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Abstract: The evaluation of seismic performance of existing masonry buildings is a critical issue in
assessing the seismic vulnerability of the built environment. With this aim, non-linear static analysis
is commonly used, but results are influenced significantly by the collapse criteria adopted, as well as
by the assumptions about material properties and drift capacity of masonry walls. A methodology for
the probabilistic assessment of the seismic risk index is proposed by means of an original non-linear
pushover type algorithm developed by the authors. The main sources of uncertainties related to
masonry parameters and their influence on seismic risk indices are identified by means of sensitivity
analysis. Response surfaces for the seismic risk indices are thus defined through general polynomial
chaos expansion in order to quantify the uncertainties in the resulting seismic risk index. Finally,
a seismic performance classification is presented to help stakeholders to manage risks and define
priorities for seismic retrofit. The methodology together with the outcomes is illustrated for a set of
existing masonry buildings that are part of the school system in the Municipality of Florence.

Keywords: seismic risk; pushover method; uncertainty quantification; seismic retrofit; response
surface; gPC expansion

1. Introduction

Seismic vulnerability of the built environment has been confirmed and emphasized by the heavy
consequences of recent earthquakes. For this reason, the evaluation of seismic performance of existing
buildings is increasingly relevant, especially in historical towns characterized by constructions mostly
erected without following any specific seismic provisions.

In order to set-up intervention strategies as well as to identify priorities for seismic retrofit and
strengthening, also in view of future planning and optimal allocation of available resources in seismic
regions, city planners and owners of buildings need a suitable classification of construction in terms of
seismic vulnerability. In this context, masonry buildings are topical since they may cover not only
relevant and strategic buildings, such as schools, public buildings, hospital facilities and even large
industrial buildings, but also include a large part of the architectural heritage to be preserved.

The paper focuses on the development of a probabilistic methodology for the seismic risk
assessment and management of existing masonry buildings.

In the framework of an important research project regarding the seismic assessment of more
than 80 school masonry buildings in Florence (I), funded by the Municipality of Florence, the authors
developed an appropriate methodology in line with the most updated structural codes [1] to classify
the seismic performance of masonry buildings, aiming to define priorities in seismic upgrading as well
as to identify suitable retrofitting techniques.

Assessment of the seismic performance of existing masonry buildings is the subject of several up
to date studies concerning both the modelling strategies and the evaluation of masonry properties.
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Indeed, understanding and modelling the mechanical behavior of masonry elements is a longstanding
challenge in civil engineering [2,3].

Depending on the field of application and the level of complexity, several modeling strategies
can be envisaged, like macro-modeling, which is the most common method in engineering practice,
simplified micro-modeling, and detailed micro-modeling, where masonry units and mortar are
modelled explicitly.

Whatever the approach adopted, in any case results of the assessment are very sensitive to the
masonry’s mechanical parameters [4]. Since mechanical parameters of similar masonry typologies can
vary in a very wide range; it is not surprising that contrasting conclusions can be derived about the
assessment of a given construction simply modifying the assumed values of their relevant mechanical
properties. Moreover, despite several “standardized” masonry typologies that can be identified in
existing buildings, depending on the material, on the block shape and on its texture, the evaluation of
relevant mechanical parameters associated with them is often an open question.

Experimental in situ tests are also limited and characterization of masonry properties is often
obtained by visual inspection methods [5] combined with engineering judgment.

A first attempt to consider the uncertainty of masonry properties in the analysis of existing
masonry buildings is discussed in [6] where a Bayesian updating procedure is proposed for the
calibration of material properties to be used in the structural analysis.

In this study, a method for the analysis of masonry structures is implemented in a probabilistic
framework in order to take into account the uncertainties related to the modelling of the shear behavior
of masonry walls, aiming to provide a probabilistic assessment of the seismic performance.

Starting from preliminary historical inquiries and in situ tests and surveys, the proposed procedure
relies on an ad hoc developed original, reliable and robust, method for the non-linear static seismic
analysis of masonry building [7], as summarized in Section 2. Section 3 describes the 11 masonry
buildings considered in the present study, while in Section 4 the main sources of uncertainties related
to the shear behavior of masonry walls are discussed with special reference to a sensitivity analysis
concerning the propagation of uncertainties in the definition of seismic risk index. A probabilistic
seismic risk assessment is then proposed leading to the seismic performance classification presented in
Section 5.

2. Assessment of the Seismic Performance of Existing Masonry Buildings

The structural assessment of existing buildings and infrastructures requires the preliminary
acquisition of all the relevant information regarding the construction and the action that it withstands
during its life [8]. Inter alia, to define the actual performance of the construction, particularly significant
are data concerning the original configuration and the static scheme of the structure, the sequence
of structural modifications, alterations and interventions that occurred during its life, the actual
material properties, diagnosis and prognosis of existing crack patterns, failures, settlements extent of
degradation and damage.

Focusing on old masonry structures in seismic zones, it must be stressed that they were often built
disregarding any seismic design rules and without particularly technical competent workmanship;
in Italy, for example, this situation was very common at the end of the 1970s. For this reason,
masonry buildings are often highly vulnerable, thereby explaining why they frequently collapse during
strong earthquakes.

Furthermore, to estimate the actual performance of existing masonry buildings, specialized
methods, based on appropriate mechanical models, should be adopted for their static and
seismic analysis.

One of the first methods for the seismic resistance verification of unreinforced masonry building
named POR and considering floors infinitely rigid in the horizontal plane, was introduced by Tomažević
after the Friuli earthquake in 1976 [9,10]. This method was adopted by the Italian regulations published
in 1978 [11] and 1981 [12] for the repair of masonry buildings after earthquake events.
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For a consistent assessment of the seismic performance, robust analysis methods but also a proper
characterization of the behavior of masonry walls under horizontal loads are needed. Commonly,
beside local analyses, non-linear seismic static analyses are performed, supplemented, if necessary, by
dynamic linear analyses, mainly devoted to check the order of magnitude of the results. In non-linear
static analysis, masonry buildings are mostly modelled by means the so-called equivalent frame
model [13], but the resulting structural scheme is usually very complicated and the analysis needs to
be “driven” step by step in order to obtain reliable results.

2.1. The E-PUSH Program

As already said, an original method for non-linear static seismic analysis of mono or multi-story
buildings masonry building has been developed by the authors and is presented in [7]. The method,
which allows taking into account the ductility of the whole structure, recovers some basic assumptions
of the classical POR method, but without its limitations and inaccuracies. In addition, the so called
E-PUSH software program requires very simple structural models, so that, by contrast with commercial
pushover programs, the input results in being extremely robust and nearly independent of the user.
As usual, floors are considered, in turn, “flexible” or “rigid”, setting their in-plane stiffness to zero or
infinity, respectively, according its deformations in the horizontal plane.

Basic assumptions of the method are:

1. only lateral stiffness of masonry walls is taken into account, disregarding transverse stiffness;
2. horizontal force-lateral displacement diagram of the wall is elastic-plastic, with the plastic plateau

limited by the elastic drift δe and the ultimate drift δu.
3. verification is performed in terms of seismic capacity and demand using the

acceleration-displacement response spectra (ADRS) taking into account the story displacements.

The step by step procedure considers increasing values of the given horizontal forces, which are
distributed in the plan layout to the resistant shear walls according their stiffness. In short, at each step
of the procedure, the inter-story displacement δ of each shear wall is evaluated and three alternative
conditions are checked:

i. δ < δe, the wall is still in the elastic range;
ii. δe ≤ δ ≤ δu, the wall is in the plastic range, it achieved its shear force resistance and its

equivalent stiffness is reduced;
iii. δ > δu, the wall sustains only vertical loads and its shear resistance and its lateral stiffness are

set to zero.

The lateral forces are increased until the base shear resistance reduces to about 80% of the relative
maximum base shear resistance or when there is the collapse of all the walls pertaining to a same floor,
defining in this way the capacity curve of the whole structure.

The verification procedure, which follows the classical steps of a pushover analysis, is based
on the so-called N2 method developed by the University of Ljubljana, described in [14]. The N2
method combines the non-linear static analysis of the multi-degree of freedom model with the response
spectrum analysis of an equivalent single degree of freedom system and in the proposed procedure
has been implemented according to the following steps:

1. the non-linear capacity curve of the structure is transformed in an equivalent bi-linear elastic-plastic
curve as described in [14]; the curve is characterized by the maximum force Fy,eq, calculated
averaging the maximum base shear in the non-linear capacity curve and the base shear
corresponding to the attainment of the elastic limit; by the yield displacement δy,eq, evaluated
as the ratio between Fy,eq and the effective stiffness of the structure KE; and by the ultimate
displacement δu,eq which is the maximum displacement in the capacity curve;
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2. the bi-linear, force-displacement capacity curve, F− δ, of the multi-degree of freedom (MDOF)
system is converted in an acceleration-displacement, Sa − Sd, capacity diagram, for an equivalent
single degree of freedom (SDOF) system, according to the following formulae

Sa =
F

Γm∗
; Sd =

δ
Γ

; (1)

where Γ is the mass participation factor given by

Γ =

∑N
j=1 m jφ j∑N

j=1 m jφ j
2

(2)

and m∗ is the mass of the equivalent SDOF system.

m∗ =
N∑

j=1

m jφ j, (3)

In Equation (3) m j are the story masses and φ j are the normalized displacements in the considered
direction. The elastic period T∗ of the idealized bi-linear system is thus determined as:

T∗ = 2π

√
m∗Sd,y

Sa,y
(4)

where Sd,y is the yield displacement and Sa,y is the corresponding acceleration.

3. in order to obtain the demand diagram, the elastic design spectrum defined in the Italian Building
code [15] from the standard pseudo acceleration-natural period, Sae − T is converted into the
pseudo acceleration-displacement format Sae − Sde through:

Sde =
T2

4π2 Sae; (5)

4. the capacity spectrum and demand spectrum curves are plotted in the same graph, to define
displacement demand. If the capacity curve intersects the demand curve, the displacement
demand is assumed equal to the intersection point dt. Otherwise, the displacement demand is
determined starting from the intersection of the radial line corresponding to the elastic period T∗

of the structure with the elastic design spectrum defining the acceleration demand Sae(T∗). A
reduction factor Rµ is defined as the ratio between the acceleration demand Sae(T∗) and the yield
acceleration Sa,y.

Rµ =
Sae(T∗)

Sa,y
. (6)

Said TC the characteristic period of the ground motion, if T∗ ≥ TC the ductility demand µ, defined
as the ratio between the displacement demand and the yield displacement, µ = dt/Sd,y, is equal to Rµ,
so that

dt = Sde(T∗); µ = RµT∗ ≥ TC; (7)

if instead T∗ < TC, the ductility demand µ and the displacement demand dt are calculated
according to the formulas given in [10]:

µ =(Rµ − 1)
TC
T∗

+ 1; dt =
Sde(T∗)

Rµ
(1 + (Rµ − 1)

TC
T∗

); T∗ < TC; (8)
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5. the seismic performance of the structure is evaluated comparing the displacement demand dt

with the ultimate displacement defined by the capacity curve dc.

The procedure is iterated for different reference period of the seismic demand until it results
dt = dc, finally allowing the evaluation of the seismic risk index IR of the structure,

IR =
PGAC
PGAD

, (9)

where PGAC is the peak ground acceleration resisted by the structure, i.e., when dt = dc, and PGAD the
design peak ground acceleration provided by the Italian Building Code [15].

An example of the output of the proposed procedure in terms of ADRS for the two relevant
directions of the seismic force is reported in Figure 1, referring to one of the school masonry buildings
in Florence, described in the following.
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Figure 1. Final output of the pushover analysis, verification in the acceleration-displacement response
spectra (ADRS) plane.

The curves in Figure 1, derived from the E-PUSH output for the given case study, include:

• the bi-linear capacity curve of the structure (red solid line);
• the design spectrum SLVe (blue solid curve) for a return period of 712 years (TRD), referring to the

ultimate limit state for life safety (SLV) of occupants in a given location (Florence Municipality in
this case);

• the design inelastic spectrum SLVa (blue dashed curve);
• the displacement demand dt (scarlet dashed line) to be compared with the ultimate displacement

dc (green dashed line);
• the elastic spectrum (green solid curve) for the return period TRC consistent with the capacity of

the structure (dt = dc) and the corresponding inelastic spectrum (green dashed curve).

The inelastic spectra obtained with the N2 method are based on the commonly adopted “equal
displacement rule” for structures in the medium and long period range, T∗ ≥ TC, and on the procedure
proposed by Vidic et al. [16] for the short period structures. The equal displacement rule has been
used quite successfully for many years [14] and many statistical studies [16–18] have confirmed
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its applicability in case of structures on firm site, characterized by an average shear wave velocity
greater than 180 m/s, with fundamental period in the medium and long period range. For structures
characterized by lower fundamental period, the equal displacement rule does not work and Rµ < µ.
Formulae for Rµ were calibrated by Vidic et al. in [16] based on a statistical study, and then adopted
in the N2 method, assuming the transition period equal to TC, thereby disregarding its dependency
on the ductility µ. Anyhow, in case the ductility demand is µ < 4 this simplified assumption leads to
conservative results.

The influence of the mathematical model adopted for damping and the level of damping
ratio in the definition of the Rµ factor has been investigated by Vidic et al. in [16]. It is shown
that Rµ increases with decreasing damping coefficient; for example, when ξ decreases from 5%
to 2%, Rµ increases of about 10% considering the mass-proportional model and of about 20% for
instantaneous-stiffness-proportional damping. Consequently, when ξ < 5%, adoption of Rµ factor
corresponding to 5% damping is safe-sided.

In structural codes the response spectra are usually based on a conventional value ξ = 5% of the
viscous damping ratio; damping effects, if any, are taken into account suitably scaling the response
spectrum. In the already cited Italian Building Code [15], in agreement with corresponding clauses of
Eurocode 8, EN1998-1 [19], the damping correction factor η as a function of ξ is given by:

η = max


√

10
(5 + ξ)

; 0.55

. (10)

Under earthquake excitations, damping increases as the level of damage increases and values of ξ
up to 10% to 20% can be reached as discussed in [20].

To analyze the effects of varying viscous damping coefficients on the seismic risk index, a
parametric investigation has been carried out for the given case study. In the sensitivity analysis, the
response spectra, evaluated according the Italian Building Code, have been modified by varying ξ in
the range 5% to 20% by 2.5% steps. The results of the sensitivity study are diagrammatically illustrated
in Figures 2 and 3, for the two relevant directions, x and y, of the seismic excitation. More precisely,
Figure 2, analogous to Figure 1, synthetizes in the ADRS plane results for different values of the viscous
damping coefficient ξ (ξ = 5% ; ξ = 10% ; ξ = 15% ; ξ = 20%), while Figure 3 shows the variation
of seismic risk indexes as a function of the viscous damping coefficient ξ. In the case of ξ = 5%, the
outputs in Figures 2 and 3 obviously correspond to those already illustrated in Figure 1.

Figure 3 also indicates the correction factors η obtained introducing in Equation (10) the effective
viscous damping coefficients ξe calculated according the formulation proposed in [20]:

ξe = 5 +
100
π

(
1−

δy

δu

)
, (11)

where δy is the displacement of the structure at the first crack and δu its ultimate displacement.
Evidently, according to Equation (11), ξe values can be different in the two directions, like in the

present case study, where ξe,x ≈ 17.1% and ξe,y ≈ 14.1%, so that also correction factors are different in
the two directions. In the present case, Equation (10) provides η ≈ 0.67 in the x direction and η = 0.72
in the y direction.

As expected, the seismic demands are reduced and a significant increase in seismic risk indexes is
obtained considering the reduced damping correction factors η: in fact, the seismic risk index in the x
direction becomes bigger than one, increasing by about 46%; while in the y direction it increases by
about 41%.

It must be considered that such high values of the damping coefficients correspond to heavy
damages of the masonry walls: most likely, they can be achieved by modern brick masonry walls
characterized by high ductility, but for historical or ancient masonry walls, the assumption of such
high values of damping should be adequately justified.
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An analytical alternative formulations of damping coefficient is provided, for example, in [21]
where, on the basis of some experimental results, ξe is expressed as a function of the ductility µ by:

ξe = 5 + 32
µ− 1
π µ

. (12)

Assuming a ductility factor µ equal to 1.5, as recommended for unreinforced masonry in the
guidelines for the application of the POR method [12], in the case study, Equation (12) leads to an
equivalent damping of ξe ≈ 8.4%. This damping value, leading to a correction factor η ≈ 0.86, appears
to be more consistent with the actual behavior of historical masonry and leads to results in terms of
seismic performance more in line with the usual conservative assumption ξe = 5% (see dashed green
line in Figure 3). In this case, the increment of the seismic risk index is about 14.8% in the x direction
and about 15.3% in the y direction.

2.2. Validation of the E-PUSH Program

The proposed pushover analysis method has been validated, focusing on the ability to reproduce
the seismic response of masonry building prototypes tested in the laboratory and for which experimental
load displacement curves were available. An example of these structures is the full scale two-story
unreinforced masonry (URM) building prototype tested at the Georgia Tech laboratory [22].

The prototype was a two-story unreinforced brick masonry structure (see Figure 4) with timber
floor and roof diagrams; the in plan dimensions of the building were 7.32 m by 7.32 m and the story
heights were 3.6 m and 3.54 m for the first and the second story, respectively.Buildings 2019, 9, 237 9 of 21 
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Figure 4. Sketch of the two story masonry structure tested at Georgia Tech laboratory [22], plan view
and elevation.

The building was composed of four URM masonry walls connected at the corners, labeled
Walls A, B, 1, and 2 in [22], designed with different thickness and opening ratios to represent typical
masonry walls.

During the experimental campaign, two series of in-plane wall tests were carried out (one parallel
to Walls 1 and 2; and one parallel to Walls A and B) controlling the horizontal displacements, and
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adopting a displacement profile based on the first vibration mode. A complete description of the
structure and the loading tests can be found in [22].

The masonry structure has then been modeled and analyzed with the E-PUSH program in order
to obtain the capacity curves to be compared with the experimental ones presented in [22]. In Figure 5,
the 3D layout of the shear resistant walls modelled in E-PUSH is illustrated.
Buildings 2019, 9, 237 10 of 21 

 

Figure 5. 3D layout of shear walls in E-PUSH. 

 

Figure 6. Comparison of capacity curves of walls A and B with experimental 𝐻 − 𝛿 test results [22]. 

 
Figure 7. Comparison of capacity curves of walls 1 and 2 with experimental 𝐻 − 𝛿 test results [22]. 

Results fit very satisfactorily both in terms of ultimate resistance, as well as in terms of ultimate 
displacement, in all considered case studies. Detailed comparisons of the outcomes for two relevant 
case studies are reported in [4] and [7], referring to a two-story and a four-story masonry building, 
respectively. 

Figure 5. 3D layout of shear walls in E-PUSH.

The experimental force-displacement (H − δ) curves obtained for walls A, B, 1, and 2 have been
compared with those evaluated analyzing the two-story URM structure with the E-PUSH program.

The results are illustrated in Figure 6 for walls A and B, and in Figure 7 for walls 1 and 2. The
satisfactory agreement substantially confirms the reliability of the proposed approach.
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The E-PUSH program has been also tested on real case studies, such those presented in the next
section, and for which no experimental curves are available, comparing the outcomes of the algorithm
in terms of capacity curves with those obtained by means of a widely used commercial pushover
analysis software, Aedes PCM [23].

Results fit very satisfactorily both in terms of ultimate resistance, as well as in terms of
ultimate displacement, in all considered case studies. Detailed comparisons of the outcomes for
two relevant case studies are reported in [4] and [7], referring to a two-story and a four-story masonry
building, respectively.
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2.3. Challenges in the Assessment of the Seismic Performance

As mentioned before, a proper evaluation of the seismic performance requires a suitable
definition of masonry mechanical parameters, duly considering that masonry is a non-homogeneous
material characterized by an inelastic and anisotropic behavior. The identification of the appropriate
force-displacement response of in-plane loaded walls is then particularly crucial as it significantly
influences the results [4]. Moreover, depending on the material as well as on the texture, several
masonry types can be detected in existing buildings, characterized by mechanical parameters varying
in a very wide range. Anyhow, stiffness identification [24,25] and evaluation of drift capacity of
in-plane loaded walls [26,27] are still critical issues [28].

Flat jacks, diagonal compression and shear compression tests, in situ or in laboratory conditions,
are the subject of a wide literature concerning the shear resistance of masonry walls. But their outcomes
are often contradictory; in fact, the values of mechanical parameters depend on the test procedure
and may vary significantly for the same class of masonry or even for the same wall [24,25]. In this
respect, guidelines for application of the Italian Building Code [29] provide some guidance, about the
classification of masonry in terms of quality and typology.

The probabilistic seismic assessment procedure proposed here has been applied to 11 case studies
suitably chosen among the masonry buildings under investigation. For the sake of the study, masonry
has been mainly classified based on visual inspection and double flat-jack compressive test results,
duly taking into account epistemic and aleatoric uncertainties affecting the force displacement response
of in-plane loaded walls.

3. Case Studies

The aforementioned set of buildings, numbered from B1 to B11, are representative of a rather
long historical period, since they were built between 1900 and 1980. The set includes: 3 single-story
buildings (B3, B6 and B8), 4 two-story building (B1, B2, B7 and B10), 3 three-story buildings (B4, B5
and B11) and one four-story building (B10).

The buildings, mainly built with irregular stone and brick masonry characterized by different
quality and workmanship skill, have been selected in order to cover wide ranges in terms of structural
typologies, dimensions (volume varies between 3700 m3 and 45,000 m3) and inter-story heights (height
varies between 3 m and 5 m).

The 3D arrangements of the seismic resistant walls of the investigated buildings is synthesized in
Figure 8.
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4. Methodology

4.1. Identification of Uncertain Parameters

As discussed in the previous paragraph, the shear behavior of masonry walls is characterized
by significant uncertainty regarding the stiffness identification, the displacement capacity and the
ultimate strength.

In non-linear static analysis, the hysteretic behavior of masonry walls subjected to constant vertical
load and cyclic horizontal loads is idealized by means of a bi-linear resistance envelope.

As anticipated, the bi-linear envelope is characterized by an initial elastic slope, defined by the
lateral stiffness k and by a plastic plateau, bounded by the elastic inter-story drift δe and by the ultimate
inter-story drift δu, corresponding to the shear resistance of the wall HRd (see Figure 9).
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Assuming both ends are clamped, the lateral stiffness k of a masonry wall can be calculated, taking
into account shear deformations and bending effects [30], as:

k =
GA
1.2h

1 +
G

1.2E

(
h
l

)2−1

, (13)

where h is the inter-story height of the wall, l its length, A the area of its cross-section, and E and G are
the modulus of elasticity and the shear modulus of masonry respectively.

If diagonal tension shear failure governs, the shear resistance of the wall HRd can be derived from

HRd = A
1.5τk

b

√
1 +

σ0

1.5τk
, (14)

where σ0 is the compressive stress induced in the wall by the seismic load combination, τk is the shear
strength of masonry and b is the shear resistance factor. The shear resistance factor depends on the
aspect ratio of the wall, h/l. When h/l ≥ 1.5, it can be assumed b = 1.5 [30].

Concerning the ultimate displacement, unreinforced masonry is characterized through the so
called “ductility”. This property is far from being a ductility in a conventional sense [31], but rather a
synthetic parameter accounting for the relative slip along crack surfaces that parts of the wall elements
can sustain without significant shear stress loss. Wall ductility depends on normal stress σ0 [31,32], on
boundary conditions [13], as well as, via the aspect ratio h/l, of the wall geometry.

In the Eurocode 8—Part 3 [33] as well as in the guidelines for application of the Italian Building
Code [29], the ultimate drift is defined as a percentage of the inter-story height of the wall, depending
on the failure mode. For shear failure, the ultimate drift is set to

δu = 0.4% h. (15)

Excluding geometric variables, uncertain parameters characterizing the definition of the
force-displacement curve are:

• the shear modulus G and the elastic modulus E of masonry;
• the shear strength τk ;
• the ultimate displacement δu.

For the purposes of the present study, suitable pdf has been derived for each relevant parameter,
considering that the outcomes of seismic assessment are strongly dependent in non-trivial way, beside
the adopted failure criterion, also on the probabilistic distributions of the material properties [34].

Following an approach similar to that proposed in [6], a normal distribution has been associated
to the shear strength τk. The mean value of τk, τk, has been estimated combining in situ test results
with the indications reported in [29], taking into account the masonry class and its qualitative features,
while its standard deviation στk has been derived in such a way that 90% of the experimental data lies



Buildings 2019, 9, 237 13 of 20

within the range of values given in [29] for the identified masonry class. In case of stone masonry, it
has been obtained a coefficient of variation, COV = στk/τk = 0.14.

Regarding the shear modulus, due to belittle consideration influence of anisotropy and cracking
of masonry, it seems that values provided in almost all national codes [29] as well as in Eurocode
6 [35] overestimate the actual values as reported in [24,36]. Based on a critical analysis of a large
database of experimental test results [25], empirical relationships can be found for shear modulus and
elastic modulus:

G = α1 τk, (16)

G = α2 E, (17)

where α1 = G/τk, is a normally distributed uncertain parameter with mean value 1500 and coefficient
of variation 0.3, while α2 = G/E, is again normally distributed with mean 0.15 and coefficient of
variation 0.2.

For the ultimate displacement δu, a database of test results is collected and analyzed in [26]
and [27], mirroring the high variability of this parameter. A median value δu = 0.47% h is reported
in [26] in case of shear failure, which is in accordance with the value of δu = 0.4% h given in Eurocode
8—Part 3 [33] and the Italian Building Code. Since in [26] a minimum value of 0.14% h is given for δu,
δu can be assumed normally distributed with mean value equal to 0.4% h and coefficient of variation
0.2, so that the minimum value 0.14% h corresponds to the 0.1 fractile.

The statistical models adopted to model uncertain parameters are summarized in Table 1, in terms
of mean values (X) and the coefficient of variation (COV).

Table 1. Statistical description of uncertain parameters.

Random Variable ¯
X COV

τk

Mean Value for each masonry
class in [29], e.g., 0.026 N/mm2 for

stone
0.14

G/τk 1500 0.3
G/E 0.15 0.2
δu 0.004 0.2

4.2. Sensitivity Analysis

Sensitivity analysis has been performed on the aforementioned set of case studies in order to
quantify the relevance of each parameter in the evaluation of the seismic risk index.

Response surface methods based on general polynomial chaos expansions [37] have been used to
represent uncertain parameters and their propagation through the models.

4.2.1. Response Surface via generalized Polynomial Chaos Expansion

Let Q : Ω→ Rnq the vector of input random parameters [ τk; G/τk; G/E; δu ], described in the
previous paragraph, characterizing the mechanical model, said Ω the set of possible events. The
epistemic uncertainty coming from our lack of knowledge is modelled by this randomness, at which
prior probability distributions π(q) have been assigned in Table 1, based on professional expertise.
For mathematical convenience we also introduce maps F : Ω→ Rn . These maps associate the set of
random variables to a set of mutually independent random variables Zi, Zi : Ω→ Rn , characterized
by standard normal distributions π(zi).

Then, the non-linear static analysis algorithm E-PUSH can be viewed as the forward model G̃, a
deterministic solver that takes as input a given set of parameters q and provides a unique response
vector u

u = G̃(q), (18)
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where u is a vector that gathers the response quantities, in this case the seismic risk index IR.

Performing uncertainty quantification analysis consists in running the forward model G̃ many
times to quantify the uncertainty of the output and may require an high computational cost. In order to
speed up the computations, a proxy model for the predicted measurable u replacing the G̃ map can be
of great use. Taking advantage of functional approximations of the random variables by means of the
generalized polynomial chaos (gPC) expansion, the construction of response surfaces is significantly
facilitated and a computationally cheap proxy model is obtained [38]. For an extensive review of this
topic, please refer to [39].

Without going here into much mathematical detail, assuming that U = G̃(Q) has a finite variance,
the UN approximation of the response reads:

U = G̃
(
F−1(Z)

)
≈ UN =

∑
|i|≤N

ûiΦi(Z). (19)

In Equation (19) Φi(Z) = φi1 . . . φin are the multivariate gPC basis functions, some orthogonal
polynomials of total degree less than or equal to N, which is the degree at which the expansion is
truncated; Z is a Gaussian vector whose corresponding orthogonal polynomials are the Hermite
polynomials, which are orthogonal with respect to the Gaussian measure; ûi are the coefficients of the
PCE, i = (i1, . . . , in) ∈ Nn

0 is a multiindex (with |i| = i1 + . . .+ in).
The computation of the coefficients can be carried out with different methods such as the

interpolation/regression, and the pseudo-spectral projection. Further details about this topic are given
in [39,40]. When the gPC expansion of a given forward model is available, one has in fact an analytical
representation of u in terms of z, with the advantage that for any realization of the random vector Q
the response u can be easily evaluated by first mapping q to z and then evaluating the gPC expansion
without much computational expense.

The response surface is then obtained by running few times the forward model in correspondence
of the integration points determined via Gaussian quadrature rule for the random parameters. In
this specific case, a degree six polynomial expansion has been used (2401 integration points) and the
accuracy of the response given by the surrogate model has been assessed checking that it fits the
exact solution.

As an example, the response surfaces obtained for seismic risk index of the first case study
(Building 1) are reported in the four diagrams in Figure 10:

• in terms of G/τk and δu, assuming mean values for τk and G/E;
• in terms of G/τk and τk, assuming mean values for δu and G/E;
• in terms of τk and δu, assuming mean values for G/τk and G/E;
• in terms of G/τk and G/E assuming mean values for τk and δu.

4.2.2. Evaluation of Sobol Indices

As demonstrated in [41], it must be remarked that, besides providing a complete
representation of the random response of a model, the gPC expansion also allows an analytical
derivation of Sobol indices [42,43], so avoiding Monte Carlo simulations, which are much more
computationally demanding.

Sobol indices, which measure the quota of the total variance referable to the uncertainties of each
input parameters, are recognized to be accurate descriptors of the sensitivity of the model since they
do not assume any kind of linearity or monotonicity of the model [43].

Once the gPC representation of the model is available, the Sobol indices Sq can be analytically
computed as

Sq =
∑
|i|≤N

û2
i E[Φi(Z)

2]

DPC
, (20)
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where DPC is total variance of the response.
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Referring to the 11 case studies, the results of the sensitivity analysis, carried out considering both
relevant direction of application of the seismic action, are summarized in Figure 11. These results
demonstrate that the most relevant model parameters influencing the total variance are ultimate
displacement δu (≈54% of the total variance) and the G/τk ratio (≈36% of the total variance) and, to
a lesser extent, the shear strength τk (≈9% of the total variance), while the influence of G/E ratio is
negligible, as it represents only the 1% of the total variance (see Figure 12).
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It must be underlined that in the considered case the sum of contributions to the total variance
associated with τk and G/τk is not particularly sensitive on the scattering of τk. For example, when the
coefficient of variation of the shear strength increases from 0.14 to 0.2, the contribution of τk raises
to 19% of the total variance, while the contribution of G/τk decreases to 30%., but the total variance
associated to both contributions remain almost the same (≈49% vs. ≈45%).

4.3. Uncertainty Quantification

From the response surfaces previously defined, statistics of the seismic risk index can be finally
easily computed quantifying the uncertainty in the results and providing an important information for
the performance classification of the investigated structures.

In Table 2 and in the box-plot in Figure 13, the results in terms of median values, 5-th and 95-th
percentiles are reported for the 11 case studies considering the most relevant direction of application of
the seismic action.

Table 2. Statistics of seismic risk index in the 11 case studies.

School Building IR,05 IR,50 IR,95

B1 0.40 0.52 0.62
B2 0.37 0.54 0.73
B3 0.81 1.37 1.48
B4 0.37 0.53 0.74
B5 0.34 0.48 0.67
B6 0.99 1.45 1.48
B7 0.43 0.53 0.62
B8 0.79 1.37 1.48
B9 0.51 0.75 0.94
B10 0.39 0.52 0.67
B11 0.48 0.74 1.01
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5. Seismic Performance Classification

As already underlined, a robust and reliable performance classification of buildings is of paramount
importance in decision-making strategies about seismic retrofit.

In order to introduce a suitable performance indicator, a performance classification, based on the
probabilistic risk assessment performed in the previous section, is proposed here.

Seismic risk categories are identified considering the median value (IR,50) and the 5th percentile
(IR,05) of the seismic risk index. In particular, five categories (A–E) with increasing magnitude of
vulnerability are defined according the interval reported in Table 3.

Table 3. Seismic performance classification—definition of categories.

IR,05

<0.2 0.2–0.3 0.3–0.5 0.5–0.7 >0.7

IR,50

<0.3 E E - - -
0.3–0.6 E D D - -
0.6–0.8 E D C C -
0.8–1 D C C B B
>1 D C B B A

Allowing us to quantify and to communicate risks, the seismic performance classification defined
in Table 3 could represent an important tool for stakeholders to undertake decision about seismic
retrofit strategies, helping them to prioritize the interventions for the most vulnerable structures.

Focusing the attention on the buildings investigated, the classification proposed in Table 3 leads
to the classification: single-story buildings B3, B6 and B8 are in class A, buildings B9 and B11 are in
class C, and buildings B1, B2, B4, B5, B7 and B10 result in being in class D (see Figure 14).
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6. Conclusions

In this paper, a methodology for the probabilistic assessment of the seismic risk index of existing
masonry buildings is proposed.

Starting from a simplified non-linear pushover-type algorithm developed by the authors, the
procedure allows us to quantify the propagation of uncertainties related to masonry parameters in the
resulting seismic risk index.

The procedure is based on the definition of response surfaces for the seismic risk indices IR

through gPC-expansion; in this way, quantification of uncertainties in the resulting seismic risk index
is easily obtained, reducing the computation effort, and Sobol sensitivity indices can be computed
analytically from the gPCE coefficients.

The main sources of uncertainties, related to masonry material parameters and in-plane
displacement capacity, have been investigated and, by means of sensitivity analysis, their impact
in the evaluation of seismic risk indices has been quantified. The results confirm that the most
relevant parameters are related to definition of the ultimate displacement δu and the shear modulus G,
highlighting the necessity for further investigations on the shear behavior of masonry walls.

Finally, a seismic performance classification has been presented, defining five seismic risk
categories on the basis of the median value (IR,50) and the 5th percentile (IR,05) of the seismic risk index.

The outcomes have been illustrated for a set of existing masonry buildings that are part of the
school system in the Municipality of Florence, demonstrating how the presented procedure is very
promising and provides a robust and reliable tool to support decisions about seismic retrofit and the
priority of interventions for existing masonry buildings.
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