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Abstract: The use of grey-box models for short-time forecasting of buildings’ thermal behavior
requires the determination of the models’ order since this order could influence the grey-box models’
performance. This paper presents an analysis of the optimal order of these models for different
thermal conditions. The novelty of this work consists of considering the influence of the heating
conditions on the determination of the performances of grey-box models. The analysis is based on
experimental tests that were conducted in a room with different thermal conditions, related to the
variation of the heating power. Experimental results were used for the determination of the optimal
grey-box models’ order that minimizes the gap between the experimental results and the grey-box
forecasting. Results show that the optimal grey-box models’ order depends on the buildings’ thermal
conditions, but generally lies between two and three with an error less than 0.2 ◦C and a fit percent
greater than 90%.
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1. Introduction

Building energy simulation models (white models) require a good understanding of the thermal
behavior of buildings [1]. Since the use of these models requires detailed information about the
buildings’ components, equipment and use, as well as large computation capacities [2,3], alternative
thermal models were proposed for the thermal modelling of buildings such as the black-box models [4,5]
and grey-box models [6,7].

The grey-box models provide some advantages in the buildings’ thermal modeling process,
in particular, ease of their use and the possibility to link their parameters to global buildings’ physical
characteristics, such as the heat resistance and the mass capacity. These models can be used for
different purposes such as control of the indoor environment [8,9], forecasting energy consumption,
and evaluating buildings’ energy performance [10–12]. However, their practical use is subjected to the
difficulty of the determination of their optimal order. This issue was investigated recently in some
papers [6,13]. For unoccupied buildings, Bacher and Madson [14] showed that the performances of the
grey-box were not improved by increasing the model order beyond 3. Hedgaard and Peterson [13]
showed that the second and third-order models produce a good short-time forecasting of the building’s
thermal behavior. Fonti et al. [15] used experimental studies to analyze the accuracy of grey-box
models for the short-term prediction of a building. Results showed that the second-order models
provide the required accuracy. Reynders et al. [16] carried out an identification study to determine
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suitable reduced-order models for predicting the thermal response of a residential building. They
found out that best predictions were obtained with the third-order grey-box model.

Generally, the grey-box models’ order is presumed independent of the power supply conditions.
In recent research [17], it was shown that the heating conditions should be considered in the
determination of the optimal order of the grey-box models and that the data dynamics affect the
performance of grey-box models. This paper discusses this issue using experimental tests conducted
in various heating conditions for the investigation of the influence of these conditions on the optimal
order of the grey-box model.

2. Methodology

Tests were carried out in a room submitted to various thermal conditions. The indoor temperature,
as well as the external temperature, were recorded. Tests were conducted with three values of the
indoor heating power (zero, 900 W and 1500 W). The results of each test were then used for the analysis
of the grey-box models’ performances for three forecasting times: 15, 30, and 60 min. Analyses were
conducted with four values of the grey-box order: 1, 2, 3 and 4 (Figure 1). The optimal order of the
grey-box model for each experiment was then determined by comparing the numerical simulations to
recorded data.
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Figure 1. Resistor-Capacitor networks for the four models.

Numerical simulations were performed using MATLAB software.

2.1. Grey Box Modeling

Grey box models combine building physics and statistics. Physical knowledge derived from the
buildings’ dynamics is formulated by stochastic differential equations in the state space form [15].
Statistical measurements present information embedded in the collected data.

dX(t) = A(θ)X(t) + B(θ)U(t) + σ(θ)dw , Y(t) = C(θ)X(t) + D(θ)U(t) + ε (1)
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Sun radiation is considered zero due to the absence of windows. Parameters θwere estimated
using MATLAB software. The model structures are derived from (RC) networks, analogue to the
electric circuit.

The parameters of the model represent different thermal properties of the building. This includes
thermal resistances: R, Re, Ri, Rm, and Rf.

The heat capacities of different parts of the building are represented by: C, Ci, Cfe and Cfi and Cm.
Finally, the input vector consists of Te and the internal energy sources which are presented by Qs

and Qh.
An example of a simple model (1R1C) is given here. By applying the dynamic heating balance

equation, we get:

C
dTi
dt

=
1
R
(Te− Ti) + heating source, C

dTi
dt

=
1
R
(Te− Ti) + Qs + Qh (2)

Same methodology was applied for the other orders.

2.2. Parameters Estimation

The model’s parameters were determined using ‘Greyest’ function in ‘Matlab’. This function
provides the maximum likelihood using the following algorithms: The Gauss-Newton direction, the
Levenberg-Marquardt and the steepest descent gradient [15,18].

Initialization of parameters was calculated by applying the French thermal code (RT 2005–2012),
see Appendix A [11,19,20]. Table 1 presents the initial values of the parameters defining
buildings’ characteristics.

Table 1. Initial values for the estimated parameters.

Estimated Parameter Value

Ci (J/K) 1.47 × 105

Cfe (J/K) 1.77 × 108

Cfi (J/K) 9.36 × 106

Cm (J/K) 4.54 × 106

Ri, Rm (K/W) 1.82 × 10−2

Re (K/W) 3 × 10−3

Rf (K/W) 1.1 × 10−1

The performance of the model is evaluated by (i) the root-mean-square error (RMSE-values);
(ii) the final prediction errors (FPE); (iii) the level of fit (FIT) or normalized root mean square error
(NRMSE) and (iv) the auto-correlation of the residuals [21]. The error distribution ‘e’ between the
predicted and recorded temperatures is also determined (e is evaluated by subtracting the predicted
value from the recorded one than a distribution analysis was carried out.).

A sensitivity study was performed by calculating the Sobol index to verify that all estimated
models’ parameters are necessary for the predictions. This method allows measuring the overall impact
of a parameter in the output of the model. When the Sobol index is high (close to 1), the parameter has
a strong impact on the model.

Saltelli [22] and Jansen [23] proposed the following expression for the Sobol index:

STi =

1
2N

∑N
w=1(Yb −Yci)

2

Var(Ya , Yb)
, (3)

The model comparative criterion (Y) is the Root Mean Squared Error (RMSE, Equation (4)) between
the predicted data and the reference data. The quasi-random LHS (Latin hypercube sampling) type
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method is used to accelerate the convergence. All parameters vary by plus or minus 30% of their
adjusted value (values after learning).

RMSE =

√∑n
i=1

(
yi − ŷi

)2

n
, (4)

For each dataset, the most performing order are investigated. A parameter cannot be identified
correctly if its variation does not impact output values. Therefore, it is necessary to have high values of
the total Sobol index for all parameters to validate the model architecture.

3. Experimental Data

A smart monitoring system was installed in a room of a research building ‘A4’ at Lille University
in the north of France. The room is formed of two façades and two internal walls without windows.
The following experiments were conducted (Table 2):

- Experiment A: The room was submitted only to external thermal condition without any indoor
heating power.

- Experiment B: The room was submitted to the external thermal conditions as well as to an indoor
900 W heating power.

- Experiment C: The room was submitted to the external thermal conditions as well as to an indoor
1500 W heating power.

Table 2. Conducted experiments.

Experiment Indoor Heating Power (W)

A 0
B 900
C 1500

Figure 2 shows the variation of the indoor temperature for low and high heating levels. This graph
indicates that for 4 hours high heating, 18 minutes (min) has been needed for a variation of 1 ◦C, while
30 min is needed for low heating. By decreasing the heating time of 2 hours, 12 min are needed for a
variation of 1 ◦C at 1500 W heating. We noticed that for high heating, 25 min are needed to achieve a
variation of 1 ◦C for the difference between the indoor and outdoor temperatures, while 40 min are
needed for low heating. By decreasing the heating time of 2 hours, 15 min is needed for a variation of
1 ◦C at 1500 W heating. Consequently, it is necessary to execute prediction for 15 min, 30 min, and
60 min to cover the phase of façade heating exchange.
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Figure 2. Variation of indoor and outdoor temperature while heating: (a) 4 hours heating at 1500 W;
(b) 4 hours heating at 900 W; (c) 2 hours heating at 1500 W.

4. Results and Discussion

For each dataset, the prediction is executed for 15, 30 and 60 min for the first, second, third and
fourth order. To simplify the comparison, results will be presented in terms of RMSE and fit percent
to determine the best performing models and to evaluate the impact of the dynamics of data on the
predictions quality.

4.1. Sensitivity Analysis

Sensitivity analysis was conducted to confirm the significant role of chosen parameters [24].
Table 3 presents the result of this analysis. It shows that all parameters have an important influence
on forecasting values. Figure 3 indicates that for tests B and C, the "Ri" parameter is among the two
highest indices. This parameter represents the thermal resistance of indoor air in the building. It shows
that this phenomenon has a preponderant impact on the thermal behavior of the building.

Table 3. Calculated total Sobol index.

Result Free-Floating
(Test A)

Heating - 900W
(Test B)

Heating - 1500W
(Test C)

Parameter C R Ci Cfe Cfi Ri Re Rf Ci Cf Ri Re
STi 0.98 0.99 0.07 0.09 0.24 0.60 0.12 0.18 0.62 0.85 0.72 0.59

We noticed that for test B, Ci and Cfe have low total Sobol indices comparing to other parameters
(0.07 and 0.09), but their values are not negligible. This can be referred to the subjection of these
parameters to a small amplitude of variation (± 30%) compared to the dispersion observed in a
real building.

This sensitivity analysis showed that the totality of identified parameters had an important role in
predicting the building’s thermal behavior.
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4.2. Experiment A (Heating Power = 0)

Table 4 illustrates the influence of the order of grey-box model on the quality of temperature
predictions at 15 minutes. It could be observed that the optimal order of the grey-box model is equal
to 2 (RMSE equal to 0.0616), with a slight difference with orders 1 and 3, which have RMSEs equal
to 0.0656 and 0.0648, respectively. Tables 5 and 6 illustrate the influence of the order of grey-box
model on the quality of temperature predictions at 30 and 60 minutes. This influence is similar to
that of 15 minutes. Since by increasing the model order above 1, the improvement in the temperature
prediction is negligible, order 1 could be retained for this dataset as the simplest structure. Models
of fourth order did not converge for all predictions because this experiment does not include any
excitation source. Similar results were provided by Reynders et al. [16].

Table 4. Fifteen-minute prediction results for expirment A.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 95.11 95.35 95.12 10.09
RMSE 0.0656 0.0616 0.0648 1.2004

Table 5. Thirty-minute prediction results for experiment A.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 91.86 92.91 91.97 -
RMSE 0.1086 0.0949 0.1072 -
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Table 6. Sixty-minute prediction results for experiment A.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 87.83 90.24 88.05 -
RMSE 0.1625 0.1304 0.1594 -

Figure 4 shows the error distribution corresponding to the first order. It could be observed that
about 99% of the data have an error of less than 0.5 ◦C for 15, 30, and 60 min predictions. Model of
order one can be used effectively for 1-hour prediction (large-step forecasting), which is considered
adequate for heating control.
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4.3. Experiment B (Heating Power = 900 W)

Tables 7–9 illustrate the influence of the grey-box models’ order on the temperature predictions at
15, 30, and 60 minutes. It could be observed that the optimal order is equal to 3, with a slight difference
with order 2. Models of first order do not converge for all predictions. This result is similar to the those
obtained in [25], because this order is not sufficient to explain the data dynamics.

Table 7. Fifteen-minute prediction results for experiment B.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent - 93.97 95.43 44.15
RMSE - 0.1204 0.0917 1.1170



Buildings 2019, 9, 198 8 of 14

Table 8. Thirty-minute prediction results for experiment B.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent - 87.6 92.98 36.52
RMSE - 0.2480 0.1404 1.2697

Table 9. Sixty-minute prediction results for experiment B.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent - 80.65 90.71 31.25
RMSE - 0.3869 0.1857 1.3751

Models of fourth order become more sensitive and complex for this set of data.
Figure 5 shows the error distribution corresponding to the third order. It could be observed that

about 99% of the data have an error of less than 0.5 ◦C for 15- and 30-min predictions and 97% for
60-min predictions.
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Figure 6 illustrates the residuals’ auto-correlation for order 3 obtained with a lag of 25. The yellow
interval shows a 99% limit of confidence, which indicates that this model describes well the
building dynamics.
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4.4. Experiment C (Heating Power = 1500 W)

Tables 10–12 illustrate the influence of the order of the grey-box model on the temperature
predictions at 15, 30 and 60 minutes. It could be observed that the optimal order is equal to 2, with a
slight difference with orders 3 and 4. Results show that this dataset explains the best the building’s
dynamics since all models’ orders present satisfactory performances with the greatest fit percentage
and the lowest RMSE. This confirms the results obtained in [15], where the order 2 was the most
performing order with RMSE less than 0.5 ◦C and fit percent equal to 94% for 1-hour prediction.

Table 10. Fifteen-minute prediction results for experiment C.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 93.36 97.2 95.7 96.18
RMSE 0.2349 0.0990 0.1523 0.1353

Table 11. Thirty-minute prediction results for experiment C.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 83.34 95.56 90.7 92.17
RMSE 0.5895 0.1572 0.3291 0.2769

Table 12. Sixty-minute prediction results for experiment C.

Result 1R1C 2R2C 3R3C 4R4C

Fit percent 71.49 93.54 84.71 87.59
RMSE 1.0090 0.2285 0.5410 0.4392

Figure 7 shows the error distribution corresponding to the second order. It could be observed that
about 99% of the data have an error of less than 0.5 ◦C for 15- and 30-min predictions and 97% for
60-min predictions.

Figure 8 shows the residuals’ auto-correlation for order 2 with a lag of 25. The yellow interval
indicates a 99% limit of confidence. This figure indicates that this model describes the building
dynamics well.

By analyzing the previous results, we noticed that the choice of the model’s order depended on
the data dynamics. The prediction for the most reliable order for all the data sets present performing
results for short term forecasting. Dynamic data with heating at 1500 W reveal the most buildings’
dynamics. We can notice the need for an automated process combining many datasets and grey-box
models able to determine the most performing order for the best dataset revealing the real dynamics of
the building.
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5. Conclusions

This paper presented a method for the determination of the optimal order of the grey-box models
used in forecasting building’s thermal behavior in different thermal conditions. Experiments were
conducted in a monitored room with three values of the heating power. These experiments were used
for the analysis of the influence of the order of the grey-box models on the quality of the short-time
forecasting of the indoor temperature. Results show that the optimal order of the grey-box models
depends on the buildings’ thermal conditions, but generally lies between 2 and 3 with an error less
than 0.2 ◦C and a fit percent greater than 90% for all prediction times. Analyses indicate that in the case
of dynamic heating, the first order is not sufficient for the identification process. This study reveals a
need for data in different heating conditions to determine the optimal order of the grey-box models.
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Nomenclature

X(t) State vector of the dynamic system, temperature of building’s components
U(t) Vector of measured inputs (outdoor temperature, sun radiation and heating power).
W Random function of time (Wiener process).
Y(t) Measured output.
ε Measurement error.
θ Estimated parameter
Ti Indoor air temperature,
Tf Temperature of building envelope
Tfe Temperature of the external building façade
Tfi Temperature of the internal building façade
Tm Temperature of internal wall
R: Resistance between indoor and outdoor medium
Re Convection resistance of outdoor air
Ri, Rm Convection resistance of indoor air
Rf: Conduction resistance of the façade
C Equivalent mass capacity for building
Ci Air mass capacity,
Cf Envelope mass capacity
Cfe External capacity of the façade
Cfi Internal capacity of the façade
Cm Mass capacity of internal walls
Te Outdoor temperature
Qs Solar energy gain
Qh Heating energy gain
RMSE Root-mean-square error
FPE Final prediction error
FIT Level of fit
NRMSE Normalized root mean square error
e Error
STi Total Sobol index
N Number of samples
Yb, Ya Vectors of output data in which all parameters vary
Yci Output vector in which all parameters vary except the ith
yi Predicted temperature
ŷi Reference temperature
n Number of samples.

Appendix A

Many methods exist to initialize the parameters. Here we used the standard values of the RT2012, the bylaw
of 9 November, 2006, on DPE calculation methods (Standard, 2006) and on-site observations.

Necessary information obtained by "on-site observation":

- Year of construction or renovation
- Type of use (offices, shops, etc.)
- Heated surface (Sh)
- Surface of vertical walls (Sm)
- External exchange surface (Sext)
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- Internal exchange surface (Sint)
- Indoor air volume (Vint)
- Coefficients of internal convection (hint) and external (hext), supposed constant.

Information to look for in RT 2012:

- Daily capacity (Cq in kJ / K.m2) according to the inertia class (Tables A1 and A2).
- The impact of the furniture on the air capacity (Mob = 20 kJ / K.m2 for non-empty buildings and zero

otherwise).

Information to be found in the decree of 9 November, 2006, on DPE calculation methods:

- Conductivity of the outer walls: "Uwall", "Uslab" and "Uroof", depending on the year of construction (Table A3).

Here are the formulas to initialize each parameter: (Tables A3 and A4)

Ci = ρair × Cair × Vint + Mob × Sh, Cf = Cq × Sh, (A1)

Ri =
1

hint × Sint
, Re =

1
hext × Sext

, Rm =
1

Uwall × Sm
(A2)

Table A1. Inertia classes for building.

Low Floor High Floor Vertical Wall Inertia Class

heavy heavy heavy very heavy
- heavy heavy heavy

heavy - heavy heavy
heavy heavy - heavy

- - heavy average
- heavy - average

Table A2. Daily capacity.

Daily Inertia Class Daily Capacity Cm (KJ/K) Exchange Surface Am(m2)

Very heavy 80 × Abuild 2.5 × Abuild
light 110 × Abuild 2.5 × Abuild

average 165 × Abuild 2.5 × Abuild
heavy 260 × Abuild 3 × Abuild

very light 370 × Abuild 3 × Abuild

Table A3. Conductivity values.

Construction Date
H1 H2 H3

Joule Effect Other Joule Effect Other Joule Effect Other

From 1948 to 1974 2.5 2.5 2.5
From 1975 to 1977 1 1.05 1.11
From 1978 to 1982 0.8 1 0.84 1.05 0.89 1.11
From 1983 to 1988 0.7 0.8 0.74 0.84 0.78 0.89
From 1989 to 2000 0.45 0.5 0.47 0.53 0.5 0.56
From 2001 to 2005 0.4 0.4 0.47

From 2006 0.36 0.36 0.4
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Table A4. Coefficient of internal and external convection.

Wall Position Emissivity hint
hext

Normal Sheltered Severe

Vertical 0.9 8.13 18.2 12.5 33.3
Vertical 0 3.29 14.9 9.1 33.3

External ceiling 0.9 9.43 22.2 14.3 50
External ceiling 0 4.59 18.9 11.1 50
External floor 0.9 6.67 20 20 20
External floor 0 1.78 20 20 20

Internal horizontal 0.9 8 - - -
Internal horizontal 0 3 - - -
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