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Abstract: Recent Italian earthquakes have underlined the need for wide monitoring and 

safety assessment of architectonical heritage. This has emerged also from requirements of 

the new Italian Technical Recommendations for buildings. Within this subject the paper 

investigates the seismic vulnerability of a specific monumental masonry building: the 

Vicarious Palace (Palazzo del Vicario) in Pescia, a small town near Florence. The 

structural behavior of the Palace was investigated using a finite element model in which the 

non-linearities of the masonry were considered by proper constitutive assumptions. The 

seismic behavior was evaluated by the pushover method, according to the Italian Technical 

Recommendations. The results were compared with the ones obtained by a simplified 

approach based on the kinematic theorem of limit analysis. Comparisons of the expected 

seismic demand vs the seismic capacity of the Palace confirm the weakness of this type of 

building to suffer extensive damage under earthquakes, as frequently observed in similar 

construction typologies. Additionally, the comprehension of the structural behavior under 

seismic loading allows the identification of a proper retrofitting strategy. 

Keywords: historic masonry buildings; seismic vulnerability; finite element modeling; 

nonlinear analysis; pushover analysis 
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1. Introduction 

The Italian earthquakes of Umbria and Marche in 1997 [1] and Abruzzo in 2009 [2], have 

highlighted the need for an extensive monitoring and safety assessment of historic Italian construction 

heritage. Following the debate developed in the scientific community, new Italian Technical 

Recommendations for buildings have been drawn up: first after 2003 [3,4] and later, after 2008 [5,6]. 

As is known, ancient masonry buildings, although perfectly able to bear vertical loads, usually are not 

adequate to sustain the horizontal forces produced by earthquakes. So, they are particularly prone to 

severe damage under seismic loading. In addition, historic built heritage represents an economic 

concern especially in contexts where tourism has become one of the major sources of wealth. 

Therefore, preserving historic constructions is a cultural requirement and an economic and 

developmental demand [7]. 

The structural analysis of a new masonry building is a relatively simple task, whereas the 

assessment of the seismic vulnerability of an ancient masonry building is a challenging task, because 

of several uncertainties affecting the geometrical and the mechanical characteristics of the structural 

elements [8]. Each masonry building is characterized by its own history and the actual configuration is 

the result of fusions, additions and replacements of many structural elements. Thus, a correct structural 

analysis of an historic building requires a deep knowledge of: (a) the building history and its evolution; 

(b) the geometry; (c) the structural details; (d) the cracking pattern and the damage map; and (e) the 

masonry construction techniques [9,10]. 

The characterization of the material properties is required to develop a proper structural analysis. 

This knowledge can be achieved combining in-situ and laboratory experimental tests. Due to the 

difficulties in obtaining all information to be used for a proper definition of a numerical model, in 

some cases it is necessary to perform simplified, often iterative, procedures for evaluation of the static 

and the seismic reliability. Hence, the structural engineers should be able to address the relevant 

aspects of the problem and provide guidance in analyses and experiments [11]. 

Maintenance of historic buildings has become a relevant scientific issue that has attracted the 

interest of researchers all over the world as demonstrated by the growing number of researches 

presented in recent decades. These studies represent a wide state-of-the-art of the engineering approach 

for evaluation of safety of historic buildings. Among the various researches in this field there is the 

work of Lourenço et al. [12]. The authors discuss the case of the Monastery of Jerónimos in Lisbon 

(Portugal) and show that it is possible to understand the behavior and the damage of a complex historic 

construction providing valuable information in designing in-situ tests and monitoring. The relevance of 

proper numerical strategies has been pointed out by Cardoso et al. [13,14]. These authors discuss the 

aseismic provisions included in old masonry buildings in downtown Lisbon, after the Lisbon 

earthquake in 1755. They propose an iterative method for the seismic assessment in which the damage 

to the structural elements or connections is identified and the stiffness of the structural model is 

changed accordingly. Each iteration comprises a linear elastic analysis, so the procedure is useful for 

current design practice. Betti and Vignoli [15] discussed the seismic vulnerability of the Basilica of 

Santa Maria of Impruneta (Italy), and proposed the combination of a finite element model of the 

building with a simplified approach based on the kinematic theorem of limit analysis. The results 

suggest that the comparison between different techniques of analysis is mandatory to cover the 



Buildings 2012, 2 65 

 

 

unknowns affecting the mechanic properties of the materials. Relevance of a wide spread analysis 

approach has been pointed out also by Mallardo et al. [16]. The authors discuss the seismic behavior of 

a Renaissance Palace in Ferrara (Italy). Firstly, a 3D nonlinear model of the Palace is considered in 

order to understand the large-scale structural performance. Next, a detailed study of the main façade of 

the Palace is presented, by means of three reduced 2D nonlinear models. The authors show that the use 

of different modeling strategies allows a critical evaluation of the seismic vulnerability of the main 

elements. An integrated multilevel approach that combines laboratory and non-destructive testing 

methods with monitoring systems has been recently presented by Anzani et al. [17] to evaluate the 

state of conservation of historic structures. They discussed the cases of some damaged towers in Italy 

and suggested an investigation procedure to be adopted for safety assessment of historic towers. 

This paper presents an evaluation of the seismic vulnerability of the Vicarious Palace (Palazzo del 

Vicario) in Pescia, a small town near Florence. In the first part, the geometrical and mechanical 

descriptions of the building are presented, together with a brief report of its history. Then, the seismic 

assessment approach is illustrated. 

Firstly, a structural analysis of the Palace was made using a finite element model. Specific 

assumptions of the material properties and the nonlinear behavior of the masonry were considered. 

Static analysis under vertical loads (dead and live loads), and pushover analyses were performed, 

according to the Italian Technical Recommendations [3,4]. Next, a simplified approach based on the 

kinematic theorem of limit analysis was applied. With reference to the failure mechanisms activated in 

similar buildings during past earthquakes [18,19], some macro-elements were individuated  

and analyzed. 

The results provide a description of the building response under seismic loading and offer a 

representative case which is fruitful in extending the comprehension of the structural behavior of this  

building typology. 

2. The Vicarious Palace in Pescia 

2.1. Historic Notes 

The Vicarious Palace is located in the main square (Piazza Mazzini) of the city of Pescia. Figure 1a 

shows the front view of the building. The research started with the analysis of historic data. The 

material was found in the archive of the Ministry Institution for Environmental and Architectural 

Heritage of Florence, Prato and Pistoia (the institution employed to preserve the cultural heritage in the 

Florence metropolitan area).  

The original structure of the Palace dates back to the twelfth or thirteenth century, when the Holy 

Roman Emperor Frederick II of Swabia (Jesi, Italy, 1194–Fiorentino di Puglia, Italy, 1250) created the 

institution of the Imperial Vicar, a prince charged with administering part of the Holy Roman Empire 

on behalf of the Emperor. Soon after its construction the Palace was used for the administrative control 

of territory and for residence of the local governor. Thus, the history of the Palace intersects with the 

local history of the city.  

Along the centuries the Palace was subjected to several modifications. Some of them were aimed at 

renewing the building according to the necessities of the time, such as changes in shape, in number of 



Buildings 2012, 2 66 

 

 

levels, etc., other interventions were aimed at retrofitting the building. In the middle of the fourteenth 

century a new level was added, so the Palace became a three storey building [20,21]. 

A further level was added during retrofitting started in 1617, so the Palace then became a four 

storey building [22]; at the same time a new portico was added. This configuration of the Palace 

remained almost unchanged until the early years of the twentieth century (Figure 1b) when the 

building was subject to the final modifications. In the thirties of the twentieth century the original 

medieval configuration of the Palace was reconstructed, according to the propagandistic styles of 

Fascism to celebrate the history of Italy. So, the fourth floor was eliminated and the portico was 

demolished [21]. Interested readers can refer to [20–22] for more details. 

Figure 1. (a) The Vicarious Palace as is today; (b) the Vicarious Palace at the beginning of 

XX century. 

  
(a)                                                                        (b) 

2.2. Geometrical and Material Data 

The plan layout of the ground floor of the Palace is reported in Figure 2. It is possible to recognize 

the original medieval square nucleus, delimited by the walls indicated with AB, BC, CD and DA, 

whose dimensions are about 18 m × 15 m. In particular, the wall CD probably corresponded to the 

main city walls [20]. This square ground floor was an open space (as a loggia) used for public 

administrative activities. The adjoining walls EE, EF and FF were added during the last intervention in 

the thirties of the last century. The actual height of the Palace, after the demolition of the fourth storey, 

is about 17 m as reported in the section represented in Figure 3. The horizontal structures of the first 

floor are made of masonry vaults, while the upper floors and the roof are timber structures. Views of 

the main façades of the building are reported in Figures 4, 5 and 6. 

Vicarious Palace 
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Figure 2. Plan layout of the ground floor (ABCD is the original medieval square nucleus; 

EE-FF is a twentieth century addition). 
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Figure 3. Section A-A of the Palace. 
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Figure 4. View of the Southern façade.  
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Figure 5. View of the Western façade. 

 

Figure 6. View of the Eastern façade. 
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The walls of the oldest nucleus at the first level are stone masonry walls (local sandstone) and have 

a thickness of about 1 m. The walls of the upper levels are built with bricks and their thickness 

decreases as the level increases. Masonry was also used for the construction of the walls of the 

twentieth century addition. A specific plan of in-situ tests to assess the mechanical properties of the 

masonries was not possible in this case. Hence, the strength and deformability of the walls were 

evaluated considering the Technical Recommendations [3,6] and the results of in-situ and laboratory 

tests on similar masonry materials [23,24], see Table 1. These parameters are conservative estimations 

of the average values for existing buildings. 

Table 1. Mechanical parameters of the masonries. 

  Stone walls Brick walls 

  (kN/m3) Specific weight 21 18 

fm (N/mm2) Compressive strength 2.5 3.0 

ft (N/mm2) Tensile strength 0.12 0.12 

τ0 (N/mm2) Shear strength 0.093 0.100 

E (N/mm2) Longitudinal elastic modulus 1740 2100 

G (N/mm2) Tangential elastic modulus 290 350 

 (-) Poisson coefficient 0.2 0.2 

3. Finite Element Model 

The structural analysis of the Palace was approached by a 3D finite element model based on the 

concepts of homogenized material and smeared crack modeling using the ANSYS code v.11.0 [25]. The 

masonry walls were discretized with Solid65 elements (isoparametric three-dimensional eight node 

elements), whereas the ground floor vaults were discretized with Shell63 elements (isoparametric  

two-dimensional four node elements). The wooden floors and timber roof were not considered  

in the model and their own weights were applied on the bearing walls by means of vertical  

concentrated loads. 

An in-situ survey of the building was made to accurately reproduce the geometry, the structural 

details and the irregularities of the Palace. This investigation consisted of a geometrical relief aimed at 

characterizing the masonry texture and to check up the quality of wall-to-wall, wall-to-floors and  

wall-to-roof connections. The 3D model is represented in Figure 7. It consists of 37,402 nodes, 36,557 

Solid65 elements and 813 Shell63 elements, corresponding to 108,399 DOFs.  

The nonlinear behavior of the masonry was represented by combining plasticity with a smeared 

crack approach. The perfectly-elastic plastic behavior with the Drucker-Prager (DP) yield surface was 

used to reproduce the plasticity properties, whereas the Willam-Warnke (WW) failure surface was 

considered for model crush and cracking [26].  

Both DP and WW models were been extensively used to simulate the inelastic behavior of masonry. 

Discussing the homogenization approach for masonry, Zucchini and Lourenco [27] adopted the DP 

model to simulate the plastic deformation in masonry cells. They showed that it is possible to account 

for degradation of masonry mechanical properties in compression. Cerioni et al. [28] adopted the DP 

criterion to investigate the seismic behavior of the Parma Cathedral Bell-Tower. The WW criterion 

was used by Adam et al. [29] for model cracking and crushing capabilities of masonry materials; 
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comparison between numerical and experimental results shows good agreement. Chiostrini et al. [23] 

combined the DP and the WW criteria to reproduce the results of several diagonal tests on masonry 

specimens, obtaining good agreement with experimental values. Betti and Vignoli combine the DP and 

the WW criteria to discuss the seismic vulnerability of a masonry church [15,30]. 

Figure 7. Finite element model of the Vicarious Palace.  

 

 

The cohesion c and the internal friction angle φ are the two material parameters required to define 

the DP yield surface. The Willam-Warnke (WW) failure surface is defined by two material constants, 

i.e. the uniaxial compressive strength fcWW and the uniaxial tensile strength ftWW of the masonry. A 

proper selection of these values allows the introduction of a cut-off to the tensile strength and an upper 

limit to the biaxial compressive strength. So, the model reproduces effectively the small tensile 

strength of the masonry, the plasticity behavior in regime of average compression and the crushing 

phenomenon for high compressive stresses. Table 2 collates the values of the nonlinear 

material parameters. 

Table 2. Constitutive parameters of the masonries adopted for nonlinear FEM analyses 

(DP = plasticity criterion and WW = failure surface). 

DP yield surface 

c (N/mm2) Cohesion 0.09  

φ (°) Friction angle 38° 

 (°) Dilatancy angle 15° 

WW failure surface 

fcWW (N/mm2) Uniaxial compressive strength 4.00  

ftWW (N/mm2) Uniaxial tensile strength 0.12  

βc (-) Shear transfer coefficient for closed cracks 0.75 

βt (-) Shear transfer coefficient for open cracks 0.25 

Firstly, the 3D model was used to evaluate the stresses in the masonry walls produced by the 

vertical loads i.e.,: the dead weights, the live floor loads (2.0 kN/m2) and the snow load on the roof  

(1.1 kN/m2). The whole structure was analyzed in the nonlinear range to identify the weak points of 

possible failure, assuming fixed base restraint conditions. 
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Results in terms of vertical stresses are reported in Figures 8 and 9. The average compressive stress 

at the base of the walls is about 0.5 N/mm2 with small tensile stresses located on the top surface of the 

walls. These tensile stresses are produced by the local numerical effect depending on the concentrated 

loads of the roof. The maximum compressive stress (about 1.7 N/mm2) is reached in a column close to 

an arch opening in the internal wall (Figure 9). Even if this value is high it is much less than the 

crushing limit of the masonry (local sandstone). Results of the analysis illustrate that the Palace is 

adequate to withstand the vertical loads under exercise conditions. This is a common result for this 

typology of buildings designed by skilled manufacturers. 

Figure 8. Static analysis: vertical compressive stresses (units are kN/m2). 
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Figure 9. Static analysis: vertical compressive stresses, detail of the internal wall  

(units are kN/m2). 
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4. Seismic Analysis 

4.1. Kinematic Analysis 

The main assumptions of the kinematic method are: (a) masonry is a no-tension material (although 

this hypothesis may be considered conservative, only very small tension forces are transferred across 
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the mortar joints); (b) masonry has infinite compressive strength (this hypothesis is not conservative, 

but in most cases collapse of masonry is due to cracks opening rather than to compression failure); and 

(c) structures are considered as assemblages of macro-elements (rigid bodies). The assessment of these 

macro-elements is based on structural geometry, shape (i.e., whole façades), details (i.e., the quality of 

existing connections between walls), and by examining collapses and damages consequent to past 

earthquakes in similar buildings [11,31]. 

Each allowable mechanism has a single degree of freedom and it is characterized by the formation 

of linear hinges among the single macro-elements. The seismic loads are assumed to be static 

horizontal forces amplified by a kinematic multiplier ; the gravity loads are stabilization forces. 

Given an allowable mechanism, the corresponding kinematic multiplier at collapse 0 is evaluated by 

the Virtual Work Theorem (V.W.T.). 

The mechanisms considered in this study concern partial and global overturns of the main façades, 

and the collapse multipliers 0 are evaluated according to Eq. (1) (see the general scheme reported in 

Figure 10; A, B, C and D identify different mechanisms): 
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Figure 10. Out-of-plane mechanisms; Pi are the vault or the floor vertical loads;  

Wi are the own weights of the walls; 0Pi and 0Wi are the seismic loads. 
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In Equation (1) Wi are the dead weights of the elements involved in the mechanism; Pi are the 

weights transmitted at the selected macro-element by vault, floors or roof; δxi are the horizontal virtual 

displacements of the points of application of Wi and Pi; δyi are the vertical virtual displacements of the 

points of application of Wi and Pi; Q is the static drift of the vault; δxq is the corresponding horizontal 

virtual displacement and Lfi is the virtual work of the internal forces, here assumed equal to zero. After 

the evaluation of the collapse multiplier 0, the corresponding seismic spectral acceleration a0
* is  

given by: 
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where M* is the effective participating mass and g is the gravity acceleration. According to [3] the 

analyzed mechanism will not be possible under design earthquake if: 
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where agS is the design elastic spectral acceleration at T = 0, q is the behavior factor (assumed equal to 

2.0), Z is the height to the ground of the linear hinge of the mechanism and H is the total height of the 

façade. Each macro-element, i.e., each masonry façade, was analyzed considering first the overturning 

of the last floor only (the fourth floor, case A), then the overturning of the fourth and the third floor 

(case B), until in the last case where the overturning of the whole façade was analyzed (case D). The 

results are summarized in Table 3. The more vulnerable walls are the DA, the AH and the HB in which 

the vulnerability indexes a1
*/a0

* are higher. In all cases the overturning minimum collapse  

multipliers are obtained when the whole façade mechanism is considered; this suggests proper  

strengthening techniques. 

Table 3. Vulnerability indexes obtained with kinematic analysis (0 = collapse multipliers; 

a0
*= seismic spectral accelerations corresponding to 0; a1

*= seismic spectral accelerations 

demanded for ultimate limit state). 

WALL Mechanism 0 
a0

* 

(m/s2) 

a1
* 

(m/s2) 

*
0

*
1 aa  Check (a0

*≥ a1
*) 

1-DA A 0.48 4.75 2.62 0.55 YES 

 B 0.08 0.78 1.99 2.55 NO 

 C 0.06 0.60 1.62 2.70 NO 

 D 0.03 0.33 1.10 3.33 NO 

2a-AH A 0.36 3.52 2.60 0.74 YES 

 B 0.09 0.84 2.01 2.39 NO 

 C 0.06 0.56 1.58 2.82 NO 

 D 0.03 0.27 1.10 4.07 NO 
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Table 3. Cont. 

WALL Mechanism 0 
a0

* 

(m/s2) 

a1
* 

(m/s2) 

*
0

*
1 aa  Check (a0

*≥ a1
*) 

2b-HB A 0.08 0.81 2.37 2.93 NO 

 B 0.06 0.62 1.94 3.13 NO 

 C 0.05 0.49 1.53 3.12 NO 

 D 0.04 0.36 1.10 3.06 NO 

3a-DG A 0.44 4.32 2.60 0.60 YES 

 B 0.11 1.12 2.02 1.80 NO 

 C 0.08 0.83 1.60 1.93 NO 

 D 0.05 0.47 1.10 2.34 NO 

3b-GC A 0.15 1.49 2.46 1.65 NO 

 B 0.12 1.13 2.00 1.77 NO 

 C 0.09 0.91 1.55 1.70 NO 

 D 0.08 0.83 1.10 1.33 NO 

4-BC A 0.22 2.14 2.46 1.15 NO 

 B 0.10 1.00 2.05 2.05 NO 

 C 0.07 0.70 1.55 2.21 NO 

 D 0.07 0.70 1.10 1.57 NO 

4.2. Pushover Analysis 

The seismic behavior of the Palace was also investigated by a non linear static analysis. The FE 

model was subject to constant gravity loads and, subsequently, to monotonically increasing horizontal 

forces (pushover analysis [32,33]). Specifically, the effects of the seismic action were evaluated by 

applying two systems of horizontal forces, not acting simultaneously, perpendicular to one another. 

The distribution of these forces is directly proportional to the masses by the displacements of the first 

modal shape in the pertinent direction (modal load). 

Soon after its introduction in the late seventies, the pushover analysis became very attractive in 

earthquake engineering due to its relative simplicity (e.g., it requires quite simple material models, 

which do not account for progressive damage accumulation) and its reduced computational effort, 

compared with nonlinear dynamic analysis. Nevertheless, the method is not devoid of disadvantages 

and critical points, as highlighted by the scientific community. A comprehensive review of criticisms, 

advantages and disadvantages, together with the theoretical basis of the method, is reported in [34,35]. 

In this study a conventional pushover is performed, i.e., distribution of the horizontal forces does not 

change with progressive structural degradation occurring during an earthquake. This means that the 

analysis does not account for the progressive changes in modal frequencies due to crushing and 

cracking phenomena. This is a critical point for the application of conventional pushover to historic 

masonry buildings, because it is predictable that damaging of the building leads to a period elongation. 

Therefore, different spectral amplifications and modal load distributions should be considered [36,37]. 

The hypothesis of invariance of the distribution of the horizontal loads could cause an overestimation 

of the building seismic capacity, especially when non uniform damage or high level of cracking are 

expected. Yet, also in its conventional form pushover provides an efficient alternative method to 



Buildings 2012, 2 76 

 

 

expensive computational inelastic dynamic analyses and offers effective information on the  

damage state.  

Results of pushover analysis in terms of displacements and crack and crushing patterns are reported 

in Figures 11 to 14. Figures 11 and 12 report the final configuration of the Palace for seismic loading 

acting in the transversal direction (+X and –X). In both cases there is a remarkable  

out-of-plane deformation of the wall AH, that confirms the results obtained with the kinematic 

analysis. Figures 13 and 14 show the Palace configuration for seismic loading acting in the 

longitudinal direction (+Y and –Y). Again it is possible to find a good agreement in terms of failure 

process between pushover and kinematic analysis, both confirming the overturning of the wall DA.  

Figure 11. Pushover analysis results (+X direction): (a), (b), (c) and (d) horizontal 

displacement in X direction (units are m). 
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Figure 12. Pushover analysis results (–X direction): (a), (b), (d), (e) and (f) horizontal 

displacement in X direction (units are m), (c) final cracking and crushing patterns.  
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Figure 13. Pushover analysis results (+Y direction): (a), (b) and (d) horizontal 

displacement in Y direction (units are m), (c) final cracking and crushing patterns. 
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Figure 14. Pushover analysis results (−Y direction): (a), (b), (d), (e) and (f) horizontal 

displacement in Y direction (units are m), (c) final cracking and crushing patterns. 
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In case of seismic loading acting in the transversal direction (+X and –X) the analyses stop at a 

horizontal load corresponding to about 28–30% of the overall weight of the Palace; in case of seismic 

loading acting in the longitudinal direction (+Y and –Y) the analyses stop at a horizontal load 

corresponding to about 35–37% of the overall weight of the Palace.  

Results obtained by analyses agree well with those obtained by the macro-element approach. The 

vulnerability of the Palace is mostly due to the absence of adequate connections between the opposite 

walls of the building due to the typology of the floors and the roof made of wooden beams. This has 

been already highlighted by other authors [38]. Absence of effective connections between structural 

components leads to overturning collapses of the perimeter walls under seismic loading due to the lack 

of box-behavior. Results suggest a proper strategy to improve the strength of the Palace against 

horizontal loads. A traditional retrofitting by means of steel chains and the creation of effective 

connections between wooden floors and masonry walls will prevent overturning of the  

façades [39]. 

5. Concluding Remarks 

The paper has presented a multidisciplinary approach for structural analysis of historic buildings. 

Engineers involved in the study of monumental heritage are frequently asked to cover a great number 
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of unknowns (materials properties, structural geometry, connections between structural and  

non-structural elements, stiffness of the horizontal diaphragms, existing damages, etc.). The 

combination of simple but not computationally expensive instruments (e.g., kinematic method) with 

more sophisticate ones (e.g., finite element approach) can offer proper indications for a subsequent  

in-situ investigation and for preliminary retrofitting solutions. The study on the Vicarious Palace in 

Pescia leads to the following conclusions. The static analysis confirms that the structural configuration 

of the Palace is adequate to withstand the vertical loads, as is usual for historic masonry buildings. The 

seismic analysis was approached by combining a global pushover analysis with a simplified approach 

based on the kinematic method. Results of the two types of analysis suggest that the more vulnerable 

parts of the Palace are the walls corresponding to the Southern and the Western façades. Overall, the 

study offers a screening of the most vulnerable elements of the Palace, suggesting that retrofitting 

should be planned to improve the connection between macro-elements by means of traditional 

techniques such as steel chains. Furthermore, connections between wooden floors and masonry walls 

should be also provided. 
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