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Abstract: Digital twin technology has evolved from a theoretical concept to practical application,
facilitating seamless data exchange between virtual and physical domains. Although there has been
progress, the infrastructure industry, which is recognized for its intricate nature and the need for
timely action, is still in the first phases of digital twin advancement. A significant obstacle in this field
is the absence of established definitions and modeling standards, which impede the precise depiction
of infrastructure systems. To address these challenges, this paper proposes a high-precision digital
twin modeling method tailored for pumping stations. The method focuses on two key scenarios:
first, we construct an overall digital twin model that contains both physical entities and operational
processes of pumping stations; second, we design a modeling process applicable to pumping stations
by analyzing the deficiencies of the existing standard system. Additionally, we selected the East-West
Water Transfer Project in China as a case study to demonstrate the high-precision digital twin model of
a pumping station. This model will include essential components, such as the modeling of pumping
stations, the operational processes of pumping stations, and the modeling of system operation
analysis. Serving as the database for the digital twin, it can complete the automatic inspection of
the pumping station, optimization of scheduling, prediction and regulation of energy and carbon
emissions, and visualization of results for display and other applications. The model realized the
benefits of 100% automatic inspection rate, reduction of eight corresponding operating personnel,
and comprehensive cost saving of RMB 2.25 million. The objective of this research is to narrow the
divide between theoretical concepts and real-world implementations by pushing the boundaries of
digital twin modeling and offering valuable insights for its utilization in the infrastructure industry.
It establishes the foundation for progress in the field of digital twin technology in the specific context
of intricate infrastructure projects. This project aims to improve the practicality of digital twin
technology in real-world situations, namely in the infrastructure industry.

Keywords: effective modeling; pumping station; digital twin; method research

1. Introduction

In 2003, Michael Grieves introduced the digital twin concept. NASA later adopted this
concept for aircraft design, marking a shift towards the incorporation of virtual reality and
real-time engagement in global manufacturing [1]. Subsequently, Tao Fei et al. [2] improved
upon Grieves’ original three-dimensional framework by developing a five-dimensional
digital twin model. This work aimed to align with the changing trends and increasing
demands in the sector, indicating a notable progression in digital twin technology.

Tao Fei et al. [3] conducted a comprehensive analysis on the concept, enabling technolo-
gies and varied applications of digital twins, and proposed ten pivotal questions to enhance
the overall understanding of this technology. The objective of this investigation was to
enhance the comprehension of digital twins and their potential in various dimensions and
sectors. The increasing implementation of digital twin technology in several sectors has
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led to a greater need for accuracy in twin modeling. Hence, crucial concerns such as the
accuracy of virtual models compared to their real-life counterparts as well as their capacity
for monitoring, modeling, forecasting, and optimizing physical entity operations have been
the primary focus of extensive scholarly research.

In recent years, scholars have used digital twin technology to manage construction and
operation in the infrastructure domain. Notable examples include Ramos Helena M et al. [4],
who developed a smart water grid (SWG) for water infrastructure using digital twins, which
enhanced system efficiency and management capabilities. Similarly, Haohan T et al. [5] in-
troduced a digital twin-based fault diagnosis framework for data-driven underwater control
systems, employing a novel Physical-Informed Time Domain Convolutional Network (PITCN)
that surpasses traditional CNN-based methods. Additionally, Shengwen Zhou et al. [6] uti-
lized the five-dimensional model to effectively represent a water purification plant at
multiple levels, demonstrating its practical application.

Infrastructure projects stand out due to their complexity, variability, extensive scale,
and prolonged durations, presenting unique challenges for digital twins. However, data on
Infrastructure Digital Twins (IDTs) in this sector are limited and there is still no consensus
on its definition. As a result, integrating data, models, and services in digital twin model
construction faces significant challenges. With the intention of merging the specific charac-
teristics of the infrastructure domain with high-precision digital twin modeling, this study
seeks to provide a substantial reference for future research. The primary research questions
addressed are as follows:

- RQ1: What are the fundamental processes for constructing an intelligent digital twin
model for the infrastructure domain?

- RQ2: What are the current digital twin standard systems in place?

- RQ3: What are the principal techniques for creating IDTs?

- RQ4: How to develop high-precision digital twin models for the infrastructure domain?

This paper presents the key processes and methods for developing high-precision
digital twin models in the infrastructure sector, drawing from a through literature review
and international standards. A real project case is then chosen to evaluate the practicality
and precision of these methods.

Section 2 will describe the research methodology, including the steps taken to create
twin models that take into account infrastructure characteristics, and addresses RQ1. In
Section 3, we will discuss the findings related to standards and technologies. These findings
will help develop a framework for digital twin modeling in the infrastructure domain,
addressing both RQ2 and RQ3. Section 4 will focus on the evaluation of the proposed
modeling approach and technical system through a real project case. Lastly, Section 5 will
provide a summary of this study’s findings.

2. Research Methodology
2.1. Basic Process for Building Models

To ensure seamless interconnectivity of digital twin systems and to minimize conflicts
across different domains, it is imperative to establish clear and consistent principles and
processes for constructing digital twin models. The digital twin model, serving as a
virtual representation of physical entities or systems, is central to overseeing, predicting,
optimizing, and managing real-world situations. The precise and thorough creation of a
digital twin model is crucial for enabling seamless integration between virtual and real
environments and promoting a mutually beneficial connection. When creating a digital twin
model, it is crucial to take into account not just the physical entity, but also its operational
procedures, traits, methodologies, behaviors, and other pertinent aspects.

The methodology employed in this research aligns with the five-dimensional model
theory of the digital twin by Tao Fei et al., as outlined in their work [7]. During model
construction, our approach considers the “geometry-physics-behavior-rule” dimensions
to ensure a comprehensive representation. Through integrating various fields including
mechanical, electrical, fluid dynamics, and topology, our methodology enables the mod-
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eling of basic units, complex objects, and spatial systems. Consequently, it provides a
detailed representation of complex physical entities in the real world. Figure 1 shows
the technical roadmap implemented in this research, which is organized into four main
components: physical entity modeling, virtual entity modeling, decision model modeling,
and visualization application. The process begins with sensing the physical entity using
sensors, followed by creating a virtual model through parametric modeling and multidi-
mensional data. Establishing the connection between the physical entity and the virtual
model is achieved through the method of virtual-reality map. Subsequently, an appropriate
algorithm is selected to create a decision model, which is based on the integration of data
fusion and model coupling. Finally, the outcomes of data analysis are presented in a visual
format for enhanced interpretation.
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Figure 1. The technological roadmap of this study.

Effective model management is necessitated by the process of construction, verification,
and correction, as well as subsequent utilization to guarantee the model’s accuracy and
validity within the twin system. It is imperative to validate the model’s realism post-
construction, and if tests reveal inaccuracies, the model undergoes refinement through a
“verification-correction” cycle. This cycle is repeated as necessary until the model meets
the required accuracy standards.

We have developed a basic model construction process depicted in Figure 2, based
on the characteristics of the infrastructure lifecycle construction stage. Throughout the
lifecycle from design to construction to operation, real-time mapping relationships exist
between physical and virtual entities. The process involves model building, assembling,
fusion, validation, correction, and management to ensure the accuracy of the model.

# Design

Construction
Operation
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& f &P, Physical Entity
Y ['i Virtual Entity
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Figure 2. Basic process for building digital twin models in infrastructure domains.
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2.2. Basic Principles for Building Models

To standardize the construction process of the digital twin model, a modeling criterion
for the digital twin is proposed, based on previous research on the five-dimensional model.
Additionally, specific principles governing the building process of the digital twin model
are outlined to align with modeling requirements and intended digital application purposes,
as illustrated in Figure 3.

precision evolutionary
Satisfying the need for N 2 Satisfying the need for
effectiveness 4 intelligence

/lntelllgenV

standardization : L reconfigurable
Satisfying the need for versatile . " flexible Satisfying the need for
versatility Dlgl_tal flexibility
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visualization / interactive
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Figure 3. Digital twin modeling principles.

The fundamental purposes of the principles of digital twin modeling, as depicted
in the figure, include “usable, versatile, efficiency, user-friendly, connectivity, integrated,
flexible and intelligent”. In addition, the model must also fulfill the requirements of

“precision, standardization, lightweight and visualization” to ensure model refinement.

Precision entails the accurate and consistent static portrayal or dynamic result output of
the entity at the physical or system level, ensuring that the result is credible and usable,
meeting the validity requirements of the model. Standardization involves the establishment
of a unified standard for the construction of various elements and objects in different
industries and domains, ensuring the consistency of model integration, data exchange,
information identification, and maintenance, thereby enhancing the model’s versatility.
Lightweight refers to streamlining model information and structure without compromising
main information, accuracy, and functionality, ultimately improving operational efficiency.
Finally, visualization involves presenting the entire lifecycle activities of the model in a
more intuitive manner, facilitating deeper interaction with the user and enhancing the
model’s readability and usability.

The digital twin model should be designed to meet the demands of various applica-
tion scenarios, including being “reconfigurable, integrable, interactive and evolutionary”.
Reconfigurability entails the model’s ability to adapt to complex and changing application
environments by flexibly changing its structure, composition, parameter configuration, and
relationships. Similarly, integrability necessitates the ability to line multiple digital twin
models and integrate data from various scales and dimensions to aid in system operation
and decision-making. Interactive capabilities involve enabling connectivity, breaking in-
formation silos between systems, and ensuring interoperability between entities, models,
and data. Lastly, meeting evolutionary demands requires the model to be intelligent, con-
stantly evolving following the operating principles of the physical entity or system, and
continuously optimizing and correcting itself based on historical and dynamic process data.

2.3. Theoretical for Building Models

The digital twin theory, which is applied from the manufacturing field to the archi-
tectural field, aims to address the challenge of “information-physical” non-interaction
by focusing on the “physical” building transferring its real status to the “information”.
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However, the establishment of digital twin models is confronted with issues such as system
complexity, uncertain external environment, and variable coupling. Therefore, to achieve a
high-precision and accurate reflection of the real characteristics, it is essential to address
the coupling of different physical and time scales. As noted by references, multi-scale
modeling is vital for linking information from different time and physical scales to sci-
entifically simulate buildings in the infrastructure field and create a high-precision twin
model. Building on this, this paper introduces the all-element digital twin model DTMp for
pumping stations, as depicted in Figure 4. The model is represented by Equation (1).

DTMp = {GMp, PMp, DMp} 1)
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Figure 4. All-element digital twin model for pumping station.

The geometric model (GMp) in the digital twin model of a pumping station is a true-
to-life representation of the physical entity in a digital space, encompassing its geometric
dimensions, shapes, positions, materials, and environmental characteristics. The geometric
model is expressed as Equation (2).

GMP = {GS/ GG/ GP/ GM/ GE} (2)

where Gg is size data; G¢ is shape data; Gp is position data; Gy is material data; Gg is
environment data.

The process dynamic model (PMp) in the pumping station digital twin model serves
as a real-time representation of the operating state of physical entities in a digital space.
This facilitates information connection and transmission among equipment, systems, and
their respective components, using methods such as real-virtual interaction mapping. Key
components of the model include descriptions of the attribute information of physical
objects (e.g., data, interfaces, states, relationships), as well as the state and cooperative work
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of the internal components and between the objects. The process model is expressed as
Equation (3).
PMP={P1D/PP/PA/PR/PS} (3)

where Pjp is the identification of the physical object; Pp is the attribute describing the
physical object, including static and dynamic attributes; P is the operation of the physical
object; Py is the rule of the physical object; Ps is the subcomponent of the physical object
(if any).

The decision model (DMp) in the pumping station digital twin model integrates
historical and real-time data of physical entities when they operate in the digital space,
thus enabling the prediction and feedback on the operation status and results. These
results are ultimately presented visually to the application. With decision models, there
is a combination of data-based smart models, mechanistic models, and hybrid models
integrating both smart and mechanistic elements. The decision model is expressed as
Equation (4).

DMp = {Ms, M1, Msp} 4)

where Mg is a data-based smart model; My is a mechanistic model; Mgy is a mixture of an
intelligent model and a mechanistic model.

3. Literature Review
3.1. Digital Twin Modeling Standard System

Our investigation revealed the existence of both domestic and international standards
that provide specific guidelines and technology for each component of the digital twin five-
dimensional model. Adhering to these standards is essential at the stage of constructing
the refined digital twin model. This research thoroughly examines the recent standards
relevant to digital twin models in the building and infrastructure domains, organizing
them into categories such as physical entities, virtual entities, data, and connections. This
classification has led to the development of a precise standard system for modeling digital
twins, as depicted in Figure 5.

Digital twin model for infrastructure domains
|

Physical entity Data Service
1SO 23247 IS0 16739 1SO 19650
Virtual entit Connection
150 16739 Y 1S0 10303 BS 1192-4
CityGML ASTM E3012-16 CityGML ISO 16739 IS0 37106
IS0 16739 ISO/IEC 30182 IS0 10303 IS0 37153
ISO 19650 GeoJSON OPC UA 1SO 13372
BS EN 17412-1:2020 ISO/IEC 27040 MTConnect 1SO 17359
150 37106 1SO 19115-1 ISO/MEC 30141 ISO/IEC/IEEE 12207
ISO/EC 27001 BACnet IEEE 1232.3
RDF ISO 20242-3
OWL
DDS

Figure 5. Standards related to digital twins in the building/infrastructure domains [8-26].

Our study identified various international and domestic standards relevant to the
construction of the digital twin five-dimensional model. These standards provide guidance
for refining the model at each stage of the construction process.

The realm of digital twins involves the use of physical entities to represent real-world
objects for the purpose of modeling, simulation, and analysis. Different domains have their
own tailored definitions; for example, in manufacturing, the focus is on the production
equipment (ISO 23247) [8]. In architecture, the emphasis is on the geometric, spatial,
functional, and performance attributes of buildings (ISO 16739) [9], while urban planning
incorporates the relationships between city infrastructure and GIS data (CityGML) [27-29].
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Virtual entities, on the other hand, are multi-dimensional, multi-scale digitized versions
of their physical counterparts. Standards such as ASTM E3012-16 [10] and ISO 16739 [9]
provide modeling frameworks that cover the design, operations, and maintenance phases,
while ISO 19650 specifically focuses on the full lifecycle management of building and
infrastructure virtual models [11].

The functionality and efficacy of digital twins depend fundamentally on the data.
Standards play a crucial role in enabling interoperability and data exchange. Notably,
standards such as IFC for Building Information Modeling software [11], STEP for product
data exchange [13,30], and CityGML for virtual city model storage and exchange have been
developed for this purpose [16]. Moreover, ISO/IEC 30182 [14] provides a data sharing
framework that supports collaborative analysis of city services. In addition, data security
and access control [15] and ISO/IEC 27001 [17] for information security management are
essential for ensuring the integrity and privacy of data involved. Furthermore, connectivity
and communication protocols, such as OPC Unified Architecture (OPC UA) [31], MTCon-
nect [32,33], Modbus, and BACnet [34,35], are crucial for facilitating precise data flow and
interoperability within the industry. Semantically, standards like RDF and OWL are impor-
tant for semantic mapping [36], while IFC and STEP are foundational for data conversion.
This demonstrates the pivotal role that connectivity and communication protocols play in
facilitating information exchange among entities in the digital twin ecosystem.

Digital twins can significantly impact real-world applications and services, particularly
in the developing domains of building and infrastructure. Although standards in these
areas are still evolving, there are notable examples such as ISO 19650 for project and asset
management, BS 1192-4:2014 [19] for information exchange protocols, and ISO standards
for smart city and transportation timing guidelines [20,21]. These service-focused stan-
dards collectively establish a framework for specification and implementation, covering
various aspects including description, development, deployment, operation, and testing.
Key standards in this context include ISO 13372:2012 [22], ISO 17359:2018 [23], ISO/IEC
12207 [24], the ITIL Framework, IEEE 1232.3-2014 [25], and ISO 20242-3-2011 [26].

3.2. Digital Twin Accurate Modeling Technology System

This paper further elaborates on the technical systems required for the accurate con-
struction of digital twin models in infrastructure, encompassing the entire lifespan and
varying technological types, as depicted in Figure 6. An Infrastructure Digital Twin (IDT)
is conceptualized as a digital replica that precisely mirrors a physical asset or entity, facil-
itating bidirectional data exchange between the virtual and physical realms. Achieving
such precision necessitates meticulous geometric modeling and a framework for real-time,
realistic feedback. This system can operate autonomously or in conjunction with other
systems, offering a more comprehensive representation of infrastructure operations and
thereby enhancing its performance. Essential to this endeavor is the gathering and integra-
tion of data, understanding component interrelationships, and ensuring accessible data
for the twin system. Building on the work of Tao Fei et al. [7] and Naderi H et al. [37] and
considering the unique attributes of the infrastructure sector, the focus is placed on the
detailed technical aspects necessary for the development of accurate digital twin models.

The critical data acquisition technologies enabling communication between physical
and virtual entities, such as IoT sensors [38], point cloud scanning methods [39], RFID, QR
codes, and SCADA systems [40], are identified in the existing literature for operational
and maintenance problem-solving. Information modeling primarily relies on BIM, GIS,
simulation, and finite element analysis [41]. BIM provides essential system detail; on
the other hand, GIS demonstrates its capability in large-scale geospatial infrastructure
modeling. Additionally, simulation and emerging technologies such as VR, AR, and
robotics show potential in expansive scenario analysis, as noted by scholars.
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A technical system for building digital twin models in infrastructure

Data acquisition
DAT

ot O i) “hoaiad Data processing

*LiDAR  *Acc *FMCW Media

“UAV “BLE “GPS *Media *ML *OR

RFID  FBG  ~BWIM v *Edge Computing

Information model ﬁ

B Interoperability
*BIM Model FE +Acquisition

«GIS *CAD SCADA *loT to BIM *IfcOpenShelito  *AWS DynamoDB
+Simulation “VR/AR *AWS *IfcSensor CityGML *Kafka
Model SM *Supervisory RS *APL <IFC to shapefile  -HDF 5
*Finite Element  Control and Data «SensorML +Semantic Web
*BIM to GIS *OWL

Figure 6. A technical system for building digital twin models in infrastructure.

Academics observe a significant rise in the collection of infrastructural data in recent
times. Nevertheless, despite the rapid expansion, the availability of effective processing
technologies has been somewhat restricted, but they are increasingly being adopted in
diverse fields such as machine learning, big data analytics, computer vision, and algo-
rithm optimization. The emergence of cloud computing and edge computing has also
contributed to advancement in this area. In terms of interoperability, several solutions
have been proposed in the literature to integrate IoT sensor data into Building Information
Modeling (BIM). Notable methods include the use of IfcSensor [42], the Revit API [43], or
SensorML [44], all of which have demonstrated analytical success. Additionally, geospatial
application analysis has relied on IfcOpenShell [45] and sought to facilitate BIM/GIS data
exchange via shapefiles [46]. Moreover, the integration of data and semantic rules has
played a crucial role in facilitating schema transformation across various frameworks such
as Industry Foundation Classes (IFC), City Geography Markup Language (CityGML), and
ontologies [47,48]. This integration has sparked significant scholarly interest due to its
potential to elicit substantial advancement in the field.

3.3. Current State and Challenges

In recent years, digital twin technology has been widely recognized and applied
in many fields, with the infrastructure sector being no exception. However, research
to date has predominantly focused on investigating the conceptual framework, general
modeling techniques, and use cases of digital twins. In contrast, there is a notable lack
of in-depth studies on digital twin modeling methodology specifically tailored for the
infrastructure industry.

In terms of conceptual framework, Tao et al. [2] proposed the widely accepted five-
dimensional digital twin modeling theory. Lu et al. [49] focused on digital twin-driven
smart manufacturing within the context of Industry 4.0. They presented a digital twin
architecture model, examined current status and progress, outlined existing digital twin
applications and typical scenarios, and discussed the key issues for future research.

In terms of general modeling techniques, Kritzinger et al. [50] reviewed the most
important techniques for digital twin modeling, such as virtual reality, augmented reality,
big data, etc. Zhou et al. [51] proposed a generic framework for knowledge-driven digi-
tal twin manufacturing units for smart manufacturing, which can support autonomous
manufacturing. However, it is often difficult to fully address the unique complexities and
limitations of these generic approaches when applied to specific domains, such as the
infrastructure industry.

In view of this, scholars have begun to focus on infrastructure digital twin technology.
Jiang et al. [52] proposed a digital twin model for information management of complex
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infrastructure systems to provide a unified reference specification and description method-
ology for information management. Mohammadi et al. [53] integrated a TSL-driven Bridge
Information Model (BrIM) with a Decision Support System (DSS) approach to realize bridge
infrastructure with digital twin and asset management. However, most of the previous
studies concentrate on applying a twin model in a particular scenario, but they lack detailed
research on the methodology of building high-precision models and on the overall process
of modeling a digital twin.

Compared to the existing studies, the innovations of this paper mainly include
the following:

(1) This study aims to address the digital twin problem in modeling complex infras-
tructure systems and proposes a high-precision modeling method based on general
modeling techniques.

(2)  According to the five-dimensional theory and infrastructure characteristics, a novel high-
precision modeling process is introduced, along with a systematic technical framework.

(38) The modeling methodology is validated empirically using real infrastructure projects
as cases and assessing their quantitative benefits.

(4) The main implementation challenges are analyzed in detail and effective solutions are
identified to serve as a reference for later promotion.

In summary, this study emphasizes the real needs of the infrastructure industry and
proposes novel ideas for high-precision approaches that are of great theoretical significance
and application value.

4. Case Study

The urban water system is a crucial element in urban infrastructure, providing essential
support for urban life. However, it is a highly intricate system, with the majority of its
components located underground. Monitoring its operation process is challenging, and
repairing any identified issues poses additional difficulties. Pumping station as the core
part of the urban water supply system is an important infrastructure related to the survival
and development of the city [54]. Pumping stations also serve as the main means to realize
inter-basin water transfers from water-rich areas to water-scarce areas in other basins to
replenish water sources. Compared with other infrastructure projects, pumping stations
are characterized by a high degree of automation, high equipment complexity, and high
failure costs.

As an important part of the water conservancy project, the operation of the pumping
station is closely related to water resources’ scheduling and distribution, and the moni-
toring and regulating function of the pumping station on water quantity and quality is
extremely critical. In the process of its operation, the hydromechanical parameters change
in a wide range and the equipment has a great impact, low fault tolerance, and the need
for fine monitoring. Due to the need for unattended and remote monitoring, the pumping
stations rely more on automated operation and intelligent control, and the requirements for
digitalization and informatization are more stringent. In addition, large pumping stations
not only have numerous pumping equipment, but also have complicated pipe network sys-
tems, gate and dam systems, electrical control systems, and complex composition. Pumping
station downtime may threaten the safety of the entire water conservancy project water
supply, causing serious consequences, so the operation and maintenance management
requirements for pumping stations are also extremely high. Introducing the concept of
digital twin and constructing an accurate and realistic digital twin model, which can reflect
the asset performance in real time, help facility managers to evaluate the data fed back
from the twin system, judge the operation situation, and analyze the high-energy parts,
so as to fully control the operation of the facility; in addition, it is possible to simulate the
extreme situation through the digital twin system for failure analysis, identify the potential
risks, and provide early warning.
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4.1. Case Presentation and Objectives

The objective of the East-West Water Transfer Project in China is to mitigate the
disparity in land resources between the east and west regions. The east region possesses
abundant water resources but limited land, while the west region has ample land but
scarce water resources. For this study, we selected the East-West Water Transfer Project
in Beijing as our subject, with a particular emphasis on the Xingshikou Pumping Station.
The objective is to demonstrate the construction of a high-precision model using digital
twin technology to assist in the intelligent monitoring of the pumping station’s operation
throughout the entire process.

The pumping station is composed of various rooms such as the central control room,
main plant, low-voltage room, inverter room, high-voltage room, automation room, and
other equipment rooms. These rooms house different equipment including distribution
boxes, flow meters, high-pressure and low-voltage distribution cabinets, inverter cabinets,
pump bodies, pump motors, pipelines, and other key equipment, as presented in Figure 7.

Figure 7. Layout of pumping station.

4.2. Data Collection

In this project, in order to achieve comprehensive and uninterrupted data collection
that aligns with the basic requirements for healthy operation and daily inspection of the
pumping station, it was necessary to address the inadequacies of the number and location of
the existing sensors. The initial sensors in place were unable to accurately capture the actual
working conditions and failed to provide sufficient data to fulfill the management needs of
the intelligent pumping station. Consequently, we undertook the selection, development,
and deployment of new sensors in conjunction with the existing ones. The configuration
list of sensors used in this project is shown in Table 1.

Table 1. Sensor configuration list.

No. Name Position Quantity
1 Vibration sensors 3 motor vibration, 3 pump vibration 72
2 Oscillation sensor Mounted on the main shaft of the unit 24
3 RPM (revolutions per minute) sensor Mounted on the main shaft of the unit 12
4 Noise sensor Installation next to the machine (1~2 m) 12
5 Signal amplifier Mounted in the system cabinet 3
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Table 1. Cont.
No. Name Position Quantity
6 Industrial switches Mounted in the system cabinet 6
7 High-precision data acquisition system (16 channels) Mounted in the system cabinet 12
8 System server Mounted in the system cabinet 5
9 Vibration analysis software module Mounted in the system cabinet 12
10 Temperature analysis software module Mounted in the system cabinet 12
11 Radar water level meter Forebay or catch basin 5
12 Temperature and humidity sensors Inspection room 21
13 Unit temperature sensors Xingshikou pumping station unit 12
14 Unit temperature transmitter Xingshikou pumping station unit 12
15 Centralized power supply Computer room 7
16 Transformer temperature controller Inside the transformer in the 6

high-voltage and low-voltage room

The configured sensors are used according to the data acquisition requirements, and
the application contents and locations are listed in Table 2.

Table 2. Sensor deployment.

Type Name Content Quantity Note
The generator housing is Depe.n d 1ng on Fhe
. . conditions on site,
o I horizontally, vertically, and . .
Vibration sensors Motor vibration . 3 insulated epoxy resin
radially welded to the .
metal base plinths can also
’ be installed.
. Install the device in a
The water pump surface is . .
. . suitable location
Water pump vibration horizontally, vertically, and 3 depending on the
pump radially welded to the P & .
maintenance requirements
metal base. .
at the site.
Non-contact measurement Install the device in a
of the major axis oscillation suitable location
. X-direction oscillation  and a U-bracket welded to 1 depending on the
Oscillation sensor . . .
the bottom of the major maintenance requirements
axis. at the site.
Non-contact measurement Install the device in a
of the major axis oscillation suitable location
Y-direction oscillation  and a U-bracket welded to 1 depending on the
the bottom of the maintenance requirements
major axis. at the site.
Generator housing Install the device in a
horizontal, vertical, and suitable location
Motor temperature radial welded or affixed 3 depending on the
Temperature sensor . .
pressure plate maintenance requirements
temperature sensors. at the site.
Water pump surface Install the device in a
horizontal, vertical, and suitable location
Pump temperature radial welding or adhesion 3 depending on the
of pressure plate maintenance requirements
temperature sensor. at the site.
Weld a U-bracket to the . .
Rotation speed bottom of the large shaft 1.5 cm diameter reflective
RPM sensor . ¢ 1 sheet needs to be attached
of the unit (can be shared with the .
L to the main shaft.
oscillation bracket).
Install an L-shaped bracket
Noise sensor Noise of the unit on the outside wall next to 1 Concealed installation

the unit.
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New Sensol

A wide variety of precise sensor systems have been constructed by replacing and
expanding the current sensor equipment. This advancement addresses the inadequacies
of existing sensors that fail to meet actual requirements and lack sufficient capabilities
in monitoring equipment operating status. Through signal transmission, the sensors can
retrieve information about the status of the devices in real time and perform automatic
inspection. The sensor architecture is shown in Figure 8.

Computerized Monitoring Systems
rs Existing sensors

Temperature
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Vibration EddyCl;rrent Noise Sensor  Radar Water Temperature ~Temperature Pressure  Static Level Flowmeter

Sensors

PLC

Converter

Acquisition Device

Analog

: \‘ ,’ \: ‘v \I
! i ¥ w < 13 1
v 1 H

! !. . S W ( i ), ==
: | N ’ \ . :
' ) R [ i i e |
' N [ i b G J

Vibration Eddy Current
Sensor: Level Meter  Sensor Sensor Sensors  Gauge Sensors  Sensors

Figure 8. The sensor architecture.

The data collected in this project include real-time monitoring data from sensors, histor-
ical data from pumping station operations, and data provided by government departments,
as shown in Table 3.

Table 3. Data collection content.

No. Category Type Frequency
1 Real-time data collection by sensors Structured Real-time
2 East-West Water Transfer statement data Structured Once gathering
3 Water c.ondit%ons in largej and Structured Real-time

medium-sized reservoirs
4 Urban rainfall data Structured Real-time
5 Radar cloud map data Unstructured Irregular
6 Flood warning and forecasting Unstructured Irregular
7 Maintenance and repair data Unstructured Irregular
8 Basic information data of the project Structured Irregular
9 Power monitoring data Structured Real-time
10 Power fail-safe data Structured Real-time

The data collected by the sensor are listed in Table 4. The real-time data are transmitted
to the internal database of the East-West Water Transfer Project through the data collection
platform, and other types of data are collected according to the scope and update frequency
in the database, which facilitates access to the system.

Data acquisition and processing play a pivotal role in determining model accuracy
and influencing decision-making. This process encompasses data integration and analysis,
linking equipment condition databases with computer systems via BIM models to ensure
comprehensive recording of maintenance data. Utilizing BIM management concepts, data
and asset models are formulated, with IFC architecture and COBie formats, facilitating
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data transfer. The architecture for collecting and processing data through IoT sensors is
shown in Figure 9.

Table 4. Data collection from sensors.

No. Equipment Data Category 1 Data Category 2 Item
1 . . Vibration X
2 Vibration Vibration Y
i Main water pump  Operational monitoring data Oscillation 8:232222 é
5 Thrust axis temperature Thrust axis temperature
6 Outlet pressure
of main pump
7 Reactive power Q
9 Power consumption Active power P
11 Power factor cos
13 Stator winding temperature 1
17 Stator winding temperature 2
18 Motor stator temperature Stator w%nd%ng temperature 3
19 Stator winding temperature 4
20 Stator winding temperature 5
21 Stator winding temperature 6
22 . Motor current Ia
23 High-voltage soft Motor current Ib
24 . . . I start current Motor current Ic
25 Auxiliary drive Operational monitoring data High-voltage soft Motor voltage Uac
26 start line voltage Motor voltage Uab
27 Inverter ambient temperature
28 Inverter winding temperature
Inverter temperature U
29 Inverter winding temperature
\%
30 Inverter winding temperature
W
31 Inverter frequency setting
32 Rate
gi Inverter operating Flgjizr;iy
35 parameters Input voltage
36 Power (output)
37 Output flow rate
38 Flow level data Forebay water level
39 Catch basin level

The data analysis layer uses advanced machine learning techniques. For example, it
uses deep learning to process and interpret large-scale data. This analysis achieves anomaly
detection, fault diagnosis, performance prediction, and energy consumption assessment.
The insights are visually presented to project managers. This helps them make informed
decisions for continuous operational and maintenance improvements.

4.3. The Method Framework

We have developed a digital twin architecture for an intelligent pumping station to
achieve precise operational control. This architecture, shown in Figure 10, consists of five
components: the physical pumping station, its digital twin, connection interfaces, twin
data, and an intelligent service layer. The physical station comprises the main plant, the
electromechanical equipment, and the regulating reservoirs. The digital twin accurately
reflects the actual production activities in the real world. The connection interface enables
bidirectional data exchange and integration between the physical and virtual worlds. The
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twin data act as a link between these worlds and aggregate operational and simulation
data, which are essential for predictive analysis. The intelligent service layer, which uses
time series decomposition (STL) and long short-term memory networks (LSTM), monitors
and analyzes key parameters such as carbon emissions, energy consumption, and water
demand. This leads to improved operational efficiency of the pumping station and reduces
energy consumption.
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Figure 10. Pumping station digital twin system architecture.

4.4. Modeling Development

In Section 4.2, the physical model data collection framework has been established,
with defined procedures for data collection. Following this, in Section 4.3, the digital
twin five-dimensional model architecture of the pumping station has been constructed
in accordance with the technical process. This section focuses on detailing the model
development process, encompassing key areas such as geometric model construction, data
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and model assembly and fusion, verification of consistency between the virtual and real
models, as well as the establishment of a digital twin operating system for the intelligent
pumping station based on the high-precision model. The development process of the
virtual model is shown in Figure 11.

C Virtual modeling

begins
|
i ‘ Determine the | 1 ! | Determine the material '
i geometry : i parameters ;
i i sensor ! i
i _ ) i equipment | . :
; Determine the location ‘ i P . Determine the i
i of components ! i connection parameters :
| : : |
i ‘ Geometric model ‘ : ) | Physical model | :
model
coupling
" .“
‘ Parameter changes | ;

]
]
I Performance changes | i

’ Behavioral model l

CVirtuaI modeling ends)

Figure 11. Virtual modeling development process.

(1) The geometric model of pump station (GMp)

In scenarios where CAD drawings are not available, the initial step in the modeling
process is to break down complex spatial data into fundamental components representing
“man, machine, material, method, and environment”. These detailed data are used to create
a geometric model of the building using specialized modeling software. The model is
designed to incorporate real-world project constraints and is developed with varying levels
of accuracy, as illustrated in the technology roadmap presented in Figure 12.

At the beginning of the workflow, building contours, roof lines, and wall surfaces
are first extracted from the aerial image or DOM data using digital photogrammetry.
This step lays the foundation for automatic building modeling. Subsequently, the texture
data captured by UAVs and ground photography are analyzed and processed to remove
obstacles such as angular distortions and occlusions and to ensure precise alighment with
the building models.

The method consists of extracting spatial object contours from topographic maps and
converting them into compatible formats for modeling software to enable the creation of
detailed models. The creation of 3D models is performed manually using organized photos
and additional data such as CAD and aerial imagery. These data are used to classify spatial
objects and construct models with varying degrees of precision.

The geometric model of the pumping station is created at multiple scales, and the
visualization model is divided into three levels: macro (S1), meso (S2), and micro (5S3).
At the macro level, the modeling includes the overall scene of the Xingshikou plant. The
meso level includes the representation of the mechanical and electrical equipment, such
as the main plant, starters, gates, high- and low-voltage rooms, etc. This level aims to
visualize and simulate the structure and operating conditions of the equipment of the water
conservancy project. The micro level includes the low-voltage distribution room, which
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consists of two sets of low-voltage power distributors, distribution boxes, and flow meters.
The high-voltage distribution room includes 14 high-voltage distribution cabinets and a
comprehensive DC protection cabinet. The frequency converter room contains four sets
of frequency converter cabinets, while the automation room houses automation control
cabinets. Finally, the central control room has, among other things, a command screen, as
shown in Figure 13.
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Figure 12. Buildings’ data extraction technology roadmap.
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Figure 13. Pumping station model.
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(2) The process dynamic model of pump station (PMp)

In the area of digital twin models for infrastructures, the focus goes beyond the analy-
sis of correlations between physical entities and system operations to include simulations
and optimizations of system behavior, performance, and maintenance approaches. Merging
and fusing multiscale models that encompass all elements means that unit-level models are
integrated into cohesive system-level representations, considering spatial and constraining
relationships while considering operational procedures, maintenance strategies, and envi-
ronmental impacts. The goal is to comprehensively simulate the performance of the entire
infrastructure system, considering not only the physical and mechanical aspects but also
the operational logic, environmental adaptability, and long-term maintenance aspects. An
effective fusion of models should enable predictive analysis under different scenarios and
support the formulation of scientific and sustainable management strategies.

By integrating data from different sources of the pumping station using the previously
discussed data collection and fusion methods, we combined different types of data, in-
cluding basic data, business data, and heterogeneous data. To improve the speed of scene
visualization and enable real-time interaction, we implemented the display of details in
different resolutions and perspectives. The Water Authority’s electromechanical devices,
such as pumps and sluices, are stored in either .max or .ifc format to support streaming
and rendering of complicated model data. This format provides a dynamic representation
of the spatial location and operational status of the devices, as can be seen in Figure 14,
which shows a highly detailed model of a water pump.

Figure 14. (a) Real pumps; (b) high-precision pumping station.

(3) Model Verification

Consistency checking in digital twin modeling is critical to ensure consistency between
the physical entity and its digital representation in four dimensions: geometric, physical,
behavioral, and rule-based.

Geometric dimension: Precise measurement techniques such as laser scanning and
photogrammetry are used to obtain geometric structural data. These data are then com-
pared with the modeled data using tolerance analysis to confirm geometric consistency.

Physical dimension: During validation, the measured data are compared with the
model predictions to confirm the accuracy of the physical model.

Behavioral dimension: Simulation of system operation using time or state diagrams is
used to verify the model’s accurate representation of system behavior.

Rule dimension: Comparison of the system response predicted by the model with the
actual operational responses to validate the rule-based modeling.

(4) The decision model of pump station (DMp) and results visualization

In this study, we have developed simulation models that focus on the virtual model
and twin data to enable a thorough monitoring of pumping station energy consumption and
carbon emissions. With the help of these models, the operational processes of the pumping
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station can be precisely monitored and analyzed with regard to energy consumption and
carbon emissions. The digital twin system platform plays a crucial role in providing early
warning scheduling for carbon emissions and predicting future outcomes, as demonstrated
in Figure 15. This system is an essential tool for enhancing the accuracy of tracking and
analyzing energy usage and carbon emissions within the pumping station operations.

Rehearsal scheduling

C—

Figure 15. The digital twin system platform.

4.5. Analysis and Results

Through an in-depth analysis of this case, we have improved our comprehension
of the challenges faced by digital twins in complex infrastructure projects and identified
effective strategies to address them.

A major challenge encountered in constructing the digital twin model of a pumping
station is the integration of diverse data from multiple sources. The data required for
pumping station operation include design data, real-time sensor data, maintenance logs,
and other forms of information. These datasets vary in format, time granularity, and
semantic interpretation. To address this issue, a seamless integration of the disparate data
was achieved through the establishment of data standards and the execution of a unified
data preprocessing process.

Another significant challenge lies in accurately replicating the behavioral logic of
the pumping station in digital space due to it being a dynamic and complex process
system. To address this challenge, our approach involved a comprehensive utilization
of the theory of the digital twin five-dimensional model. This enabled us to establish a
real-time mapping between the physical entity and the virtual model by leveraging various
data and connection methods. The development of a physical entity-based model enabled
us to realistically simulate the operational behavior of the pumping station. Additionally,
we utilized data-based connections to analyze historical operational data patterns and
forecast potential anomalies. Integration of both these approaches in the digital twin model
effectively enables the depiction of the pumping station’s overall operational status with a
high level of precision.

Through the operation and tuning of the digital twin model, we have successfully
completed the automatic inspection of the robot and conducted a detailed analysis of
the optimization space of the pumping station across various dimensions such as energy
efficiency, carbon emissions, and operation and maintenance costs. One example of this
is the integration of the twin model with the inspection robot simulation path, which
facilitated the achievement of 100% automated inspection and resulted in a 75% decrease
in inspection time. Consequently, significant cost reductions were achieved through the
elimination of the necessity for eight operators, leading to a reduction in operational costs
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of approximately RMB 2.25 million. Furthermore, the implementation of model-based
scheduling and optimization facilitates automatic alarms and protection mechanisms,
thereby enhancing scheduling stability by around threefold. These tangible economic
benefits underscore the practical advantages brought about by the utilization of digital
twin technology.

The successful implementation of this case provides valuable insights for advanc-
ing high-precision digital twin technology in similar complex infrastructure projects in
the future.

(1) Standardization of modeling process: By documenting the standardized modeling
process and best practices in this case, it can serve as a guide for future projects,
thereby enhancing modeling efficiency.

(2) Migration of modeling methodology: The modeling methodology and key technolo-
gies employed in the development of the five-dimensional model can be adapted not
only to pumping stations but also to other process-oriented infrastructure sectors such
as hydropower stations and petrochemical pipeline networks.

(8) Cross-system and cross-domain model integration: Going forward, there is potential
for exploring the integration of digital twin models across different systems and
domains to support higher-level decision-making processes.

(4) Integration of emerging technologies: By incorporating emerging technologies such
as artificial intelligence, Internet of Things, and 5G, the digital twin model can further
improve its applicability, intelligence, and responsiveness.

5. Conclusions

This paper aims to establish a standardized process for constructing a precise and
comprehensive digital twin model in the infrastructure field, in order to facilitate the
seamless integration of virtual and actual environments. The foundation for this inte-
gration lies in the development of the digital twin model that authentically mirrors the
real world. Although certain standards and technologies support the creation of such
twin models, research in the field of infrastructure-specific digital twin is still relatively
nascent. The standardization process proposed in this paper seeks to enhance the precision
of these models.

This study has thoroughly examined the process of precise digital twin modeling,
leading to the development of a comprehensive set of standards for creating models
and a technical framework. Expanding on the foundation established, this study has
utilized a particular modeling methodology for an intelligent pumping station project,
showcasing accurate model development and offering significant insights. Consequently,
this application functions as a valuable resource for further exploring and comprehending
the methods and theories of constructing digital twin models in the infrastructure sector.
This research provides a practical framework for infrastructure projects intending to deploy
digital twin technologies, contributing to the growing body of knowledge in this field. It
emphasizes the significance of accurate modeling and standardization in enhancing the
capabilities and applications of digital twin technology in infrastructure management and
operations. The goal is to connect the virtual and physical realms. Therefore, the results
emphasize the significance of these elements in promoting the development of digital twin
solutions for infrastructure projects.

Some limitations do exist in this study, which opens up avenues for future research endeavors:

First, despite our efforts to attain high accuracy, the intrinsic complexity and variability
of infrastructure systems pose challenges for a single digital twin model to capture all
nuances precisely. Future work should explore model fusion techniques, integrating
multiple digital twin sub-models with varying resolutions and foci to provide a more
comprehensive representation of intricate systems.

Secondly, our current model primarily focuses on static modeling, with limited capabil-
ities in simulating dynamic behaviors. Leveraging emerging technologies such as artificial



Buildings 2024, 14, 863 20 of 22

intelligence is a promising direction to enhance the model’s simulation and prediction
abilities for complex dynamic processes.

Lastly, this work concentrates on digital twin modeling for individual infrastructure
systems, lacking extension to broader complex systems such as smart cities and intelligent
transportation. Future research should investigate the scalability and application of digital
twin models at system-level and global-level scales.
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