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Abstract: The purpose of this paper is to propagate the input uncertainties of the degree-day method
to estimate the building heating energy consumption as numerical intervals. While it is common to
use average or expected values (e.g., Typical Meteorological Year) to address the input uncertainties,
this practice can only yield the best estimates as single-point values without informing the possible
range of variations. After classifying two types of uncertainty as weather variability and imprecision
in the degree-day method, this paper proposes the adoption of fuzzy numbers and their arithmetic
as the theoretical approach to handle uncertainty. As the degree-day method mainly involves
elementary arithmetic (e.g., addition and multiplication), fuzzy number arithmetic can be directly
applied to formally process numerical intervals. The proposed method is demonstrated and verified
via a building example in Canada, and the interval results are comparable to the variation of heating
energy consumption based on the data of outdoor ambient temperatures in 52 years.
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1. Introduction

Degree-days remain one important concept to correlate climate data in the analysis of building
energy consumption [1]. For example, degree-days have been used to correlate and estimate district-level
and city-scale heating energy demand [2,3], natural gas consumption [4], electricity demand and
consumption [5–7], and future energy demand [8–10]. Other applications include the evaluation of
the energy performance of decentralized ventilation systems [11], the optimization of the thickness of
building walls [12,13] and the economical factor for energy refurbishment [14].

In this study, the degree-day method is referred to the technique that estimates the annual energy
consumption of a building. The methodological procedure is applied according to Mitchell and
Braun (Chapter 18.3) [15] and ASHRAE (Section 19.11) [16]. As our building application is in the
cold weather area (e.g., daily average temperature is about −7 ◦C on the coldest month), we focus
on the heating energy consumption (i.e., heating degree-days) in this study. To apply the degree-day
method, the input parameters include the outdoor ambient temperature, the thermal conductance
of the building, the internal temperature, the internal heat gains (e.g., electrical loads), and the
equipment efficiency. In practice, some of these parameters are subject to uncertainty. In this context,
the purpose of this study is to extend the degree-day method that can propagate the uncertainty of
parametric values to estimate building energy consumption as numerical intervals. Notably, the duty
of uncertainty propagation is not particularly about the reduction of input uncertainties but it is about
how to propagate uncertainty information from inputs to outputs authentically.

Based on the literature of mathematical treatments of uncertainty [17–19], we classify the uncertainty
of parametric values in the degree-day method into two types. The first type is weather variability (e.g.,
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outdoor ambient temperature), which can be analyzed statistically based on historical data. Thom [20]
presented one early work that examined the normal distribution assumption and the confidence intervals
of degree-days data. To support building energy simulation, various approaches have been proposed to
determine the Typical Meteorological Year (TMY) [21–23]. Kneifel and O’Rear [24] demonstrated the
limit of TMY due to climate change. Notably, TMY aims for the representativeness of the weather data,
and it does not particularly convey the range of variation (e.g., standard deviation or numerical interval).

The second type of uncertainty is imprecision, where historical data are not normally available
for statistical analysis, and expert judgements are then required for numerical approximations.
One example is the equipment efficiency, which can vary according to operating conditions, and
experts can generally approximate its typical numerical range based on the equipment manual and
their experience. In this context, the purpose of this study is to propagate these two types of uncertainty
using fuzzy numbers and their arithmetic [25]. The choice of fuzzy numbers in this study needs some
clarifications, which are discussed in the following.

Firstly, there is a limit of probability theory to handle the imprecision type of uncertainty [19,25–27].
Due to its frequentist interpretation, the summation of probability values of all events must be equal
to one. In contrast, imprecision, as often modelled by fuzzy numbers, does not have this property.
To further illustrate the difference, consider the summation of two intervals, for example [1.5, 3.8]
and [7.5, 8.8]. By using probability theory, random variables based on uniform distribution can be
first applied to model these input intervals. According to the central limit theorem, the summation of
these random variables will not follow uniform distribution but higher probability should be found
around the expected value (e.g., 10.8 in this example). Yet, such higher probability around the expected
value is not particularly supported by the original information, but it is rather a result due to the
assumption of uniform distribution. In contrast, by using interval calculations, the summation of
these two intervals is still an interval, resulting in [9.0, 12.6] for the example. In sum, as remarked by
Dubois and Prade [25] (p. 1064), statistical distributions in probability theory generally require more
information than what being available in the imprecision type of uncertainty.

Secondly, fuzzy numbers should not be taken as a sub-branch of fuzzy logic. In the literature of
building energy research, the imprecision type of uncertainty has been recognized, and researchers
have been using fuzzy logic to model the behaviour of occupants [28] and the pattern of house
electricity consumption [29]. Kolokotsa [30] has reviewed the applications of fuzzy logic in the analysis
of energy consumption in buildings. Formally speaking, these works mainly apply the techniques
from fuzzy logic to model linguistic contents and develop logical inferences [31]. In contrast, our study
focuses on the uncertainty of parametric values, and it does not involve linguistic variables. Thus,
we apply fuzzy numbers and their arithmetic, which focus on the extension of “algebraic operations
on real numbers” Dubois and Prade [32] (p. 613). This field has become mature to compute numerical
intervals properly [33], and it can be readily extended to the degree-day method.

Notably, the use of fuzzy numbers to capture and propagate uncertainty information can be found
in other applications. Singer [34] and Cheng and Mon [35] have used fuzzy numbers to propagate
the uncertainty of reliability in the fault tree analysis. Fuzzy numbers have been used to propagate
parametric uncertainty in the finite element analysis [36,37]. Furthermore, fuzzy numbers have
been used to address uncertainty in the heat conduction problem [38], the rainfall-runoff model [39],
the climate-pest model [40], the structural safety assessment [41], and the machining process [42].
Behind these diverse applications, one common theme is the recognition of the limits of probability
theory in the handling of uncertainty information.

In this study, we consider the uncertainty of two parameters: (1) The variation of outdoor ambient
temperatures and (2) the range of furnace efficiency. For the methodological development, these
two parameters are chosen because they stand for two different types of uncertainty. Concerning
the outdoor ambient temperatures, they are the major factor that contributes to the heating energy
consumption. As their historical values change year-by-year, we want to examine the range of annual
heating energy consumptions between mild and cold winters. At the same time, the values of furnace



Buildings 2018, 8, 21 3 of 12

efficiency are also uncertain in practice. While “point estimates” are often applied in the degree-day
method, we want to check how “range estimates” can be propagated to estimate heating energy
consumption. Overall, we want to extend the degree-day method that can take these two types of
uncertainty to yield the range estimates as the results. Notably, other parameters in the degree-day
method can also be subject to uncertainty such as building operations [43]. By focusing on the fuzzy
mathematical treatments on the degree-day method, we limit these two parameters for simplicity in
the initial methodological development.

In literature, the contents of the degree-day method have been refined to provide more accurate
results. Examples include the estimation of the balance point temperature (i.e., a threshold defining
when the heating/cooling energy is required) [44,45], addressing distance and elevation errors due to
the geographical difference between weather stations and buildings [46], and improving the evaluation
of cooling degree-days [47–49]. Concerning uncertainty, Day and Karayiannis [50] investigated how
different definitions (and formulations) of the balance point temperature can influence the results of
the degree-day method. Ning and Zaheeruddin [51] used fuzzy parameters to specify and propagate
uncertainties in model-based simulation of HVAC systems. From the literature survey, there seems
to be no methodology that explicitly propagates parametric uncertainty in the degree-day method.
Yet, such methodological feature can be helpful to analyze the best and worst case scenarios subject
to different scopes of variation. For example, practitioners can input a range of outdoor ambient
temperatures from the records of cold and wild winter data in order to know the resulting range of
energy consumption. Similarly, practitioners can specify a possible range of furnace efficiency (based
on the experience). Then, the upper and lower bounds of the resulting interval can indicate the extreme
situations of energy consumption.

The rest of the paper is organized as follows. Section 2 covers the background of the degree-day
method, fuzzy numbers, and their arithmetic. Accordingly, the fuzzy degree-day method is proposed
and formulated. Section 3 introduces the building example, which is used for the demonstration and
verification of the proposed fuzzy degree-day method. Section 4 provides some closing remarks.

2. Implementing Fuzzy Numbers in the Degree-Day Method

2.1. The Degree-Day Method for the Estimation of Heating Energy Consumption

In the calculation of the heating degree-days, the balance point temperature can be interpreted
as the threshold temperature below which heating is required. Then, the heating degree-days are
formulated as a quantity that integrates (or sums up) the differences between the balance point and
outdoor ambient temperatures in a time period. Let DDi be the heating degree-days of the ith year,
and it can be formulated as follows.

DDi =
∫ TTime

0
∆tdt (1)

where

∆t =

{
Tbal − TA,t if (Tbal − TA,t) > 0

0 otherwise
(2)

In the formulations, Tbal is the balance point temperature, TA,t is the outdoor ambient temperature
at the tth time period, and TTime is the total time of one year.

By knowing the heat loss coefficient of the building (denoted as Ktot) and the furnace efficiency
(denoted as ηfr), we can estimate the fuel energy consumption of the ith year (denoted as Ei) using the
following equation.

Ei =
Ktot · DDi

η f r
(3)

Traditionally, Tbal has been set to 18 ◦C (or 65 ◦F). Due to the better performance of building
envelopes, Tbal has been suggested between 7 ◦C to 16 ◦C (or 45 ◦F to 60 ◦F) [15]. In this paper,
suggestions from Day and Karayiannis [50] and ASHRAE (Section 19.11) [16] are used to determine



Buildings 2018, 8, 21 4 of 12

the balance point temperature on the monthly basis. Let Tbal,m be the balance point temperature of the
mth month, and the equation is given below.

Tbal,m = Ti,m −
Qg,m

Ktot
(4)

where Ti,m is the mean internal temperature of the building of the mth month, and Qg,m is the mean
heat gain from electrical loads and occupancy activities of the mth month.

Regarding the heat loss coefficient (Ktot), two factors are considered: (1) The conductance of the
building envelopes and (2) the ventilation. Accordingly, the value of Ktot is estimated via the following
equation [44].

Ktot = ∑ UAo +
1
3

NV (5)

where U and Ao are the unit conductance and the surface area of each wall of the building envelop,
respectively. The terms N and V are referred to the frequency of air renewals inside the building per
hour and the volume of the building, respectively.

2.2. Fuzzy Numbers and Their Arithmetic

The degree-day method described above is conducted based on the “crisp values”. As some of
these parametric values are subject to uncertainty, it is common to employ “representative values” (e.g.,
TMY) in the calculations to satisfy the requirement of using crisp values. In this context, the purpose of
fuzzy numbers is to extend the degree-day method that allows the inputs and calculations of numerical
intervals (instead of only representative crisp values).

This study adopts the trapezoidal fuzzy number (TrFN) as the general form to express numerical
intervals. In the definition, suppose quantity ‘a’ represents a parameter in an equation (e.g., TA,t), and
let Fa be the fuzzy number of quantity ‘a’. A TrFN can be expressed as a quadruple, i.e., Fa = (a1, a2,
a3, a4), in which a1 represents the lower bound, a2 to a3 the range of typical values, and a4 the upper
bound of quantity ‘a’. The membership function (denoted as µ(a)) of a TrFN is formulated below to
reflect the likelihood of the actual value of quantity ‘a’.

µ(a) =



0 a < a1
a−a1
a2−a1

a1 ≤ a < a2

1 a2 ≤ a < a3
a−a4
a3−a4

a3 ≤ a ≤ a4

0 a > a4

(6)

The advantage of TrFN is that it generalizes different types of numerical expressions. For example,
a simple interval can be expressed via TrFN by setting a1 = a2 and a3 = a4. Similarly, TrFN can represent
a triangular fuzzy number by setting a2 = a3, and a crisp number by setting a1 = a2 = a3 = a4. In other
words, the generality of TrFN allows the inputs from pure crisp values to intervals and triangular
numbers all under the TrFN definition.

To obtain a numerical interval from TrFN (denoted as [alow, aup]), the common α-cut operation is
applied as presented in Figure 1 [33]. It helps to define the upper and lower bounds of the interval.
For example, as presented in Figure 1, if α = 0.5, the interval will include the values with the
membership above or equal to 0.5. Then, α-cut can be viewed as a horizontal line that intersects
the fuzzy number and marks the upper and lower bounds. As observed, a higher α value will lead to
a smaller interval.
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Figure 1. Illustration of a trapezoidal fuzzy number and α-cut interval (where µ(a) is the membership
function, and α is the minimum membership value that defines the upper and lower bounds of
the interval).

The basic formulations of fuzzy number arithmetic are provided in Table 1 based on two fuzzy
numbers Fa = (a1, a2, a3, a4) and Fb = (b1, b2, b3, b4), and a crisp number w. Notably, fuzzy number
arithmetic has been studied in literature (e.g., [26,32]), and fuzzy number multiplication and division
will not yield TrFN precisely. Thus, the common approximation (distinguished by the symbol “≈” in
Table 1) is applied [33].

Table 1. Fuzzy arithmetic based on trapezoidal fuzzy number (TrFN).

Fuzzy number addition Fa ⊕ w = (a1 + w, a2 + w, a3 + w, a4 + w)
Fa ⊕ Fb = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

Fuzzy number subtraction Fa 	 w = (a1 − w, a2 − w, a3 − w, a4 − w)
Fa 	 Fb = (a1 − b1, a2 − b2, a3 − b3, a4 − b4)

Fuzzy number multiplication Fa ⊗ w = (a1 × w, a2 × w, a3 × w, a4 × w)
Fa ⊗ Fb ≈ (a1 × b1, a2 × b2, a3 × b3, a4 × b4)

Fuzzy number division Fa � w = (a1/w, a2/w, a3/w, a4/w)
Fa � Fb ≈ (a1/b4, a2/b3, a3/b2, a4/b1)

2.3. Application of Fuzzy Numbers to the Degree-Day Method

In this paper, two input parameters in the degree-day method are treated as fuzzy numbers:
outdoor ambient temperature (denoted as FT_a,t) and furnace efficiency (denoted as Fη), which are
formulated below.

FT_a,t = (Tt,1, Tt,2, Tt,3, Tt,4) (7)

Fη = (η1, η2, η3, η4) (8)

Regarding the outdoor ambient temperature, its fuzzy number can be interpreted as the range
of the average values at the tth time period. For example, consider Day 1 as the time period, and its
historical average outdoor ambient temperature in 10 years is −8 ◦C. At the same time, the average
low of Day 1 is −15 ◦C, and the average high is 1 ◦C. In this case, the fuzzy number can be set as
FT_a,t = (−15, −8, −8, 1) ◦C.

Regarding the furnace efficiency, its fuzzy number should be dependent on the HVAC equipment
selection, and its value is based on the experience and judgment by engineers. Assuming a high-
efficiency heating system is adopted, ηfr is about between 90% and 98.5% according to the Department
of Energy, U.S. (http://energy.gov/energysaver/furnaces-and-boilers). By setting 90% and 98.5% as
the lower and upper bounds, we roughly take the typical range as one third of the total range in the
middle, and the corresponding fuzzy number is set as Fη = (0.90, 0.93, 0.96, 0.985).

http://energy.gov/energysaver/furnaces-and-boilers
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After specifying the input uncertainty using fuzzy numbers, the next step is to apply these fuzzy
numbers in the degree-day method. By approximating the integration in Equation (1) as a series of
summations, the degree-day method can be executed using some basic arithmetic calculations (e.g.,
addition and multiplication). Then, fuzzy number arithmetic is applied in the degree-day method to
propagate the input fuzzy numbers (i.e., FT_a,t and Fη) and determine the energy consumption (i.e., Ei)
as an interval estimation. Let F∆T,t = (∆Tt,1, ∆Tt,2, ∆Tt,3, ∆Tt,4) be the fuzzy number of the temperature
difference between the balance point temperature (Tbal) and the fuzzy outdoor ambient temperature
(i.e., Equation (7)) at the tth time period, and it can be formulated as follows.

∆Tt,j =

{
Tbal − Tt,j if

(
Tbal − Tt,j

)
> 0 for j = 1, 2, 3, 4

0 otherwise
(9)

Let FDD_i and FE_i be the fuzzy numbers of the heating degree-days and energy consumption of
the ith year, respectively. Their corresponding equations based on Equations (1) and (3) are formulated
as follows.

FDD_i = F∆T,1 ⊕ F∆T,2 ⊕ . . . F∆T,t . . . ⊕ . . . F∆T,TTime (10)

FE_i = (Ktot ⊗ FDD_i)� Fη (11)

Let the fuzzy number of the energy consumption be FE_i = (Ei,1, Ei,2, Ei,3, Ei,4). Then, the interval
of Ei (denoted as [Ei,low, Ei,up]) can be obtained by the α-cut operation, which is formulated as follows[

Ei,low, Ei,up
]
= [Ei,1 + α(Ei,2 − Ei,1), Ei,4 − α(Ei,4 − Ei,3)] (12)

If α = 0, the interval is equal to [Ei,1, Ei,4], representing the range of the results obtained by all
possible combinations of input variations. For example, the upper bound (i.e., Ei,4, the highest possible
energy consumption in a year) is obtained by having the historical daily average low (outdoor ambient)
temperatures for all days in a year. In practice, this situation is very rare, and thus we suggest setting
the values of α at least 0.3. Admittedly, a rigorous procedure to precisely set the values of α remains
an open research question. In practice, as the values of α is inversely proportional to the sizes of
intervals, the method practitioner can obtain the intervals at α = 0.3, 0.5 and 0.7 to reasonably examine
the conservative (large), neutral, tight intervals, respectively.

Notably, the interval of Ei indicates the uncertainty in the energy consumption, and it is caused
by the input uncertainty sources specified in Equations (7) and (8). Then, if the parameters of outdoor
ambient temperatures and furnace efficiency are set as “crisp” values (e.g., using average points),
the whole analysis is returned back to the traditional degree-day method. In other words, the proposed
fuzzy degree-day method can be viewed as one extension of the degree-day method that can process
the fuzzy variation type of uncertainty information. In the next section, a building example will be
used to demonstrate and verify the fuzzy degree-day method.

3. Building Application and Verification

To demonstrate and verify the proposed fuzzy degree-day method, a building example from
a Canadian city is used, along with the data of outdoor ambient temperatures in 52 years (from 1960 to
2011). Firstly, the standard degree-day method is applied to verify the adequacy of input parameters
(e.g., Ktot). Then, the fuzzy degree-day method is applied, which results are compared to the variation
of annual heating energy consumption in 52 years.

3.1. Application of the Degree-Day Method

The building example is a two-story property located in Calgary, Canada. The gross building area
is 517.3 m2. The available space in the building is used as a rental property, where the first floor has
the restaurant and the second floor is the office space. The restaurant located on the main floor is fully
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equipped with a commercial kitchen. The office space on the second floor has a lunch station equipped
with a microwave and a refrigerator. The building does not have an elevator, and it can be accessed
through the entrances at the front and back. For the design purpose, the following operating hours
and indoor conditions are set for both the office and restaurant.

• Operating hours
Restaurant: 11:00 a.m. to 1:00 a.m. (Tuesday to Sunday)
Office: 8:00 a.m. to 5:00 a.m. (Monday to Friday)

• Indoor conditions (occupied)
Restaurant and office (summer): 21 ◦C (or 70 ◦F)
Restaurant and office (winter): 20 ◦C (or 68 ◦F)

• Indoor conditions (unoccupied)
Restaurant and office (summer): 28 ◦C (or 82 ◦F)
Restaurant and office (winter): 18 ◦C (or 64 ◦F)

The weather information in Calgary was obtained from the website operated by the Government
of Canada (www.climate.weather.gc.ca) [52]. To get some general impression, Table 2 provides the
statistics of outdoor ambient temperature in Calgary from 1981 to 2010. As observed, Calgary generally
experienced cold weather where the daily mean temperature ranges from −7.1 ◦C to 16.5 ◦C. Based on
the available information from the government website, the temperature data from 1960 to 2011 are
applied in this study.

Table 2. Monthly data of outdoor ambient temperatures in Calgary from 1981 to 2010 [52].

Month Record Low Average Low Daily Mean Average High Record High

Jan. −44.4 ◦C −13.2 ◦C −7.1 ◦C −0.9 ◦C 17.6 ◦C
Feb. −45.0 ◦C −11.4 ◦C −5.4 ◦C 0.7 ◦C 22.6 ◦C
Mar. −37.2 ◦C −7.5 ◦C −1.6 ◦C 4.4 ◦C 25.4 ◦C
Apr. −30.0 ◦C −2.0 ◦C 4.6 ◦C 11.2 ◦C 29.4 ◦C
May −16.7 ◦C 3.1 ◦C 9.7 ◦C 16.3 ◦C 32.4 ◦C
Jun. −3.3 ◦C 7.5 ◦C 13.7 ◦C 19.8 ◦C 35.0 ◦C
Jul. −0.6 ◦C 9.8 ◦C 16.5 ◦C 23.2 ◦C 36.1 ◦C

Aug. −3.2 ◦C 8.8 ◦C 15.8 ◦C 22.8 ◦C 35.6 ◦C
Sep. −13.3 ◦C 4.1 ◦C 11.0 ◦C 17.8 ◦C 33.3 ◦C
Oct. −25.7 ◦C −1.4 ◦C 5.2 ◦C 11.7 ◦C 29.4 ◦C
Nov. −35 ◦C −8.2 ◦C −2.4 ◦C 3.4 ◦C 22.8 ◦C
Dec. −42.8 ◦C −12.8 ◦C −6.8 ◦C −0.8 ◦C 19.5 ◦C

The degree-day method discussed in the Section 2.1 is applied to the building example, and
some key results are reported in Table 3. Regarding the outdoor ambient temperature, the hourly
temperature data were used. To estimate the heat loss coefficient (Ktot) using Equation (5), the building
envelope was analyzed to determine the U factor (i.e., ∑UAo) and the building’s volume (i.e., V),
and the ventilation requirements were analyzed to determine the value of N. The balance point
temperatures are estimated using Equation (4), where the internal temperature and the heat gain
are based on the indoor conditions and usages. Since both floors are used for different purposes,
the heat loss coefficient and balance point temperature are estimated separately for each floor. Notably,
the heat loss of the first floor (i.e., −2246.1 W/◦C) is considerably higher than that of the second floor
(i.e., −717.8 W/◦C) as the heat loss from the ground is higher than that from the roof. This also leads
to the difference of the balance point temperatures between two floors.

www.climate.weather.gc.ca
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Table 3. Results of the degree-day method.

The U Factor (∑UAo) 1400.8 W/◦C
The ventilation factor (NV) 4689.5 W/◦C

Total heat loss coefficient (Ktot) 2963.9 W/◦C
Heat loss coefficient of the 1st floor (Ktot_1) 2246.1 W/◦C
Heat loss coefficient of the 2nd floor (Ktot_2) 717.8 W/◦C

Average balance point temperature of 1st floor (Tbal_1) 13.4 ◦C
Average balance point temperature of 2nd floor (Tbal_2) 1.5 ◦C

Furnace efficiency (ηfr) 0.95
Energy consumption estimated by the degree-day method 236 × 103 kWh

Energy consumption estimated by eQuest® 234 × 103 kWh

The result of the degree-day method indicates the annual heating energy consumption is
236 × 103 kWh. To verify this value, we have also run the software simulation using eQuest® (version 3.65,
http://www.doe2.com/equest/), and the corresponding result is 234 × 103 kWh. The percentage
difference of these two values is less than 1%, and it is considered that the degree-day method yields
a reasonable result in this case. Then, some parametric values (e.g., Ktot) will be used in the next sub-section
for the fuzzy degree-day method.

3.2. Application of the Fuzzy Degree-Day Method and Verification

To apply the fuzzy numbers in the degree-day method, we first define the fuzzy numbers for
the outdoor ambient temperature (i.e., FT_a,t). To specify this fuzzy number, we use the temperature
variations in 52 years (from 1960 to 2011) based on the weather statistics discussed earlier. Also,
the daily temperature data were used (instead of hourly temperatures) since the uncertainty of hourly
temperatures can be too exhaustive, and it may potentially lead to the over interpretation of the
results. By setting the time period as one day, Tt,1 is defined as the average of lowest outdoor ambient
temperatures in 52 years on Day t, and Tt,4 is the average of highest temperatures on Day t. For example,
T201,1 is the average of lowest outdoor ambient temperatures on July 21st (i.e., Day 201) in 52 years.
Similarly, Tt,2 and Tt,3 are set equal to the daily average outdoor ambient temperature at the tth time
period. Since Tt,2 = Tt,3 in the setting, the inputs of fuzzy outdoor ambient temperatures will be
triangular fuzzy numbers. Regarding the furnace efficiency, its fuzzy number is set as Fη = (0.90, 0.93,
0.96, 0.985), as discussed in Section 2.3.

After specifying FT_a,t and Fη , Equations (10) and (11) are used to determine the fuzzy number
of heating energy consumption, and the result is FE_i = (126, 216, 223, 365) (×103) kWh. Notably,
the range of lower and upper bounds of this fuzzy number is quite large because both bounds are
obtained by taking extreme values at each time period. For example, the lower bound 126 × 103 kWh
is obtained by summing the lowest heating energy of each day in 52 years. This situation is very
unlikely to happen in a single year.

Then, the α-cut operation is used to obtain the numerical interval. In this example, we set the α at
three levels: 0.3, 0.5, and 0.7, to represent the conservative (large), neutral, tight intervals, respectively.
The α-cut interval results are provided in Table 4. For example, by having α = 0.5, the typical energy
consumption would vary between 171 and 294 (×103) kWh.

Table 4. Interval results and verification with different α-cut operations.

α Level α-Cut Interval % Number of Years Included in
the α-Cut Interval

α = 0.3 [Ei,low, Ei,up] = [153, 322] (×103) kWh 100%
α = 0.5 [Ei,low, Ei,up] = [171, 294] (×103) kWh 98% (1 year excluded)
α = 0.7 [Ei,low, Ei,up] = [189, 266] (×103) kWh 85% (8 years excluded)

http://www.doe2.com/equest/
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Since we have the historical data of outdoor ambient temperatures in 52 years, we can run the
traditional degree-day method using this data and obtain the energy consumption for every single
year. The variation of outdoor ambient temperature will then be reflected in the resulting values of
yearly energy consumption. Table 5 shows the heating energy consumption in 52 years, where the
lowest and highest values are 172 and 298 (×103) kWh, respectively. To verify further, we count the
number of years which energy consumption is included in the α-cut intervals, and the results are
provided in Table 4. As observed, the α-cut intervals can provide reasonable estimations for the range
of energy consumption as they can cover the majority of historical energy consumption values.

Table 5. Heating energy consumption in 52 years using the degree-day method.

Year
Energy

Consumption
(103 kWh)

Year
Energy

Consumption
(103 kWh)

Year
Energy

Consumption
(103 kWh)

Year
Energy

Consumption
(103 kWh)

1960 242 1973 245 1986 202 1999 204
1961 234 1974 230 1987 172 2000 245
1962 228 1975 259 1988 202 2001 218
1963 226 1976 203 1989 235 2002 246
1964 250 1977 228 1990 227 2003 239
1965 274 1978 265 1991 213 2004 215
1966 271 1979 255 1992 211 2005 210
1967 259 1980 240 1993 222 2006 212
1968 253 1981 188 1994 234 2007 219
1969 275 1982 274 1995 250 2008 229
1970 265 1983 231 1996 298 2009 245
1971 261 1984 232 1997 231 2010 224
1972 278 1985 238 1998 233 2011 232

In addition, Monte Carlo simulation is used to compare the results. In this simulation, we first
convert the input fuzzy numbers (i.e., outdoor ambient temperature in Equation (7) and furnace
efficiency in Equation (8)) into trapezoidal distributions (i.e., the area enclosed in the fuzzy number
equal to one). Then, the outdoor ambient temperatures and the furnace efficiency are sampled from
their distributions, and the energy consumption is determined based on the degree-day method.
After running the simulation with 10,000 runs, we obtain the mean of the energy consumption
equal to 224 kWh, with the minimum and maximum values as 214 kWh and 236 kWh, respectively.
As observed, the results from Monte Carlo simulation exhibit a narrower range of variations, which
includes 20 historical records (out of 52). Yet, they are all within the intervals in Table 4, and it verifies
the proposed fuzzy method.

In sum, by using the traditional degree-day method, the energy consumption is estimated as
236 ×103 kWh, which is the average of energy consumption shown in Table 5. Beyond the average-
point estimation, the fuzzy degree-day method can yield the interval of energy consumption. From
the historical data verification, the variation of energy consumption due to the variation of outdoor
ambient temperatures can be fairly reflected in the fuzzy degree-day method.

4. Closing Remarks

This paper presents a fuzzy degree-day method for estimating building heating energy
consumption as numerical intervals. The proposed methodology processes the uncertainty of
outdoor ambient temperatures and furnace efficiency as fuzzy numbers, which are used to extend
the degree-day method for yielding numerical intervals in energy estimation. The fuzzy degree-day
method has been applied to a building example, which results are comparable to the variation of
heating energy consumption based on the data of outdoor ambient temperatures in 52 years.

In practice, the HVAC practitioners are required to identify the sources of uncertainty in the
application of the degree-day method, and express them as intervals or fuzzy numbers. Then, they can
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apply the relevant techniques to obtain the numerical interval of energy consumption of an isolated
building. Since parametric inputs may not be precisely confirmed at the early design stage, the
degree-day method is an effective tool for prompt energy estimation. In this context, the fuzzy interval
result can support certain risk-related decisions due to some extreme situations.

In the current methodological development, the proposed fuzzy degree-day method is limited
to converting crisp values into fuzzy numbers, along with fuzzy number arithmetic for computation.
One direction of future work is to incorporate other kinds of uncertainty such as indoor activities and
work schedules (that influence the heat gains in the building) for propagating different uncertainties
in the analysis of energy consumption. Also, it is desired to explore the theoretical framework
that combines the statistical uncertainty (e.g., weather history) and the expert assessment (e.g.,
future building usages) based on probability and fuzzy set theories for the estimation of building
energy consumption.
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