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Abstract: In recent years, lime mortars mixed with artificial or natural pozzolans are commonly
used in restoration applications. The aim of this work is the assessment of carbonation, pozzolanic
reaction, setting time, and mechanical properties of metakaolin–lime mortars mixed with crystalline
nano-titania (nT) as additive. The studied mortars consist of hydrated lime and metakaolin in
60/40 ratio (wt%) and fine aggregates of either carbonate or silicate sand. The concentration of the
nano-titania is equal to 6 (wt%) of the binder. For comparison purposes, three types of mortars
and pastes are designed: Without the addition of nano-titania, with nT activated or not under UV
irradiation. The evaluation of the carbonation and pozzolanic reaction over a 1.5-year curing period
is carried out through thermal analysis (DTA/TG), infrared spectroscopy (FTIR) and X-ray diffraction
analysis (XRD). The uniaxial compression and the three-point bending tests at 28 days, 3 months, and
6 months were carried out to evaluate mechanical properties. The addition of activated nano-titania,
due to an increased photocatalytic activity, accelerated the setting of the mortars, improving at the
same time the mechanical properties. The plastic behavior of the lime–metakaolin mortars with
activated nT was attributed to the evolution of carbonation and pozzolanic reaction.
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1. Introduction

In restoration projects of historical buildings, the selection of repair materials, in order to achieve the
optimum performance after rehabilitation, is very critical. The raw materials used in such constructions
have been mainly stones, bricks, as well as lime and soil mortars [1]. Therefore, lime mortars mixed with
pozzolans are compatible materials to historical buildings, owing to their physicochemical, structural,
and mechanic characteristics [2]. As opposed to the above, in past decades, the use of cement has
prevailed due to high mechanical strength, workability, and accelerated setting time compared with
lime mortars [3]. However, the use of such materials has caused damages to monuments, due to
incompatibility in porosity, pore size and mechanical properties, high salt content, limited elasticity,
etc. [4,5]. In order to enhance the compatibility between the ancient components and the new mortars,
various materials such as brick, tiles, pottery, and tuff dust have been studied as additives to the
pozzolanic mortars, showing improved mechanical properties [6–8].

Mortars are also widely used as an adhesive material for joining fragments of archaeological
interest. Such mortars should have quick setting and hardening time and, most importantly, adhesion
capability and lower strength than the substrate, in order to ensure that any failure will take place on
the adhesive interface [9,10].

Additionally, a critical agent that causes deterioration to cultural heritage constructions is the
increasing air pollution. Atmospheric pollutants are deposited on architectural surfaces, causing
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decay via erosion, recession, and crust formation. For the purpose of the optimum maintenance of
building substrates, advanced consolidants and protective agents based on nanotechnology have
been developed [11]. Among these materials, the self-cleaning products possess a predominant role
as a protective treatment for stones and mortars [11]. Into this direction, coatings and mortars with
self-cleaning properties have been specifically designed, tailoring to prevent and/or to decompose
black crusts [12,13]. Nano-TiO2 has been incorporated as additive in mortars, due to its photocatalytic
property, resulting in self-cleaning and quick-hardening plasters with high mechanical properties [14].
The addition of either pure nano-TiO2 or doped TiO2 with Fe/V into lime mortars and coatings has
been proved that it plays a significant role as an effective agent for the decomposition of air pollutants
under UV and Vis irradiation [15,16].

In this work, nano-titania (nT) composed of anatase (90%) and rutile (10%) forms was added in the
designed mortars consisting of hydrated lime (L), metakaolin (M), and fine aggregates of carbonate (N)
or silicate (P) nature. The already established photocatalytic activity of nT enhanced the hydration and
carbonation process, thus improving the mortars mechanical properties and providing self-cleaning
characteristics [17,18]. The nT was activated under UV irradiation for 15 min. The purpose of this
research was to investigate the effect of nT in the hydration and carbonation and, therefore, in the
mechanical properties of the mortars. Furthermore, the addition of nano-titania provided mortars with
accelerated setting time, as carbonation took place in earlier stages, but without hindering pozzolanic
reaction. The assessment of carbonation and pozzolanic reaction during a year of curing time was
carried out through thermal analysis (DTA/TG), infrared spectroscopy (FTIR), and X-ray diffraction
(XRD) analysis.

2. Materials and Methods

2.1. Mortar Mixes Design

In the adhesive mortar design, hydrated lime (L; by CaO Hellas) mixed with metakaolin (M;
Metastar 501 by Imerys) and nano-titanium dioxide (nT; nano-structured nano-titania by NanoPhos)
as a photocatalytic additive were proposed.

Table 1 shows the mortar mixes, weight ratios, percentage of L, M, and nT in wt%, the water/binder
ratio, as well as the flow table consistency determined according to EN 1015-3. A ratio of water to
binder (W/B) was approximately equal to 6:5. The mixing tools and materials were stored at a constant
temperature of 23 ◦C for 24 hours before mixing. To ensure the ongoing pozzolanic reaction, the
quantity of L that will react with M was in a weight ratio equal to 6:4. In order to overcome the
increased water demand of nano-additives and to avoid agglomerates formation, the nT was dispersed
into water under intensive stirring for 15 min. The obtained TiO2 colloidal solution was subjected to
UV radiation (365 nm) for 20 min to activate the nT. Then, it was added to the other raw materials and
stirred with a handheld mixer for 5 min. The MLT samples subjected to UV treatment are presented
with the “uv” prefix. For comparison purposes, another set of MLT mortars with nT, not subjected to
the UV treatment, was designed. The selected aggregates were of carbonate and siliceous nature with
a grain size ranging from 2 to 0.06 mm, according to standard sands specifications. The flow design for
all mixes ranged from 136 to 148 mm. It was expected that the fluidity of ML mortars was decreased
by nT.
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Table 1. Mortar mixes (composition in wt%).

Code
Binder TiO2

Aggregates
Consistency (mm)

L M Carbonaceous Silicate B/A W/B

M
O

R
TA

R
S

MLN 60 40 - 100 - 1 1.25 136.96
MLNT 60 40 6 100 - 1 1.19 136.52

MLNTuv 60 40 6 100 - 1 1.19 135.94
MLP 60 40 - - 100 1 1.35 148.12

MLPT 60 40 6 - 100 1 1.20 138.25
MLPTuv 60 40 6 - 100 1 1.22 137.16

PA
ST

ES ML 60 40 - - - - 1.75 -
MLT 60 40 6 - - - 1.65 -

MLTuv 60 40 6 - - - 1.65 -

2.2. Evaluation of Mixtures

The mixtures were molded in prismatic and cubic molds (4 × 4 × 16 cm and 5 × 5 × 5 cm) according
to EN 196 standard, for mechanical tests, uniaxial compression, and the three-point bending tests.
After molding, the specimens were stored in a curing chamber with a temperature of 23 ± 2 ◦C and
relative humidity of 50 ± 5%.

Compressive strength (Fc) and flexural strength were measured by uniaxial compression and the
three-point bending strength (Ff-3pb), respectively, according to EN 1015-11:1999. The modulus of
elasticity and toughness was determined by the strain–stress curve of compression testing.

For the physico-chemical assessment, pastes of 5 mm in diameter ×30 mm in height were prepared
and sealed into ceramic tubes; the latter were subsequently submerged in acetone to stop the setting
process at different periods.

In powder paste samples, the evolution of hydration and carbonation was examined with XRD,
FTIR, and DTA/TG. The mineralogical analysis was carried out by X-ray powder diffraction analysis
(XRD) on a Bruker D8 Advance Diffractometer, using Ni-filtered Cu Kα radiation (35 kV 35 mA) and a
Bruker Lynx Eye strip silicon detector. DTA/TG was operated with a Setaram LabSys Evo 1600 ◦C
thermal analyzer, in static air atmosphere up to 1000 ◦C at a rate of 10 ◦C/min. FTIR analysis was
performed in an FTIR Perkin-Elmer 1000 spectrometer with a resolution of 4 cm−1 in the spectral range
of 400–4000 cm−1. The reflectance spectra of the synthesized pastes were obtained using a UV-Vis
Perkin-Elmer Lambda 35 spectrophotometer (Perkin-Elmer, Waltham, MA, USA) in wavenumber
range of 900–190 nm.

The Vicat apparatus was used for measuring the initial and final time of setting of mortar mixes,
according to the method proposed in ASTM C807.

3. Results and Discussion

3.1. Physico-Chemical Study

3.1.1. Thermal Analysis (DTA)

In order to evaluate carbonation and pozzolanic reaction through thermal analysis, calcium
hydroxide Ca(OH)2 (CH) was determined according to a methodology proposed by Gameiro et al. [19],
using the following equations:

CHpoz = CHth −
(
CH f r + CHcarb

)
(1)

CH f r = CHdeh ×
Mm(CH)

Mm(H2O)
(2)

CHcarb = Cadec ×
Mm(CH)

Mm(CO2)
(3)
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where CHpoz and CHcarb are considered as the consumption of CH due to pozzolanic reaction and
carbonation, respectively; CHth is the initial mass of lime into the paste; CHfr is the free portlandite;
CHdeh is the mass loss referred to as the dehydration of CH at 360–560 ◦C, shown in Figure 1a; Cadec
is the mass loss referred to as the decomposition of calcium carbonate at 600–900 ◦C, as illustrated
Figure 1b; and, finally, Mm is the molar mass. The carbonation evolution illustrated in Figure 1a reveals
that on the 15th day, nTuv pastes exhibited higher CH consumption compared to ML and MLT pastes.
On the other hand, Figure 1b reveals that the CH consumed in pozzolanic reaction on the 15th day had
the smallest value for the MLTuv paste, contrary to what was observed for the other two pastes. After
21 days, a similar trend is observed for all of the pastes, both in carbonation and pozzolanic reaction.
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3.1.2. Infrared Spectroscopy (FTIR)

The IR spectra have been used as complementary tools in studying the evolution of carbonation
and pozzolanicity. More specifically, in the FTIR spectra, the carbonation and pozzolanic reactions
were assessed through the decreasing intensity of the peak, attributed to portlandite (3643 cm−1), and
the increasing intensity of calcite (at 1420, 870, 712 cm−1), as well as the Si–O–Si formation of hydraulic
components (1050, 990 cm−1). The FTIR spectra of MLTuv pastes showed that calcite was produced
even on the first day of hydration. Furthermore, as illustrated in Figure 2a, peaks characteristic of the
neo-formed hydraulic components, such as 960 cm−1, were predominant on the 15th day of curing,
while portlandite was consumed. Especially, it was observed that intensity and sharpness of the bands
in the spectral ranges from 1100–950 cm−1 and 550–400 cm−1, both attributed to hydraulic components,
were significantly changed. On the first day, the band observed at 1070 cm−1 was attributed to
amorphous silica of metakaolin; after 15 and 21 days, this band was shifted to 1100–913 cm-1 as a result
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of the Si–O asymmetric stretching vibration due to the evolution of the pozzolanic reaction. Moreover,
in these time intervals, we noticed a formation of a peak at 423 cm−1 that is characteristic for the Al–O
vibrations in octahedral sites related to calcium aluminates and aluminosilicate hydrates, as shown
in Figure 2b,c [20]. All the aforementioned observations in FTIR spectra indicate that carbonation in
MLTuv pastes did not obstacle the pozzolanic reaction.
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3.1.3. Mineralogical Analysis (XRD)

In mineralogical analysis, carbonation and pozzolanic reaction took place during the first 15 days.
In ML mortars, as hydration proceeded through the reaction between L and M, apart from calcite and
portlandite, calcium and aluminum–silicate hydrated phases were also identified [21]. Particularly,
as shown in Figure 3, on the first day, absorptions related to portlandite were predominant, while
after 15 days of curing, calcite and hydraulic compounds (quartz, tobermorite, and calcium aluminum
phases) were formed. Moreover, amorphous compounds were more prominent on the first day, in
accordance with the results of the FTIR analysis. Finally, calcium aluminum hydrate phases were
observed after 15 days of curing. These compounds are expected to create a denser microstructure
with lower pore size and high apparent density, thus resulting in increased mechanical properties [22].
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3.1.4. UV-Vis Measurements

Figure 4 reveals that the MLTuv pastes with activated nT showed increased absorption at the
UV range, comparing to pure ML pastes and MLT pastes with non-activated nT. These analytical
results clearly prove that the initial activation of nT under UV irradiation is a key point in achieving
an increased photocatalytic activity in lime pastes. Given that the pastes were unexposed to solar
irradiation for one year, it is reasonable to assume that photocatalysis in the MLTuv pastes is maintained
at the maximum level.
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3.1.5. Setting Time

In the Vicat test illustrated in Figure 5, the MLTuv samples are well diversified from the other
mortars, as they present both the lowest initial and final setting time. This finding further supports the
enhancement of carbonation in MLTuv pastes, and therefore, its effect on the hardening of mortar.
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3.2. Mechanical Study

Table 2 presents the mechanical properties of mortars measured at 28 days, 3 months, and 6
months. Mortars exhibited decreased strengths at 3 months, comparing to the corresponding values
of 28 days, and increased strength after 6 months. The decrease of Fc values over time in the ML
compositions has been already reported by other authors, and was most probably attributed to the
microcracking formation due to shrinkage during the curing [23]. However, the decrease in MLT
formulations in early curing time may be attributed to the reduction of cohesion between binder
and aggregates, due to the presence of an inert additive, such as nano-TiO2. This cohesion seems
to be reinstated in MLTuv after 90 days of curing, as we noticed that compression strength in the
sixth month, exceeding the 28-day resistance and even surpassing the corresponding strength of
nT-free and non-activated nT mortars. This conclusion is very critical, as it proves that the addition of
nano-titania did not have any harmful impact on the mechanical properties of the mortars. Finally, the
mortars with non-activated nT exhibited a similar trend and values to those without nT, indicating
that addition of nT without initial activation cannot be considered as beneficial in the whole curing
process. Toughness, also defined as energy absorption capacity, was predominant in the nT-modified
mortars. Higher values of the modulus of elasticity (E) were recorded for the ML mortars than the
nT-modified mortars. The aggregates of carbonate nature provided better mechanical performance
than the siliceous aggregates in 28 days of curing.
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Table 2. Mechanical properties of the designed mortars.

Code Curing Time Fc (MPa) a Fb (MPa) b E (GPa) c Max Strain d % T (J m·−3) e

MLN
28 days 15.03 (±0.36) 2.96 (±0.28)

0.67 7.93 0.83 months 9.85 (±0.13) 2.63 (±0.5)
6 months 12.53 (±2.2) 3.85 (±0.41)

MLNT
28 days 13.54 (±0.45) 3.82 (±0.28)

0.66 7.12 0.593 months 8.68 (±0.4) 2.48 (±0.33)
6 months 11.67 (±0.05) 3.34 (±0.1)

MLNTuv
28 days 12.57 (±0.2) 3.29 (±0.36)

0.16 29.58 2.393 months 11.35 (±0.03) 1.8 (±0.12)
6 months 17.18 (±0.57) 2.53 (±0.35)

MLP
28 days 12.82 (±0.23) 2.44 (±0.13)

0.53 7.9 0.663 months 10.26 (±2.43) 2.85 (±0.27)
6 months 15.29 (±0.22) 3.34 (±0.17)

MLPT
28 days 11.56 (±0.32) 2.55 (±0.24)

0.43 9.64 0.663 months 10.12 (±0.33) 1.14 (±0.26)
6 months 11.06 (±0.36) 3.19 (±0.08)

MLPTuv
28 days 11.78 (±0.53) 2.70 (±0.19)

0.15 30.48 2.193 months 11.06 (±0.36) 1.30 (±0.57)
6 months 15.60 (±0.12) 2.31 (±0.21)

Mean values of three samples: a Compressive strength; b three-point bending strength; c modulus of elasticity;
d max strain during compression test; e toughness.

The stress–strain curves of uniaxial compression illustrated in Figure 6 reveal that the nTuv
mortars exhibited a predominantly plastic behavior, whereas the other mortars behaved in a more
brittle manner, a fact that also explains the increased values of modulus of elasticity of ML mortars
in comparison with those of nT mortars, as well as lower maximum strain. More specifically, the
mortar with carbonate aggregates (MLN) displayed the greatest elastic region, whereas the MLNTuv
and MLPTuv mortars showed the smallest elastic regions and the greatest plasticity. It seems that
the photo-activated nT, due to its hydrophilicity, created an environment in which carbonation was
promoted, whereas the pozzolanic reaction followed.
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4. Conclusions

The activation of nT, used as additive in the lime–metakaolin mortars, promoted the evolution of
the carbonation process versus the pozzolanic reaction in the first days of hydration, without obstacling
the pozzolanic reaction in the next stages. The fact that carbonation preceded the pozzolanic reaction
in nTuv pastes resulted in quick setting times, comparing to both formulations with non-activated nT.
Additionally, nTuv mortars exhibited reduced compressive strength up to 3 months of curing, whereas
at 6 months, strength was increased. The long-term improvement of nTuv mortars can be attributed to
the evolution of the pozzolanic reaction and the reduction in shrinkage by the continued carbonation
of part of the hydrated compounds, such as calcium aluminate carbonate, which were prevalent in
the nTuv samples, according to the XRD analysis [24]. The carbonation that preceded the pozzolanic
reaction seemed to have an effect on the observed plastic behavior and particularly high toughness of
the nTuv mortars. The mortars and pastes with non-activated nT exhibited a similar trend to those
without nT, indicating the important role played the activation of nano-TiO2. Concluding, the addition
of nano-TiO2 in lime–metakaolin formulations resulted in plastic mortars with accelerated setting time
and high mechanical strength, appropriate for adhesion of porous stone fragments and filling of holes.
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