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Abstract: The selection of a given method for the seismic vulnerability assessment of buildings is
mostly dependent on the scale of the analysis. Results obtained in large-scale studies are usually
less accurate than the ones obtained in small-scale studies. In this paper a study about the feasibility
of using Artificial Neural Networks (ANNSs) to carry out fast and accurate large-scale seismic
vulnerability studies has been presented. In the proposed approach, an ANN was used to obtain a
simplified capacity curve of a building typology, in order to use the N2 method to assess the structural
seismic behaviour, as presented in the Annex B of the Eurocode 8. Aiming to study the accuracy of
the proposed approach, two ANNs with equal architectures were trained with a different number
of vectors, trying to evaluate the ANN capacity to achieve good results in domains of the problem
which are not well represented by the training vectors. The case study presented in this work allowed
the conclusion that the ANN precision is very dependent on the amount of data used to train the
ANN and demonstrated that it is possible to use ANN to obtain simplified capacity curves for seismic
assessment purposes with high precision.
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1. Introduction

There are many methods used for the seismic vulnerability assessment of buildings. These
methods can be classified as empirical, analytical/mechanical or hybrid methods [1] and present
different levels of accuracy, being the analytical/mechanical methods the most accurate and the
empirical the less ones. The selection of a given method is mostly dependent on the scale of the
analysis and on the knowledge level about the building’s characteristics. If the study is carried out at
a building scale (just one single structure) and there is a full knowledge about the geometry, details
and materials, it is possible to carry out a very precise seismic analysis, namely using a nonlinear
method, which obviously will increase the reliability of the obtained results. However, at urban scale
(one city or part of it), or at regional scale (a set of cities), or even at global scale (a country or even
a continent), it is almost impossible to adopt the same detailed approach, so it is frequent to adopt
empirical methods which are based on the damage observed after earthquakes, which normally exhibit
a high dispersion level. It is obvious that the volume of data that is necessary to collect and the
computational effort necessary to process the amount of data is not equal for all the aforementioned
scales. This fact implies that the results obtained in large-scale studies are normally less accurate than
those obtained in small-scale studies. For this reason, buildings are usually categorized in several
different typologies, for example depending on the age of the construction or on the building materials
and structural system and a mean seismic structural behaviour is usually considered for the buildings
of a given typology.

A considerable amount of research has been carried out in the last decades on trying to improve
the precision of the seismic vulnerability assessment results for large-scale studies. There are
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many computer programs developed to carry out seismic risk analysis using empirical and/or
analytical/mechanical methods, such as the software HAZUS-MH [2] or the software ELER [3],
which are examples of computer programs developed to allow to perform large-scale studies, namely
supporting different levels of accuracy.

There are also other hybrid approaches to the problem and some of them have adopted methods
and techniques of the so-called Artificial Intelligence (Al), such as Artificial Neural Networks (ANNs),
which are computational approaches that try to imitate the brain.

Nowadays ANNs have been used for solving a variety of problems, such as visual recognition,
speech recognition and natural language processing, so general public is familiar to the capabilities of
modern ANNSs in their daily life, even though not understanding how it works, because modern cars
may also use ANNSs in software for traffic sign recognition [4].

For these reasons, modern ANN capabilities may be an important help in solving many complex
problems of earthquake engineering, which feasibility should be investigated.

The use of ANNSs applied to civil engineering problems is not a new subject [5], nor their use
in the development of computer software for seismic risk assessment [6], using these less traditional
techniques within the scope of earthquake engineering, with the aim of trying to improve the reliability
of the results.

In the last decades, several studies have been published for structural behaviour evaluation using
neural networks, namely for earthquake engineering applications. ANNSs have been used to predict the
linear [7] and the nonlinear [8,9] dynamic responses of structures subject to earthquakes for damage
assessment [10-13], namely using fragility curves [14,15], or for seismic reliability assessment [16,17].
A Monte Carlo simulation technique was also adopted for generating data used for training ANNSs [18].

Traditional seismic vulnerability assessment methods that use a mean capacity curve (which is
representative of a given structural typology) for estimating seismic vulnerability and earthquake
damage have some problems in the structural performance evaluation of an individual building.
The main reason is related to the dispersion of values around the mean curve. The real capacity curve
of a given building will probably be different from the typological mean capacity curve. This means that
the average result of a typical typological capacity curve can lead to overestimating or underestimating
the real seismic damage, depending on the studied building.

In this work, a study about the feasibility of using Multi-layer Feed-Forward Neural Network
(MFFNN) to obtain a simplified capacity curve of a given building typology is presented, trying to
reduce the results dispersion normally associated to the use of a mean typological capacity curve.
The ANNs were previously trained with the results of the nonlinear analysis carried out for several
structures of a given typology. A sensitivity analysis was carried out to understand the effect of the
number of training vectors in the results precision by comparing the results of an analysis of variance
(ANOVA) applied to the outputs of two different ANNs.

Seismic structural performance point (the interception between the demand nonlinear response
spectrum and the capacity curve of the structure) for a given seismic action can be obtained using the
N2 method [19]. This is a very simple and fast method for seismic nonlinear static (pushover) global
analysis, that is presented in the Annex B of the Eurocode 8 (EC8) [20] to find the target displacement
dy (corresponding to the EC8 performance point). The results obtained in this work indicate that the
combination of the N2 method with a simplified capacity curve obtained from an ANN allows fast
structural seismic performance evaluation on large-scale studies, with an accuracy level of the results
much closer to the obtained in a study carried out at a building scale (by minimizing the dispersion
values) than the ones obtained with a mean typological capacity curve.

The obtained results open the path for the development of more complex ANN architectures and
considering much more input variables.
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2. Simplified Capacity Curves and the N2 Method

According to the N2 method, the first step to compute the performance point of a given structure
is to obtain a simplified equivalent elastic-perfectly plastic capacity curve of a one degree of freedom
dynamic system. In this work, the simplified capacity curve was obtained so that the linear branch
corresponds to the one associated to the maximum base shear force (Figure 1).

Original capacity curve

Simplified capacity curve

é s S
dy’ dn’ du’

Figure 1. Original and simplified adopted capacity curve.

The stiffness ky, , force F,” and the displacement d,,, as presented in Figure 1, can be determined
throughout the following equations:
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being E,” the total area limited by the original capacity curve until the ultimate displacement d,,”
(which is equal to the total area limited by the simplified capacity curve) and E,," the area limited by
the original capacity curve until the displacement d,;, .

After the determination of the simplified capacity curve, the performance point can be obtained
using the procedure presented in the Annex B of the EC8 [20].

3. Artificial Neural Networks and Capacity Curves

Software development for fast structural vulnerability assessment is very important for civil
protection purposes. This type of software allows mapping the buildings where damage is likely to
occur. The computer strategy proposed in this study is to use the mapping capabilities of the ANN
to improve the speed and the accuracy of the seismic vulnerability assessment of many buildings.
The idea is to use several easy to measure building characteristics to obtain the simplified building
capacity curve of a given typology.
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ANN s are techniques inspired in biological systems, which have generalization capabilities,
so they can be used in structural analysis problems that obey to certain rules (that can be unknown),
which are learned during the ANN training process [21].

There are many different types of ANNSs. In this work, a general MFFNN is proposed to obtain
the parameters of a simplified capacity curve (Figure 2), which is previously trained with the error
back-propagation algorithm.
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Figure 2. General proposal of a MFFNN used to obtain the building simplified capacity curve.

Previous studies have shown that this type of ANN has good capabilities to capture the structural
nonlinear behaviour [22].

The artificial neuron (AN) of an ANN is a computational element which transforms the input
signals (x;) in an output result (like a brain cell). Each AN has an activity v; (Figure 3), which is equal to

N
vj = wpj + Z X - Wij. (4)
i=1
The output result depends on the computation of the activation function f(v). A sigmoid function
was adopted in this study:
1
= . 5
Fo) = 1 ©
The ANN training algorithm implemented in the NEUNET computer program [23], that was
used in this work, involves the following steps:

- The input variables values (I;) and the known output results (the training vectors T;, which are the
simplified capacity curve parameters) are normalized (between 0 and 1) to the maximum values;
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- The initial weights are set to a random small value (between —0.5 and +0.5);

- The input values (I;) of the Ny, training vectors are set at the Ny neurons of the input layer and
the known results T; of these vectors are set at the output layers;

- For each training vector (n =1, ... , Ny,) and for each neuron j of the layer L = 1, the neuron
activity and the output are determined, being

No

= w(l)j + ; Lin - w}]-, (6)
1
O]l,n = f(vj,n)/ @)
and for the other levels (L =2, ..., out)
L L ! L-1 L

v, =wy+ Y, Opy - wig, ®)

i=1
ok, = f(vh); )

- Weights are corrected based on the known output results and on the following error expressions,
beginning from the output layer
Df = (Tip — OF') - (1= OF") - Oyt (10)

n’

and following by the other existing levels (L=1, ..., out — 1)

N1
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Finely, the new weights are determined

N trn

new_wL] = actual_wl] +7- Z ZIJ n T oc(actual w - old_wlj) (14)

The learning parameter # rules the algorithm convergence rate. This rate is lower when using
very small 1 values and it increases with higher # values. A momentum factor (0 < a < 1) can also be
used to increase the algorithm convergence rate.

The ANN error obtained for each training vector is equal to

I\)\
iaE
Qﬁ

) (15)

and the ANN global error is equal to
E=) E. (16)
n=1
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Figure 3. Single artificial neuron representation.

A correct ANN level of training is very important to assure a good reproduction of the mean
simplified capacity spectrum of a given structure. A poor ANN training will lead to unsatisfactory
results. However, the consequences of an over-training of the ANN can lead to even worst results,
because the ANN will adjust the simplified capacity spectrum curve to the local values instead to the
mean values of the given typology. In Figure 4, the left ANN solution is an example of a good result
and the right ANN solution is an example of a bad result, because the error is too high.

A Good training A Weak training

A 4

>
>

— Exact solution o Training vectors * ANN results

Figure 4. Example of the influence of the ANN training in the output results.

The training problem exemplified in Figure 4 is much more important when the whole region
of possible solutions is not well covered by the training vectors, because there are many possible
solutions that fit those points. In spite of the evidence that an appropriated training of the ANN can
lead to better results than some traditional approaches for seismic assessment of large number of
buildings [12], even when considering a relatively small number of training vectors, it is important to
understand how feasible the use of an ANN for practical problems with different number of training
vectors is.

4. Case Study

Damage dispersion observed in buildings that were affected by earthquakes in the past can be
related to seismic vibrations characteristics (influenced by source characteristics and by geological site
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conditions) and to the differences in the seismic vulnerability of each building [24]. For this reason, it is
very important to do an adequate assessment of this vulnerability, namely by using nonlinear seismic
analysis, being very common the use of an incremental nonlinear analysis [25] or a static (pushover)
nonlinear analysis [26] for vulnerability assessment purposes. When assessing an individual building
and when the knowledge level is low, the part 3 of Eurocode 8 (EC8-3) proposes an assessment based
on simulated design in accordance with usual practice at the time of construction, which was the
strategy adopted in this case study but for a more general purpose.

The present case study aims to evaluate how feasible is to use an ANN (trained with a low number
of training vectors) for vulnerability assessment, in terms of accuracy of results.

4.1. Studied Structural Typology

Probably, the concrete buildings with higher seismic vulnerability are the ones built prior to
modern seismic codes. Between the decades of 1930s and 1950s, in countries like Portugal, the buildings
were designed without considering any seismic action and that is the reason why the proposed
approach was tested in this specific typology.

As it has been possible to observe in old structural designs and according to the codes of that
period [27], the area of the reinforcing steel bars (A;) was determined considering an equivalent
concrete area of the homogenized cross-section (usually using a homogenization factor of 10 for beams
and 15 for columns).

Due to the lack of computational resources, the axial forces (N;) were normally determined by
multiplying the influence area of each column by the weight of the floor. The compression stresses
were determined assuming an elastic behaviour of the homogenized cross-section. So, these simplified
assumptions led to the necessity of a very small amount of reinforcement in low-rise buildings and
normally the value of A; was just a minimum percentage of the concrete cross-section, which creates
very vulnerable buildings, in terms of their seismic behaviour.

In this work, this old simplified procedure was used to design some reinforced concrete frames
(Figure 5) in order to simulate the design solutions usually adopted in Portugal in that period (using
the minimum number of rebars that leads to As > 0.005-b.-h.), which were used as the training set of a
MFFNN. The adopted input variables were the number of beam spans (I; = 1), the mean beam span
dimension (I; = Lp) and the mean cross-section column height (I3 = k).
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Figure 5. Schematization of the studied concrete frames.



Buildings 2018, 8, 151 8 of 14

A design value of 40 kgf/cm? was used for concrete in pure compression, a value of 45 kgf/cm?
was used in flexure and a design value of 1200 kgf/cm? was used for the reinforcement [27].

The slabs thickness and the beams high were considered as a function of L, so the mass per unit
area was also considered as a function of L. As a simplification and just for the purpose of this study,
a constant value of 0.25 m was adopted for the width of all beams (b;) and columns (b.). A T-section
was adopted for all concrete beams, as proposed in the ECS.

The mass adopted for each dynamic structural system was computed considering a transversal
influence area equal to L.

At first, 125 nonlinear static analyses were carried out, which were named as the training set n. 1
(TS1), considering frames with the following values: n, =1, 2, 3, 4 and 5 spans; L, =2, 3,4, 5 and 6 m;
he =0.25,0.325, 0.4, 0.475 and 0.55 m.

The capacity curves were obtained by using the SeismoStruct software [28] and adopting a
triangular force pattern. In Figure 6a all the 125 original capacity curves of the single degree of freedom
system are presented and the corresponding simplified equivalent elastic-perfectly plastic capacity
curves are presented in Figure 6b.

(b)

-
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Figure 6. Capacity curves obtained for the (a) original structural system; and (b) for the simplified
equivalent elastic-perfectly plastic system.

Each incremental static nonlinear structural analysis was carried out until the EC8-3 near collapse
(NC) limit state was reached for the chord rotation capacity (Equation (A.1) of the EC8-3), or when it
was impossible to reach the convergence of iterative process used in the nonlinear structural analysis.
When the NC shear capacity limit was reached (Equation (A.12) of EC8-3), the shear strength was
reduced to a value corresponding to only 20% of the original strength (this is the SeismoStruct default
option, which seems acceptable when observing some laboratorial tests results [29]).
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Another training set with 27 capacity curves was also considered, which was named as the
training set n. 2 (TS2), which was a subset of the first one, with: n, =1, 3 and 5 spans; L, =2, 4 and 6 m;
he =0.25, 0.4 and 0.55 m.

Additionally, three control cases (not belonging to any of the training sets TS1 or TS2) were
considered: the control case n. 1 (CC1), with n, =1, L, = 5.5 m and k. = 0.5 m; the control case n. 2
(CC2), with ny, = 3, L =4.2 m and h, = 0.35 m; and the control case n. 3 (CC3), withn, =4, L, =3.5m
and h, = 0.28 m.

To process such an amount of data, computer procedures were developed for the automatic
creation of computer files containing all the training set values.

4.2. Adopted MFFNN

The training of a MFFNN is not an exact science, in spite of the many approaches available to
optimize this process [30] and also depends on the experience obtained in past studies. In this work,
a trial and error process were adopted to minimize the ANN output error. The neural network adopted
in this study is presented in Figure 7.

Hb Ly He

I dy’ dv

Figure 7. Adopted neural network architecture.

The selection of the number of hidden layers and neurons was carried out by increasing those
numbers until a compromise between precision and training speed was reached.

Two artificial neural networks (ANN1 and ANN2) with the same architecture (Figure 7) were
trained for this study, using the NEUNET computer program [23]. The first (ANN1), was trained using
all the 125 training vectors (TS1) and the other (ANN2) was trained using only a subset of 27 training
vectors (TS2), as earlier described.

4.3. Results and Discussion

The results obtained with the two neural networks (ANN1 and ANN2) are compared in
Figures 8-10. The blue dots are the results obtained from the 125 nonlinear structural analysis (TS1) and
the red and green lines are the corresponding results obtained with ANN1 and ANN2, respectively.
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Figure 8. Results comparison for the Fy* values.
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Figure 9. Results comparison for the dy* values.

It is evident that the results presented in Figure 6 are highly variable, due to the highly nonlinear
structural behaviour of the studied buildings, so it seems that the use of a mean capacity curve is not
the best approach to assess the seismic vulnerability of this typology.

This is probably why it is so difficult to predict the seismic response of a building when using
much more simplified approaches, which are normally used in large-scale studies. The use of ANN
may be a valid alternative, if the training sets are representative enough of the problem domain.

Observing the results, it is possible to notice that the ANN1 can reproduce outputs in good
agreement with the structural analysis results. However, that is not the case of the ANN2, which are
only able to match the results for the 27 training set points (TS2).
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Figure 10. Results comparison for the d,” values.

To better compare the performance of each neural network, a one-way classical ANOVA F-test [31]
was used and the results are presented in Tables 1-3. The lower the F-test results are the higher is the

confidence in the ANN results.

Table 1. Classical ANOVA F-test results obtained for Fy* values.

ANN TS1 TS2
ANN1 0.00004 0.00128
ANN2 1.58284 0.00014

Table 2. Classical ANOVA F-test results obtained for dy* values.

ANN TS1 TS2
ANN1 0.0056 0.00113
ANN2 3.26064 0.00007

Table 3. Classical ANOVA F-test results obtained for d,,” values.

ANN TS1 TS2
ANN1 0.00044 0.00027
ANN2 1.21626 0.00012

The obtained F-test results indicate that ANN2 presents better results than ANN1 when only
considering the TS2 capacity curves (which were the 27 capacity curves used to train the ANN2)
but ANNT still presents very good results, because F-test values are almost zero. If only the results
obtained with ANN1 and ANN2 were compared with each other for the TS2 case, it would lead to the
false conclusion that ANN2 has a better performance than ANN1. However, when considering all the
125 capacity curves of the TS1, it is evident that ANNZ2 is unable to reproduce the entire domain of the
problem, because F-test results for the ANN2 are much higher than zero, being even higher than one.
Once again, the ANNI presents very good results, because F-test values are still almost zero.

The maximum percentage of error of each ANN was also determined for the same input data,
which corresponds to each one of the 125 analysis cases of the TS1 and it is presented in Table 4.
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Table 4. Maximum percentage of error obtained for the TS1.

ANN F,’ dy" dy
ANN1 10.53% 1.87% 1.67%
ANN2 214.94% 83.95% 141.10%

The highest maximum error value was obtained for the Fy*, probably because this variable
presents a higher range of values. Again, it is possible to conclude that ANNI1 exhibits the lowest
errors and they seem to be acceptable to use in large-scale studies, namely having in mind the error
that should be expected for this type of studies. On the other hand, ANN2 maximum errors seem to be
totally unacceptable, because they are much higher then 100%.

It is important to highlight that the only way to significantly reduce the ANN1 and ANN2 errors
seems to be increasing the number of training vectors, to better cover the whole domain of the studied
problem. Therefore, the ANN1 presents better results than the ANN2 when all the ANN solutions
obtained for the 125 cases (TS1) are compared against the nonlinear analysis results.

Finally, the results obtained for the control cases 1 to 3 were compared to the ones obtained with
the previously trained neural networks (Tables 5-7).

Table 5. Results obtained for the control case n. 1.

Case Fy* (kN) dy* (m) d,” (m)
CC1 120.25 0.02610 0.14662
ANN1 125.74 0.02789 0.09446
ANN2 154.03 0.02865 0.09375

Table 6. Results obtained for the control case n. 2.

Case F,” (kN) dy," (m) d,” (m)
cc2 89.33 0.01977 0.15324
ANN1 93.98 0.02199 0.15977
ANN2 82.62 0.01802 0.14153

Table 7. Results obtained for the control case n. 3.

Case F,” (kN) dy," (m) d,” (m)
CC3 61.74 0.01761 0.12511
ANN1 63.39 0.01989 0.15139
ANN2 53.06 0.02423 0.18966

The ANNT1 presents higher errors when considering the control cases (which are not belonging to
the training vectors), in comparison to TS1 results. However, the results still seem to be acceptable in
terms of Fy*, (maximum error of 5.2%) and dy* (maximum error of 12.9%), namely in the context of the
errors that are usually associated with large-scale studies using more simplified empirical methods.
The worst result was obtained for the d,,” (maximum error of 35.6%). These errors would probably be
reduced if a higher number of training vectors was used.

5. Conclusions

The results obtained in the present study show that it is feasible to use Artificial Neural Networks
(ANNS) to compute simplified capacity curves for seismic assessment purposes. However, the results
precision is very dependent on the amount of data used to train the ANN. Moreover, it is important to
assure that the entire problem domain is very well covered by the training vectors.
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