61]. In the authors’ previous study, for the same mixture,
it was observed that the steel fiber orientation number was up to 0.810 (where a value of
1 represents fibers parallel to the printing direction) with an average orientation angle of
37.5◦. These findings verified the induced orientation of the fibers (almost parallel to the
printing direction) and the absence of fiber in the layer interfaces (i.e., fibers do not cross
between the layers) [30].
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Considering the inferior performance of the F2.5-3DP-Z beams, vertical threaded
reinforcements were investigated to address the unreinforced interface issue and improve
the structural performance of 3D-printed beams. As such, three F2.5-3DP-Z-TR beams
were designed, and the automated insertion module was used during the printing process
to insert the threaded reinforcement elements as previously described (Figure 11). The
results presented in Figure 15 show that the average flexural strength of F2.5-3DP-Z-TR
beams was 42% higher than that of F2.5-3DP-Z beams. For F2.5-3DP-Z-TR beams, the
threaded reinforcement enhanced the interlayer bonding between different layers as well
as provided tensile reinforcement in the tensile region of the beam when the loading was
applied in the Z direction. The threaded reinforcement in the Z direction prevented the
occurrence of cracks and split separation between the layers prior to the peak load [62,63].
By reinforcing the concrete matrix with steel fibers and threaded reinforcement, the load
was distributed more evenly through the beam, resulting in an improved overall flexural
performance. Despite the improvements, the addition of vertical reinforcing elements to
the Z-TR beams did not result in a mechanical performance comparable to the X- and Y-
direction fiber-reinforced 3D-printed beams or mold-cast beams—approximately 61% lower
flexural strength was measured for F2.5-3DP-Z-TR beams compared to mold-cast beams.

Figure 16 presents the flexural tensile stress versus mid-span deflection curves for the
mold-cast and 3D-printed beams in each loading direction. The addition of steel fibers
significantly improved the load-carrying capacity and deflection-hardening behavior of
the 3D-printed beams after the first crack. Particularly, the post-cracking behavior of the
F2.5-3DP-X and F2.5-3DP-Y beams was significantly improved. After the first-cracking
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load, the curves exhibited a nonlinear behavior and some peak points prior to reaching
the ultimate load. Furthermore, beyond the ultimate load, specimens exhibited a ductile
deflection softening behavior without sudden failure (i.e., suppressing brittle failure). On
the other hand, F2.5-3DP-Z beams exhibited brittle interfacial bond failure upon reaching
the peak stress, as illustrated by the total and immediate loss of load-carrying capacity
post-peak shown in Figure 16d. This is due to the loading applied parallel to the unrein-
forced interfaces. Considering the induced fiber alignment, no significant contributions
to the flexural performance of 3D-printed beams were achieved in the Z direction and
contributed to the shear failure observed in the F2.5-3DP-Z beams. The flexural tensile
stress-deflection curves for the beams with threaded reinforcement (F2.5-3DP-Z-TR) are
presented in Figure 16e. The beams with threaded reinforcement at the interfaces undergo
relatively larger plastic deformations before the ultimate load. After the peak load, a sud-
den drop in the loading and bond failure between the interlayers was observed. Thereafter,
the bridging effect of the vertical reinforcement at the interlayer was visible as the stress
gradually started to increase. The lower strength values in the Z direction with threaded re-
inforcement showed that slippage failure occurred after the peak loading was reached [63].
However, comparing Figure 16d,e reveals a noticeable improvement in the ductility as a
result of vertical reinforcement addition, which allows the beams to absorb more energy
before complete failure. Furthermore, the immediate post-peak brittle failure observed
for the F2.5-3DP-Z beams was suppressed in the F2.5-3DP-Z-TR beams by the bridging
effect of the reinforcement, which provides residual strength capacity and is important for
structural safety purposes.
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Toughness and deflection capacity: The flexural toughness ( T100
150

)
values of the F2.5

mixtures were determined following ASTM C1609 by calculating the area under the load-
deflection curves, and the results are presented in Figure 17. It is observed that the F2.5-
3DP-X and F2.5-3DP-Y beams outperformed both the F2.5-3DP-Z and F2.5-MC specimens
in this regard. Flexural toughness was found to be 104% and 66% higher in the X and Y
directions, respectively, compared to the mold-cast counterparts. Adding steel fibers to
the 3D-printed beams significantly improved flexural toughness, thereby increasing their
resistance to crack widening and preventing a brittle failure similar to Figure 16d. The
induced fiber alignment caused by the extrusion pressure is the main contributing factor in
achieving higher flexural toughness. On the other hand, the F2.5-3DP-Z beams showed a
premature failure before reaching the 2 mm deflection. The value presented in Figure 17
is evidence that the F2.5-3DP-Z beams exhibited the lowest toughness, emphasizing their
inferior performance in terms of toughness. However, the 3D-printed F2.5-3DP-Z-TR
beams with threaded reinforcement showed enhanced toughness properties up to 2 mm
deflection (306% improvement compared to F2.5-3DP-Z), although the measured toughness
value was still 59% lower than that of the F2.5-MC beams. While significant improvements
were observed as a result of adding vertical elements, the threaded reinforcement changed
the failure behavior of the Z-direction beams. Further reinforcement design optimization
and improvement are needed to achieve higher levels of flexural performance. Figure 17b
shows the deflection capacity of mold-cast and 3D-printed beam specimens. It is observed
that the average deflection capacity of F2.5-3DP-Z-TR beams (1.77 mm) is 99% higher
than F2.5-MC beams and 68% higher than F2.5-3DP-Z beams. The presence of threaded
reinforcement helped to prevent early cracking and enable more deflection before reaching
the limit and improved the deflection capacity of the 3D-printed beams, compared to
mold-cast and 3D-printed beams without threaded reinforcement. Based on the results,
although threaded reinforcement did not significantly increase the flexural strength, the
impact on the ductility was relatively significant and the proposed approach (with further
optimization) seems to hold great potential in addressing the brittle behavior of 3D-printed
beams in the Z direction.
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Crack patterns: In Figure 18, the failure patterns of the mold-cast and printed speci-
mens are presented. F0-3DP-X, F0-3DP-Y, and F0-MC (beams without steel fibers) exhibited
brittle or complete failure in flexure when the load reached the peak value and the load-
bearing capacity immediately dropped to zero. Additionally, the F2.5-3DP-X, F2.5-3DP-Y,
and F2.5-MC beams (with steel fibers) showed a crack-bridging behavior and exhibited a
nonlinear behavior in flexure that allows them to resist further load after reaching the peak
value [64]. In contrast, F0-3DP-Z and F2.5-3DP-Z beams (Z-direction beams, in general)
showed shear failure (or bond failure) as the dominant failure mode. This was because the
load was applied parallel to the interface of the beam, causing shear failure and splitting at
the layer interfaces. Both mold-cast and 3D-printed beams tested in different orientations
showed a single crack in the plane of failure. The only exception to this was observed for
the F2.5-3DP-Z-TR beams with threaded reinforcement, which confirms the positive impact
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of the added reinforcement on the structural performance of 3D-printed beams. Slippage
failure was recognized as the main factor for the failure of the F2.5-3DP-Z-TR beams, rather
than reinforcement yielding. Other than the required development length of reinforcement,
another potential contributing factor regarding the slippage failure is a weaker bonding
between stainless steel reinforcement and concrete that was used in this study, compared
to the traditional carbon steel reinforcement [65].
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3.3. CT Scanning of 3D-Printed Specimens

From the reconstructed 3D images, the total and connected porosity or percent voids
surrounding the reinforcement area were calculated—see Figure 19. The results indicate
that the total porosity of the mold-cast CT-MC-TR-1 (top) and CT-MC-TR-2 (bottom)
specimens were 7.94% and 7.12%, respectively, while the porosity of the 3D-printed CT-
3DP-TR-1 (top) and 3DP-TR-2 (bottom) specimens was 6.30% and 4.36%, respectively.
These data suggest that the insertion process of threaded reinforcement via the automated
device in 3D-printed specimens resulted in a comparable (or even slightly lower) overall
porosity in the vicinity of the threaded reinforcement. The acceptable porosity levels in
the 3D-printed specimens can mainly be attributed to the adopted insertion process and
the screwing mechanism which involves both rotational and translational movements.
The mold-cast CT-MC-TR-1 and CT-MC-TR-2 specimens had very similar total porosity
values and no difference was observed between the top and bottom sections of the threaded
reinforcement. It should be noted that the flowability range of 170–185 mm of the mixtures
to prepare mold-cast specimens was the same as for the 3D-printable mixture, despite
vibration being provided on mold-cast specimens during preparation. The porosity of
CT-3DP-TR-1 and CT-3DP-TR-2 specimens were extracted from different locations of a
6-layer specimen printed having a varying layer deposition time. The results show that
as the depth of the penetrated screw increased, a lower porosity was observed near the
threaded reinforcement in the printed specimen. This observation implies the importance
of reinforcement insertion time relative to the setting time of 3D-printed concrete, and its
likely influence on the resulting cavities around the reinforcement, which is more critical
for longer reinforcement elements and faster-setting printing materials. Connected porosity,
or interconnected voids (capillary channels) within the hardened matrix surrounding the
reinforcement area, was also presented in Figure 19. The results showed that the connected
porosity was 4.06% and 1.38% for the 3DP-TR-1 and 3DP-TR-2 specimens, respectively. This
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indicates that lower connected voids were created during the insertion process compared
to the mold-cast specimens, similar to the total porosity, which showed both higher total
and connected porosity.
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Figure 19. Total and connected porosity of mold-cast and 3D-printed specimens.

To determine the porosity due to the use of the threaded reinforcement, 2D pore
structure analysis was performed on 11 CT slices uniformly spaced 5 mm along the Z axis
of all specimens concerning the original 150 mm reinforcement (Figure 20). The proportion
of pore area to the entire CT image area indicates the specimens’ 2D porosity. The 2D
porosity changes little along with the depth of the threaded portion of the reinforcement
for CT-MC-TR-1 and CT-3DP-TR-1 specimens. But at the middle portion of the threaded
reinforcement for mold-cast specimens, higher porosity was observed. The 2D porosity of
CT-3DP-TR-2 specimens presented a slightly higher porosity at the tip area. Overall, the
areas near the threaded segment (TR-1) had higher porosity levels than those near the tip
area (TR-2). This can be attributed to the tip region making initial cutting contact with less
disturbance to the steel fiber-reinforced matrix, while the rotation of the threaded portion
creates more area of disturbance within the matrix, which was amplified by the discrete
short fibers. Visible voids were observed at the top of the threaded reinforcement during
the manual insertion of the reinforcement as discussed in the previous section; the screwing
mechanism developed using an automated device gradually decreased the voids in the top
portion of the threaded reinforcement.
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Figure 20. 2D porosity distribution along the Z axis of the threaded reinforcement (a) CT-MC-TR-1;
(b) CT-MC-TR-2; (c) CT-3DP-TR-1; (d) CT-3DP-TR-2.

Figure 21 shows the voids in the threaded and tip area for the CT-3DP-TR-2 speci-
men. From the threaded portion, voids were observed on only two sides of the threaded
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reinforcement. This was due to the rotational force applied to the threaded reinforcement,
which allowed the threaded reinforcement to rotate around its longitudinal axis. The
rotational movement of the thread reinforcement generates a torque that engages tightly
with the surrounding fresh material containing steel fibers. Axial forces were developed
between the threads and the material, perpendicular to the reinforcement’s axis, and forces
applied through rotations break the locking mechanisms on the two sides which created
voids in the threaded portion of the reinforcement. In addition, with the increase in depth,
a steeper tip allowed the reinforcement to produce more force for a given torque, which
created voids in the tip area. Moreover, the tip of the reinforcement penetrated the lower
layers with stiffer material compared to the last few layers at the top that were more recently
deposited, justifying the presence of more voids in the tip area.
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Technical and Economic Feasibility: The short vertical reinforcements utilized in this
study were inserted using a semi-automated process, where the reinforcement placement
was controlled with a toggle switch. Therefore, this approach has the potential for full
automation by adding a continuous reinforcement feeding system. In consequence, an
optimal toolpath for reinforcement insertion in predetermined locations of the freshly
printed layers is required in addition to the toolpath generated for the layer-by-layer
deposition process. Hence, the machine codes for the layerwise construction process will
include optimal and sequential g-codes for both processes. Printing parameters such as
traverse speed should be also carefully selected considering the impact of the reinforcement
insertion process on the overall printing duration. Material design considerations also
become critical to maximize the printing window of the printing material so that potential
issues and defects such as cold joints can be avoided. Our preliminary testing using various
steel reinforcement types shows the feasibility of automated rebar insertion with minimal
void creation. The proposed dual reinforcement approach has the potential to improve
the cost-effectiveness of 3D printed structures by increasing the construction speed and
automation level.

4. Conclusions

Two complementary reinforcement techniques for C3DP were investigated in this
study, namely, steel fiber reinforcement at a high dosage (2.5% by volume) and automated
threaded reinforcement insertion. The following are the main findings of this study:

• The compressive strength, flexural strength, and uniaxial tensile strength of steel
fiber-reinforced specimens outperformed the control plain mold-cast specimens.

• Plain 3D-printed beams exhibited anisotropic behavior and lower flexural strength
relative to the mold-cast plain beams. The addition of steel fibers at 2.5 vol.% signif-
icantly improved the flexural strength in the X and Y directions, surpassing that of
both plain and fiber-reinforced mold-cast beams. The improved performance in these
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directions is attributed to the high steel fiber dosage and the extrusion-induced fiber
alignment in the longitudinal (printing) direction.

• Anisotropic behavior was also observed in printed fiber-reinforced beams; particularly,
the Z-direction beams exhibited poor flexural performance due to the presence of
unreinforced interfaces. Interestingly, 3D-printed fiber-reinforced beams tested both
in the X and Y directions outperformed fiber-reinforced mold-cast beams in terms of
flexural strength and toughness and exhibited superior post-cracking behavior. On the
other hand, fiber-reinforced beams tested in the Z direction produced lower flexural
strength and toughness relative to mold-cast beams and displayed brittle shear failure
at the interface.

• Adding threaded reinforcement improved the flexural strength of the 3D-printed
specimens in the Z direction to some extent; however, this was not comparable to
the strength levels of the X- and Y-direction beams. Furthermore, the incorporation
of threaded reinforcement substantially enhanced ductility (i.e., increased deflection
capacity by 99% compared to mold-cast beams), thus eliminating the brittle failure
mechanism of the Z-direction beams. Overall, threaded reinforcement reduced nega-
tive effects induced by the printing process.

• X-ray CT scans of 3D-printed and mold-cast fiber-reinforced specimens with threaded
reinforcement show that the proposed reinforcement insertion process (simultaneous
rotation and translation of the threaded reinforcement element) does not lead to a
higher porosity or the creation of additional voids in the 3D-printed element.

Overall, the proposed dual-reinforcement technique has great potential to improve the
strength and post-cracking properties of 3D-printed specimens. One limitation of the study
lies in its narrow focus on the mechanical performance of only one type of short vertical
reinforcement, despite initially testing various reinforcements. Additionally, the study
lacks extensive exploration of the impact of the reinforcement diameter, length, and lapping
techniques on the structural performance. Future research should also consider these gaps
by investigating a broader range of reinforcement materials and design configurations.
Pull-out tests should also be conducted to evaluate the bond behavior between the discrete
reinforcement and matrix.
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