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Abstract: The use of textiles in architecture can cover a wide set of solutions and functions, spanning
from buildings, towards geotechnical, aeronautic or automotive fields, etc. Special applications
involve textiles in the health care or dressing scenarios. A multitude of other functions can then
be found relatively for the use of textiles in building engineering and facades. As far as traditional
facades or roofs composed of glass are taken into account, textiles offer a relevant number of potential
uses that are specifically focused on energy, acoustic, insulation and even structural goals, in addition
to pure architectural objectives. It is known that glass is relatively versatile, but has intrinsic needs
and thermo-physical and mechanical features that require dedicated design methods, towards safe
design purposes. Glass itself, in the form of constructional material, cannot be directly compared
to other consolidated solutions for buildings. The same concept applies to textiles, and to their
use to enhance other building components. Besides the key advantages deriving from the use of
textiles in glass facades and envelopes—in the form of light, thermal or acoustic insulation, or energy
efficiency—special care must be spent for specific structural requirements and performances. In some
cases, textiles can in fact offer enhanced resistance to ordinary glass structures. In other conditions,
textiles in combination with glass can ensure also enhanced acoustic and thermal performances.
A multidisciplinary design approach able to properly fit several objectives should be considered. This
paper aims at exploring the actual knowledge on glass textiles, with a focus on available tools and
research trends, with careful consideration for structural glass facade applications.

Keywords: structural performance parameters; textiles; glass; buildings; design loads; material
properties; experiments; Finite Element (FE) numerical modelling

1. Introduction

In the last two decades, the production and use of textiles for construction showed a relatively fast
increase, due to the availability of different products and manufacturing techniques, the capacity of
reproducing even complex geometrical shapes and several benefits for several building materials [1–3].
Textile fibres and meshes are in fact largely used to reinforce and enhance the capacity of load-bearing
components made of traditional materials, such as, concrete, masonry or timber.

The typical application consists of textile reinforced mortars in which fibre filaments act in place of
steel rebars (see Section 2 and [4–6]). The actual result can take the form of efficient technical solutions
that are suitable especially for existing (and often historical) buildings needing massive, structural
retrofit interventions, especially in regions with high seismic hazards ([7–10]). Major advantages are
represented by reduced weight, lack of corrosion phenomena, durability, etc. [11–13].

In the field of structural applications for buildings, textiles represent a strong source of innovation
for conventional materials and techniques, in the same way in which glass started to prove a certain
load-bearing role in construction (Figure 1).

Buildings 2019, 9, 156; doi:10.3390/buildings9070156 www.mdpi.com/journal/buildings

http://www.mdpi.com/journal/buildings
http://www.mdpi.com
https://orcid.org/0000-0003-3875-2817
http://www.mdpi.com/2075-5309/9/7/156?type=check_update&version=1
http://dx.doi.org/10.3390/buildings9070156
http://www.mdpi.com/journal/buildings


Buildings 2019, 9, 156 2 of 22

Buildings 2018, 8, x FOR PEER REVIEW  2 of 22 

In the field of structural applications for buildings, textiles represent a strong source of 
innovation for conventional materials and techniques, in the same way in which glass started to prove 
a certain load-bearing role in construction (Figure 1). 

 

(a) (b) 

 

(c) (d) 
Figure 1. Glass in buildings for (a) facades (reproduced from [14] with permission from Elsevier, 
license n. 4580680789049, May 2019); (b) roofs or (c)-(d) other load-bearing architectures (example for 
Piazza Liberty in Milano, Italy). 

A relatively recent and wide scenario of applications of textiles and fabrics can be found in glass 
facades and assemblies (Figure 2). Their key feature is represented by the realization of textile 
architecture, where, compared to traditional material systems in which the primary goal is the 
structural retrofit of (even massive) load-bearing components, specific tasks must be taken into 
account. 

On one side, the transparency and light balance of glazed systems should satisfy strict 
performance indicators that are intrinsic of glass enclosures. At the same time, glass intended as a 
load-bearing material is characterized by a well-known tensile brittleness, and typically small 
thickness-to-size ratios that should be assessed with the support of dedicated design approaches [14–
16]. Enhanced structural performances and mechanical features should then be ensured for structural 
glass systems under extreme loads, such as shocks or severe natural hazards [17–20]. The possible 
occurrence of coupled thermo-mechanical phenomena in glass, as a direct or indirect effect of the 
textile/coating systems in use, may also have crucial consequences, given the high sensitivity of glass 
systems to thermal shock phenomena or other degradation effects with severe temperature gradients 

Figure 1. Glass in buildings for (a) facades (reproduced from [14] with permission from Elsevier, license
n. 4580680789049, May 2019); (b) roofs or (c,d) other load-bearing architectures (example for Piazza
Liberty in Milano, Italy).

A relatively recent and wide scenario of applications of textiles and fabrics can be found in
glass facades and assemblies (Figure 2). Their key feature is represented by the realization of textile
architecture, where, compared to traditional material systems in which the primary goal is the structural
retrofit of (even massive) load-bearing components, specific tasks must be taken into account.

On one side, the transparency and light balance of glazed systems should satisfy strict performance
indicators that are intrinsic of glass enclosures. At the same time, glass intended as a load-bearing
material is characterized by a well-known tensile brittleness, and typically small thickness-to-size
ratios that should be assessed with the support of dedicated design approaches [14–16]. Enhanced
structural performances and mechanical features should then be ensured for structural glass systems
under extreme loads, such as shocks or severe natural hazards [17–20]. The possible occurrence of
coupled thermo-mechanical phenomena in glass, as a direct or indirect effect of the textile/coating
systems in use, may also have crucial consequences, given the high sensitivity of glass systems to
thermal shock phenomena or other degradation effects with severe temperature gradients [21–23].
In any case, shading components and other facade members as a whole, should offer appropriate
structural behaviours, at the local (component) and global (assembly) levels [14,24].
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Figure 2. Selected examples of textiles in glass facades and assemblies: (a)-(b) textile facades with 
shading membranes (reproduced from [25,26]); (c) glass textile samples (Tex Glass® reproduced from 
[27]); and (d) textiles for enhanced acoustic comfort of glass halls (reproduced from [28]). 

In this regard, the paper aims at presenting an overview on the actual possibilities and trends 
for the advanced use of textiles in combination with glass for buildings (i.e., Figure 2). In doing so, 
the typical (consolidated, or more recent) textile applications and available techniques for textiles-
based retrofit of constructional components made of concrete, masonry or timber are briefly recalled 
in Section 2. The attention is then focused on the use of textiles with or in replacement of glass facades 
and load-bearing components, with evidence of existing research studies and major challenges 
(Sections 3 and 4).  

According to Figures 1 and 2, glass is a relatively versatile material, in the same way of textiles 
and fabrics. The final practical result of glass-textile design strategies takes the form of a wide series 
of possible applications, where textiles can be intended to satisfy single or specific performance 
requirements. Within the overall built environment, some typical examples of modern architecture 
are aimed at ensuring decorative goals only. In some other cases, thermal and lightening comfort 
levels can represent the primary objective. Some literature research studies recently explored the 
mechanical efficiency of load-bearing glass elements with embedded fabrics. The dedicated methods 
and advanced analysis techniques are finally required for bulletproof textile curtains, aimed at 
minimizing the typically high vulnerability of glass facades and fenestrations under shock. Within 
such a complex and in-progress scenario, the paper includes part of a research study financially 

Figure 2. Selected examples of textiles in glass facades and assemblies: (a,b) textile facades with shading
membranes (reproduced from [25,26]); (c) glass textile samples (Tex Glass®reproduced from [27]); and
(d) textiles for enhanced acoustic comfort of glass halls (reproduced from [28]).

In this regard, the paper aims at presenting an overview on the actual possibilities and trends for the
advanced use of textiles in combination with glass for buildings (i.e., Figure 2). In doing so, the typical
(consolidated, or more recent) textile applications and available techniques for textiles-based retrofit of
constructional components made of concrete, masonry or timber are briefly recalled in Section 2. The
attention is then focused on the use of textiles with or in replacement of glass facades and load-bearing
components, with evidence of existing research studies and major challenges (Sections 3 and 4).

According to Figures 1 and 2, glass is a relatively versatile material, in the same way of textiles
and fabrics. The final practical result of glass-textile design strategies takes the form of a wide series
of possible applications, where textiles can be intended to satisfy single or specific performance
requirements. Within the overall built environment, some typical examples of modern architecture are
aimed at ensuring decorative goals only. In some other cases, thermal and lightening comfort levels
can represent the primary objective. Some literature research studies recently explored the mechanical
efficiency of load-bearing glass elements with embedded fabrics. The dedicated methods and advanced
analysis techniques are finally required for bulletproof textile curtains, aimed at minimizing the
typically high vulnerability of glass facades and fenestrations under shock. Within such a complex and
in-progress scenario, the paper includes part of a research study financially supported by the EU-COST
Action “CONTEXT - European Network to connect research and innovation efforts on advanced smart
textiles” (2018-2022), see also [29].
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2. Textiles and Fabrics with Traditional Buildings Materials

The performance assessment of textile-reinforced cementitious composites is an established
research topic, with over 30 years of efforts aimed at improving their mechanical behaviour and overall
capacity. Both 2D or 3D textile fibre meshes can be used to reinforce a given mortar matrix (see for
example Figure 3a). Glass-fiber reinforced polymer (GFRP) components represent one of the most
efficient solutions, due to their high tensile resistance, but the implementation of novel materials with
enhanced benefits is also of interest [30–34], and attracted in the last few years the attention of several
research investigations inclusive of experimental, analytical and finite element (FE) numerical studies.
The thermo-mechanical structural behaviour of these assemblies under unfavourable conditions can
be also relevant and should be properly taken into account [35,36]. Textile reinforced concrete can then
be efficient also for improving the capacity of sandwich panels [37]. As a general issue, however, the
bonding properties of these textiles for enhanced mortars are still an open research topic, especially
with respect to textile composition, prestressing, etc., see for example [38].
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4580730591053, May 2019), and (c)-(d) timber joints. (c): timber specimen with embedded knitted 
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Figure 3. Examples of (a) textile reinforced concrete slab with carbon fiber mesh (reproduced from [39]),
or (b) masonry column (reproduced from [40] with permission from Elsevier, license n. 4580730591053,
May 2019), and (c,d) timber joints. (c): timber specimen with embedded knitted fabric reinforcement
(cross-section; reproduced from [41]); (d) 3D knitted reinforcement for a solid connection (reproduced
from [42] with permission from Springer Nature, license n. 4580731288540, May 2019).

A certain analogy can be found in the use and requirements of textile reinforced mortars for
the retrofit of masonry structures (Figure 3b). The design issue is of interest especially for existing
buildings, due to the need of structurally efficient, feasible and durable solutions that could be
implemented to enhance the capacity of historical masonry assemblies, including stone walls or other
typologies [43–47].
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In the case of timber structures, textiles can offer certain structural benefits especially in the form
of reinforced joints, see Figure 3c or Figure 3d and [48–50]. Apart from the multitude of advantages that
can derive from the use of textiles in timber engineering, however, major restrictions and limits could
derive from the different thermal performance of the involved materials. Apart from the availability of
consolidated knowledge for textile-reinforced timber structures [51], the topic still attracts novel efforts,
as a result of a continuous evolution in materials and techniques, and thus a progressive development
and refinement of calculation approaches.

3. Textile Architectures and Innovative Solutions for Glass Facades

3.1. Glass Facades

Glass is an amorphous and commonly transparent, solid material, whose popularity and use for
load-bearing members in modern buildings is rapidly increasing. Fast advancements in knowledge
and manufacturing of glass and glass-related products for buildings characterized the civil engineering
sector,- especially in the last two decades. However, most of the current structural design issues are
still related to ordinary or extreme loads that facades could suffer during their life time, including
severe thermal exposure (Figure 4a,b), impact (Figure 4c), etc.
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interest for textile membranes and skins.  

Figure 4. Examples of relevant damage in glass: (a) thermal shock; (b) melting of the interlayer foil,
due to high temperature exposure (Zagreb University, Croatia–VETROLIGNUM Project); (c) fracture
due to impact.

As far as these glass enclosures are designed to create a physical separation between indoor and
outdoor spaces (see Figure 5), the optimal solution for major performance issues should be based on a
multidisciplinary approach, inclusive among others, of thermal and energy tasks that are of primary
interest for textile membranes and skins.
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3.2. Properties of Textiles and Fabrics for Glass Facades

It is generally recognized that textiles and foams actually represent a valuable result of recent
production technologies, able to integrate with different groups of common,- but also innovative,-
constructional materials.

Especially in facades, the use of textiles offers a relatively wide set of possible configurations. Most
of them can mainly involve shading systems and/or architectural components (Figure 2), while some
others are specifically intended to improve the acoustic performance, and/or the thermal response,
etc., of a given system. Based on [53] and Figure 6, it is generally recognized that the typical use
of textiles and fabrics in building envelopes can aim at enhancing thermal insulation, light, and
energy performances.
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From a mechanical point of view, even further potential could derive. The major advantage is in
fact that textiles are able to combine high tensile strength and elasticity, with low bending stiffness.
In addition, textiles can be produced in large amounts, hence resulting in an optimal candidate for
several typologies of building components and structural systems.

Certainly, an intrinsic advantage of the use of textiles in facades derives from the availability of
several man-made fiber types that can be arranged in free-form solutions, see Figure 7. According to
the BISFA 2009 terminology [53,54], most of the materials of technical interest are polymeric based.
Otherwise, it is also possible to notice that the majority of these solutions are expected to offer
architectural or shading contributions only, and hence, only a few of them are suitable for efficient
structural applications. Even a limited part of such a selection can be used to obtain enhanced
mechanical performances of traditional glass members and systems.
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4. Summary of Recent Research Efforts and Trends

As a part of the complex systems and buildings, glass facades must ensure strict performances
under the assigned boundaries and loads during their life-time. When textiles are used for enhanced
textile architectures in facades, it is also clear that they should be able to mutually interact with the
glazed system they belong, and adapt to possible variations in the external boundaries.

When textiles are used in buildings in the form of stand-alone membranes, these components
must also offer appropriate behaviours in the form of independent building systems. The key aspects to



Buildings 2019, 9, 156 8 of 22

assess and optimize during the design process are hence related to their capacity to withstand ordinary
(but also extreme) loads, both mechanical and thermal, in their most unfavourable combinations.

4.1. Tensile Membrane Structures

Tensile membrane structures represent a class of building systems that are characterized by
unique properties, compared to the conventional built environment. Apart from their relatively low
self-weight and high flexibility, these structures are generally recognized to represent an optimal
structural typology, as they are loaded only in tension. The tangible result in buildings is that shapes
can be adapted to the flow of design forces, and a minimum of material can be used.

In general, membrane systems consist of a primary and a secondary structure. The primary
structure is represented by the supporting system that is a sub-structure composed of steel but also
aluminium, timber or concrete. The secondary system is the textile membrane (or foil) itself, that is
often reinforced by cables or belts. Only in limited cases (i.e., air-supporting halls or systems with
inflatable beams), the primary and secondary structures may be both realized of textile fabrics. When
different materials are involved for the primary and secondary systems, their structural design has to
be necessarily performed on the base of appropriate regulations, so as to achieve appropriate safety
levels for each component and the overall system.

Despite the availability of several research projects and studies on tensile membrane structures,
however, only a few design codes are currently available for their structural design. A common
design approach, as well as a comprehensive international standard, is still needed to provide
verification techniques and achieve harmonized safety levels [55]. Within CEN/TC 250/WG 5 (Structural
Eurocodes–Membrane Structures), CEN/TC 248/WG 4 (Textiles and Textile Products–Coated fabrics)
and the TensiNet Association (an international team of researchers, engineers, architects, material
producers and manufacturers [56]), a background report was provided [55], with relevant information
in support of the implementation and development of a future Eurocode for the structural design of
tensile membrane structures.

The resistance of membrane structures is in fact rather complex to estimate because it depends on
the static strength of materials in use,- and the latter can be conventionally estimated from tensile tests
(uni- or biaxial tensile tests) but also from a combination of other influencing parameters, like the load
duration, the in-service temperature, the environmental conditions, etc.

Different materials and possible combinations are used for composites and architectural fabrics.
In most of the cases, basic components can consist of woven yarns made of polyester (PES), glass fiber
or polytetrafluorethylene (PTFE).
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These yarns are coated with polyvinylchloride (PVC), polytetrafluorethylene (PTFE), or silicone.
Within the most efficient combinations, the majority of applications according to Figure 8 can involve
PVC-coated fabrics or PTFE-coated glass fabrics. For some structures (especially foldable constructions),
PTFE-fabrics can be also used, including different types of coatings (like silicone or PTFE).

Regarding structural fabrics:

(1) strength values should be mainly taken from experimental tests;
(2) tensile strength values should be determined according to EN ISO 1421: 2016 (Rubber or

plastics coated fabrics–Determination of tensile strength and elongation at break [58]) and the
characteristic value should be determined according to EN 1990-Annex D: 2002 (Eurocode 0–Basis
of Design–Annex D: Design Assisted by Testing [59]);

(3) tear strength values should be determined in accordance with EN 1875-3: 1997 (Rubber or plastics
coated fabrics–Determination of tear strength–Part 3: Trapezoidal method [60]);

(4) adhesion values should be calculated as specified in the EN ISO 2411: 2017 (Rubber or plastics
coated fabrics–Determination of coating adhesion [61]);

(5) in order to limit or avoid testing, finally, conservative strength values for conventional material
products may be directly taken from the respective tables given by standards (when available).

Apart from the availability of consolidated products, however, it is then important to focus on
structural membranes that are often produced for single projects, i.e., to adjust structural and other
physical properties (i.e., light transmission) to specific design requirements. In these cases, the strength
values of interest must be exclusively determined with the support of experimental tests. Special care
is actually spent also for the use of auxetic materials, as efficient alternatives in the field of textile
architectures, see [62–66].

4.2. Textiles for Shading Systems in Glass Facades

When textiles are mentioned for glass facades, the typical example is the use of woven fabrics that
are installed in the front of conventional curtain walls, in the form of semi-transparent claddings with
shading effects that can efficiently contribute to the energy performance of the overall system.

As such, it is generally recognized as the role that textiles can have for fashioned architectures in
glass facades [67–69].

The major benefit derives from the curtain-to-fabrics gap, and from the air circulating there, with
enhanced insulation performances and reduced energy costs. The shape of textiles can be designed to
create a special architectural design. According to Figure 9 and [70], for example, textiles combined
with foams can result in relevant mechanical and insulation performances for glass facades. However,
the actual adhesion is between foams and fibers.
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Figure 9. Textiles for free-form architectures in glass facades (reproduced from [70] under the terms
and condition of CC BY-NC 4.0 license): (a) external coating composed of pressure-resistant lightweight
ropes made of foamed textile sleeves, and (b) cross-sectional detail of a 3D textile-foam spacer
fabric solution.
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A valid alternative can take the form of embedded textiles for glass facades, see Figure 10. The
concept recalls the architectural shading of Figure 2c, where double laminated glass sections (combined
with float, heat strengthened or tempered layers) are combined in the autoclave process with textile
fabrics. Depending on the final layout, these textile layers are mostly intended to have a decorative
role, filtering up to 99% of light. The assembled sections can have maximum dimensions up to 1.5 m
× 3 m, and find applications in stairs, balustrades, and other load-bearing glass elements in which
prevailing structural requirements should be properly assessed.
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Figure 10. Examples of textile glass: (a) front view with (b) mesh detail, or (c) selection of possible
coloured mesh fabrics (reproduced from [71]).

In accordance with Figure 10 and Section 4.1, these suitable options can generally consist of
(i) woven glass fibres (coated with PTFE, silicon, or Teflon), or (ii) PES fabrics (PVC-coated).

From a mechanical point of view, the features of major interest are represented by the resistance
and stiffness of these fibres, but also by their weight, or by the expected fire insulation capacity. Other
key comfort levels to satisfy can include light and visibility, see Table 1.

As far as the above concepts are further elaborated, the final result can take the form of adaptive
textiles able to ensure repeated dynamic performances within a given glass facade [72], Figure 11.
According to [73,74], the design challenge is hence even more complex, due to the need of combining
multiple performance parameters and requests (i.e., shading, visual comfort, thermal performance, etc.)
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with typically mechanical issues and design aspects to assess for safety purposes [75], both static
and dynamic.

Table 1. Typical examples of embedded textiles for enhanced glass facades (selection).

PTFE-Glass Fibre
Open Mesh

PTFE-Glass Fibre
Open Mesh

PTFE-Glass Fibre
Open Mesh

PVC/PES Open
Mesh

Tensile strength
[MPa] 5000/4500 1500/2500 2400/1800 3300/2200

Width [µm] 300 300 300 300

Open area [%] > 30 40 57 > 30

Translucency [%] 34 40 40 42

The concept of adaptivity is also in line with past efforts summarized in [76,77], where the
mechanical performance of traditional laminated glass panels was expected to enhance under
ordinary wind pressure, taking advantage of shape-memory alloy (SMA) fibres embedded in the
lamination process.
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4.3. Textiles Embedded in Load-Bearing Glass Elements

The concept of reinforced glass was first proposed in the early 2000s [78]. From a mechanical
point of view, the design approach takes inspiration from reinforced concrete mechanisms, i.e., offering
a certain redundancy and post-cracked ductility to typically brittle load-bearing members composed
of glass. Early prototypes, in this regard, were characterized by the use of steel flanges and sections
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able to carry on part of the tensile loads, which enhanced the overall capacity of traditional laminated
glass sections [79–81].

In [82], embedded textile rods were proposed as a potential technique to optimize such a
reinforcement concept. From one side, the limited size of textile rods available on the market is
certainly suitable for an embedded solution, within the conventional thicknesses of laminated glass
layers (see Figure 12). At the same time, the high tensile resistance of textiles can be a guarantee for
relevant post-cracked performances. In accordance with [83], however, the actual limit of the approach
is represented by the brittle failure mechanisms of textiles, with respect to steel fibers. Otherwise, when
the rods are properly designed with respect to the nominal glass section, it is possible to postpone the
tensile failure of textiles, compared to glass, hence to ensure their activation and to obtain even large
safety margins.
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Figure 12. Examples of (a) textile rods acting as (b) embedded reinforcement in laminated glass beams
(figures reproduced from [82] with permission from Elsevier, license n. 4581301243094, May 2019), as
alternative to (c,d) embedded ultra-high tensile strength steel or (d) stainless steel fibers (reproduced
from [83] under the terms and conditions of CC BY license).

Based on literature studies, in particular, GFRP members proved to represent an efficient solution,
both for large span reinforcement applications (i.e., glass beams like Figure 12b), but also in the
form of enhanced connections for the critical glass regions. In the latter case, see Figure 13 and [84],
the final result can take the form of a load-bearing assembly able to preserve a maximum visibility
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and transparency for glass, while ensuring the feasibility, robustness and durability of the overall
design concept.

At the current stage, however, there is a general need for more detailed investigations for all
the potential applications of textiles in structural glass applications. Major limits are represented by
the actual lack of standards and guideline documents with recommendations for the design and/or
modelling and /or testing of such innovative solutions. In some other cases, the design concepts that
have been presented in the literature are still early-stage, preliminary results that should be further
assessed via extensive analyses. On the other side, the same available outcomes of literature suggest
the promising development of novel glass-textiles systems for buildings.Buildings 2018, 8, x FOR PEER REVIEW  13 of 22 
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4.4. Textiles forProtective Claddings and Blast Proof Curtains

Due to the relatively high vulnerability of glass windows and facades, one of the recent applications
of textiles in existing structures can take the form of special curtains, aimed at protecting the occupants
in the case of extreme loads, such as impacts and explosions (Figure 14 and [85]), but also fire [86].
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For example, several non-woven technologies can be used for blast-resistant curtains [87]. The
common feature of these solutions, when specifically intended for glass windows and facades, is that
they are designed to protect the occupants from possible glass shards. As a result, the choice of material
and the installation detailing is aimed at capturing the possible projects after impact. High strength
PES fibers are generally preferred.

Experimental and FE numerical investigations were carried out by several researchers, in the last
years, to explore the potential and feasibility of these textile curtains, so that they could be efficiently
used as a passive protection device for glass facades, see [88–93]. Careful consideration was spent,
in [89,91], for the assessment of major effects and failure process of woven fabric drapes (Twaron®plain
weave samples), under ballistic impact (0.22 calibre bullet projectiles with spherical tip), see Figure 15.
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the protection of glass facades (reproduced from [90]): (a) fabric detail; (b) bullet sabot (with nominal
dimensions in mm); (c) detail of the typical numerical model and (d) predicted failure patterns.
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Following [94], it is however recognized that the textile architecture can have a key role on the
expected mechanical behaviour of these curtains. The study reported in [94,95], for example, was
focused on jersey-knitted fabric specimens, and took into account several material compositions, fiber
lengths, but also the amount of filaments, plies etc.

The fulfilment of specific performances for textile curtains under impact, in this regard, cannot
disregard the effect of yarn-to-yarn and textile structural interactions. In some cases, such a goal
can be assessed with the support of advanced FE numerical models (i.e., Figure 16), where careful
consideration should be spent for major intrinsic features of multifilament yarns, such as, the variation
of material stiffness with the loading state (i.e., due to modifications in the internal structure of yarns),
crushing phenomena in the transverse plane (with respect to the yarn’s longitudinal direction), etc.
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Figure 16. An example of refined FE modelling of textile structures: (a) Microscopy image of the
reference knitted textile architecture, with evidence of local stresses due to mechanical interactions;
(b) in-plane and (c) out-of-plane stress peaks (values in Pa; figures reproduced from [94] with permission
from Elsevier, license n. 4581300089691, May 2019).

4.5. Textiles for Acoustic and UV-Absorption Comfort and of Glass Facades

The acoustic performance assessment of glass in buildings, finally, is another performance indicator
that generally requires experiments and refined calculation studies (see for example [96,97]). At the
same time, however, the same glass façade panels are the first defence from UV radiation, and UV rays
themselves are responsible for severe mechanical degradation of laminated glass members (especially
the interlayers, see [98–100]).
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The use of textiles for smart skins, in this regard, is often associated to the realization of membranes
and coverings that are asked to interact with wide glass surfaces. This can be the case of public spaces
in which people can meet and/or work, like atria, internal courts, restaurants, open spaces, etc. The
experimental study summarized in [101], for example, proved that textile fabrics coated with PVB
blinder matrices can offer enhanced performances against UV radiations. The advantage is represented
by the incorporation of different, efficient UV-absorbers, hence resulting in UV-protective coatings for
textiles. The same research study, however, focused only on the UV-absorption capacity of coated textiles,
and additional performance indicators should be taken into account for comparative evaluations.

While these glass panels can be frequently used to cover wide surfaces and roofs where they are
able to preserve an appropriate lightening level for the interior rooms, further severe acoustic issues
could derive from the so called Lombard effect, and namely consisting of a reflex of vocal chords. This
phenomenon is strictly related to the vocal intensity, voice frequency, word duration, etc., but may
result in unpleasant performances and thus unpleasant feelings for the occupants [102–104].

In this context, the research study carried out in [105] was focused on the acoustic comfort deriving
from four different woven PES fabrics for selected scenarios of technical interest, including various
weaving pattern for fabric yarns and different boundaries (see Figure 17). The investigation proved
that optimal acoustic performances require dedicated (and even complex) theoretical calculations. The
currently available commercial software packages for sound propagation, in this regard, were found to
have crucial limits that in most of the cases were related to a weak description of key parameters and
boundaries of primary interest for building engineering.
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5. Conclusions

In this paper, the actual knowledge and research on the use of textiles in facades was explored,
with a focus on applications of primary interest for structural glass in buildings.

Certainly, glass is relatively versatile material, but has intrinsic needs and thermo-mechanical
features that require dedicated design methods and calculation approaches, towards safe design
purposes. Apart from the series of advantages deriving from the use of textiles in glass facades for
thermal or acoustic insulation, energy efficiency, etc., special care must be spent also for their structural
requirements, at the component and assembly levels.

Textiles can offer robust support for the development of enhanced and innovative solutions for
building engineering, and a multitude of functions and possibilities can be already found for the use of
textiles in facades. Several decades ago, membrane structures have been mostly built in the form of
attractive, large span, highly curved roof structures. Nowadays, the so called textile architecture can
be found in the built environment in an even larger variety of structural skins that find application in
private housing, public buildings, open spaces, etc. Typical examples include small scale shadings
(i.e., to ensure protection against sun and rain), innovative components for adaptive facades (i.e., such
as dynamic solar shading, or foils replacing glass elements and acting as substrates for solar energy
harvesting systems, etc.), roof constructions (i.e., to preserve archaeological sites, market places, bus
stations, etc.) and formworks for light shell structures.

As far as traditional glass facades are taken into account, textiles can hence offer a relatively wide
series of potential uses (for energy, acoustic, thermal performance improvement, etc.), including options
that are specifically intended to offer enhanced resistance to glass members. A multidisciplinary
design approach able to properly fit several objectives should be necessarily considered towards the
implementation and refinement of regulations, guideline documents and standardized approaches for
modelling, testing and analyzing these innovative load-bearing solutions.
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